4 research outputs found

    Brain tumor quantification equation: modeled on complete step response algorithm

    Get PDF
    In Image Guided neuro-Surgery (IGnS) protocol relating to tumor, the planning stage is the bottleneck where most times are spent reconstructing the slices in order to; quantify the tumor, get the tumor shape and location relative to adjacent cells, and determine best incursion route among others. This time consuming assignment is handled by a surgeon using any of the standardized IGnS software. It has been observed that the approach taken to quantify tumor in those software are simply replicating the surgeons’ experience-based brain tumor quantification technique fashionable in the pre-imaging era. The result is a quantification method that is time consuming, and at bests an approximation. What is presented here is a novel brain tumor quantification method based on step response algorithm utilizing a model which itself was based on step response model resulting in smart and rapid quantification of brain tumor volume

    MOGA-Based Multi-drug Optimisation for Cancer Chemotherapy

    Get PDF
    This paper presents a novel method of multi-drug scheduling using multi-objective genetic algorithm (MOGA) that can find suitable/optimum dosages by trading-off between cell killing and toxic side-effects of chemotherapy treatment. A close-loop control method, namely Integral-Proportional-Derivative (I-PD) is designed to control dosages of drugs to be infused to the patient’s body and MOGA is used to find suitable parameters of the controller. A cell compartments model is developed and used to describe the effects of the drugs on different type of cells, plasma drug concentration and toxic side-effects. Results show that specific drug schedule obtained through the proposed method can reduce the tumour size nearly 100% with relatively lower toxic side-effects

    MOGA-Based Multi-drug Optimisation for Cancer Chemotherapy

    No full text
    Abstract This paper presents a novel method of multi-drug scheduling using multi-objective genetic algorithm (MOGA) that can find suitable/optimum dosages by trading-off between cell killing and toxic side-effects of chemotherapy treatment. A close-loop control method, namely Integral-Proportional-Derivative (I-PD) is designed to control dosages of drugs to be infused to the patient's body and MOGA is used to find suitable parameters of the controller. A cell compartments model is developed and used to describe the effects of the drugs on different type of cells, plasma drug concentration and toxic side-effects. Results show that specific drug schedule obtained through the proposed method can reduce the tumour size nearly 100% with relatively lower toxic side-effects
    corecore