40 research outputs found

    Mixed transfer function neural networks for knowledge acquistition

    Full text link
    Modeling helps to understand and predict the outcome of complex systems. Inductive modeling methodologies are beneficial for modeling the systems where the uncertainties involved in the system do not permit to obtain an accurate physical model. However inductive models, like artificial neural networks (ANNs), may suffer from a few drawbacks involving over-fitting and the difficulty to easily understand the model itself. This can result in user reluctance to accept the model or even complete rejection of the modeling results. Thus, it becomes highly desirable to make such inductive models more comprehensible and to automatically determine the model complexity to avoid over-fitting. In this paper, we propose a novel type of ANN, a mixed transfer function artificial neural network (MTFANN), which aims to improve the complexity fitting and comprehensibility of the most popular type of ANN (MLP - a Multilayer Perceptron).<br /

    Metode umjetne inteligencije korištene za transformaciju koordinatnog sustava

    Get PDF
    The article discusses the problem of transformation in the form of the function f:R2>R2 as dependence between the coordinates [x,y] of the original system and the coordinates [X,Y] of the secondary system. The task of the transformation of [X,Y]=f(x,y) technically understood as the transformation of a system of coordinates has been solved by means of the feed-forward neural networks of the sigmoidal type, radial neural networks, recurrent cascade neural networks, and neuro-fuzzy systems with the use of the Takagi-Sugeno-Kang model. The numerical procedures applied make it possible to obtain a level of accuracy of the task equivalent to the cartographic accuracy of pictures in the Spatial Information Systems.Članak razmatra problem transformacije u obliku funkcije f:R2>R2 kao ovisnosti između koordinata prvobitnog sustava [x,y] i koordinata sekundarnog sustava [X,Y]. Zadatak transformacije [X,Y]=f(x,y), koja tehnički znači transformaciju koordinatnog sustava, riješen je uz pomoć feed-forward neuronskih mreža sigmoidalne vrste, radijalnih neuronskih mreža, povratnih ukomponiranih neuronskih mreža i neuro-fuzzy sustava koristeći model Takagi-Sugeno-Kang. Primijenjeni numerički postupci omogućavaju dobivanje razine točnosti zadatka koja je jednaka kartografskoj točnosti snimaka Prostornih informacijskih sustava

    Comparison of feature selection and classification for MALDI-MS data

    Get PDF
    INTRODUCTION: In the classification of Mass Spectrometry (MS) proteomics data, peak detection, feature selection, and learning classifiers are critical to classification accuracy. To better understand which methods are more accurate when classifying data, some publicly available peak detection algorithms for Matrix assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) data were recently compared; however, the issue of different feature selection methods and different classification models as they relate to classification performance has not been addressed. With the application of intelligent computing, much progress has been made in the development of feature selection methods and learning classifiers for the analysis of high-throughput biological data. The main objective of this paper is to compare the methods of feature selection and different learning classifiers when applied to MALDI-MS data and to provide a subsequent reference for the analysis of MS proteomics data. RESULTS: We compared a well-known method of feature selection, Support Vector Machine Recursive Feature Elimination (SVMRFE), and a recently developed method, Gradient based Leave-one-out Gene Selection (GLGS) that effectively performs microarray data analysis. We also compared several learning classifiers including K-Nearest Neighbor Classifier (KNNC), Naïve Bayes Classifier (NBC), Nearest Mean Scaled Classifier (NMSC), uncorrelated normal based quadratic Bayes Classifier recorded as UDC, Support Vector Machines, and a distance metric learning for Large Margin Nearest Neighbor classifier (LMNN) based on Mahanalobis distance. To compare, we conducted a comprehensive experimental study using three types of MALDI-MS data. CONCLUSION: Regarding feature selection, SVMRFE outperformed GLGS in classification. As for the learning classifiers, when classification models derived from the best training were compared, SVMs performed the best with respect to the expected testing accuracy. However, the distance metric learning LMNN outperformed SVMs and other classifiers on evaluating the best testing. In such cases, the optimum classification model based on LMNN is worth investigating for future study

    Transient engine model for calibration using two-stage regression approach

    Get PDF
    Engine mapping is the process of empirically modelling engine behaviour as a function of adjustable engine parameters, predicting the output of the engine. The aim is to calibrate the electronic engine controller to meet decreasing emission requirements and increasing fuel economy demands. Modern engines have an increasing number of control parameters that are having a dramatic impact on time and e ort required to obtain optimal engine calibrations. These are further complicated due to transient engine operating mode. A new model-based transient calibration method has been built on the application of hierarchical statistical modelling methods, and analysis of repeated experiments for the application of engine mapping. The methodology is based on two-stage regression approach, which organise the engine data for the mapping process in sweeps. The introduction of time-dependent covariates in the hierarchy of the modelling led to the development of a new approach for the problem of transient engine calibration. This new approach for transient engine modelling is analysed using a small designed data set for a throttle body inferred air ow phenomenon. The data collection for the model was performed on a transient engine test bed as a part of this work, with sophisticated software and hardware installed on it. Models and their associated experimental design protocols have been identi ed that permits the models capable of accurately predicting the desired response features over the whole region of operability. Further, during the course of the work, the utility of multi-layer perceptron (MLP) neural network based model for the multi-covariate case has been demonstrated. The MLP neural network performs slightly better than the radial basis function (RBF) model. The basis of this comparison is made on assessing relevant model selection criteria, as well as internal and external validation ts. Finally, the general ability of the model was demonstrated through the implementation of this methodology for use in the calibration process, for populating the electronic engine control module lookup tables

    Air Data Sensor Fault Detection with an Augmented Floating Limiter

    Get PDF
    Although very uncommon, the sequential failures of all aircraft Pitot tubes, with the consequent loss of signals for all the dynamic parameters from the Air Data System, have been found to be the cause of a number of catastrophic accidents in aviation history. This paper proposes a robust data-driven method to detect faulty measurements of aircraft airspeed, angle of attack, and angle of sideslip. This approach first consists in the appropriate selection of suitable sets of model regressors to be used as inputs of neural network-based estimators to be used online for failure detection. The setup of the proposed fault detection method is based on the statistical analysis of the residual signals in fault-free conditions, which, in turn, allows the tuning of a pair of floating limiter detectors that act as time-varying fault detection thresholds with the objective of reducing both the false alarm rate and the detection delay. The proposed approach has been validated using real flight data by injecting artificial ramp and hard failures on the above sensors. The results confirm the capabilities of the proposed scheme showing accurate detection with a desirable low level of false alarm when compared with an equivalent scheme with conventional “a priori set” fixed detection thresholds. The achieved performance improvement consists mainly in a substantial reduction of the detection time while keeping desirable low false alarm rates

    Multi-objective Optimization of the Fast Neutron Source by Machine Learning

    Get PDF
    The design and optimization of nuclear systems can be a difficult task, often with prohibitively large design spaces, as well as both competing and complex objectives and constraints. When faced with such an optimization, the task of designing an algorithm for this optimization falls to engineers who must apply engineering knowledge and experience to reduce the scope of the optimization to a manageable size. When sufficient computational resources are available, unsupervised optimization can be used. The optimization of the Fast Neutron Source (FNS) at the University of Tennessee is presented as an example for the methodologies developed in this work. The FNS will be a platform for subcritical nuclear experiments that will reduce specific nuclear data uncertainties of next-generation reactor designs. It features a coupled fast-thermal design with interchangeable components around an experimental volume where a neutron spectrum, derived from a next-generation reactor design, will be produced. Two complete genetic algorithm optimizations of an FNS experiment targeting a sodium fast reactor neutron spectrum are presented. The first optimization is a standard implementation of a genetic algorithm. The second utilizes neural network based surrogate models to produce better FNS designs. In this second optimization, the surrogate models are trained during the execution of the algorithm and gradually learn to replace the expensive objective functions. The second optimization outperformed by increasing the total neutron flux 24\%, increased the maximum similarity of the neutron flux spectrum, as measured by representativity, from 0.978 to 0.995 and producing configurations which were more sensitive to material insertions by +124 pcm and -217 pcm. In addition to the genetic algorithm optimizations, a second optimization methodology using directly calculated derivatives is presented. The methods explored in this work show how complex nuclear systems can be optimized using both gradient informed and uninformed methods. These methods are augmented using both neural network surrogate models and directly calculated derivatives, which allow for better optimization outcomes. These methods are applied to the optimization of several variations of FNS experiments and are shown to produce a more robust suite of potential designs given similar computational resources

    Statistical advances and challenges for analyzing correlated high dimensional SNP data in genomic study for complex diseases

    Full text link
    Recent advances of information technology in biomedical sciences and other applied areas have created numerous large diverse data sets with a high dimensional feature space, which provide us a tremendous amount of information and new opportunities for improving the quality of human life. Meanwhile, great challenges are also created driven by the continuous arrival of new data that requires researchers to convert these raw data into scientific knowledge in order to benefit from it. Association studies of complex diseases using SNP data have become more and more popular in biomedical research in recent years. In this paper, we present a review of recent statistical advances and challenges for analyzing correlated high dimensional SNP data in genomic association studies for complex diseases. The review includes both general feature reduction approaches for high dimensional correlated data and more specific approaches for SNPs data, which include unsupervised haplotype mapping, tag SNP selection, and supervised SNPs selection using statistical testing/scoring, statistical modeling and machine learning methods with an emphasis on how to identify interacting loci.Comment: Published in at http://dx.doi.org/10.1214/07-SS026 the Statistics Surveys (http://www.i-journals.org/ss/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore