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Abstract

Engine mapping is the process of empirically modelling engine be-

haviour as a function of adjustable engine parameters, predicting the

output of the engine. The aim is to calibrate the electronic engine

controller to meet decreasing emission requirements and increasing

fuel economy demands. Modern engines have an increasing number

of control parameters that are having a dramatic impact on time and

effort required to obtain optimal engine calibrations. These are fur-

ther complicated due to transient engine operating mode.

A new model-based transient calibration method has been built on the

application of hierarchical statistical modelling methods, and analysis

of repeated experiments for the application of engine mapping. The

methodology is based on two-stage regression approach, which organ-

ise the engine data for the mapping process in sweeps. The introduc-

tion of time-dependent covariates in the hierarchy of the modelling led

to the development of a new approach for the problem of transient

engine calibration.

This new approach for transient engine modelling is analysed using

a small designed data set for a throttle body inferred air flow phe-

nomenon. The data collection for the model was performed on a

transient engine test bed as a part of this work, with sophisticated

software and hardware installed on it. Models and their associated

experimental design protocols have been identified that permits the

models capable of accurately predicting the desired response features

over the whole region of operability.



Further, during the course of the work, the utility of multi-layer per-

ceptron (MLP) neural network based model for the multi-covariate

case has been demonstrated. The MLP neural network performs

slightly better than the radial basis function (RBF) model. The basis

of this comparison is made on assessing relevant model selection cri-

teria, as well as internal and external validation fits.

Finally, the general ability of the model was demonstrated through the

implementation of this methodology for use in the calibration process,

for populating the electronic engine control module lookup tables.

Index Terms -- Engine Mapping, Model Based Calibration, Two-

Stage Regression, Transient Engine Model, Transient Engine Cali-

bration, Hierarchical Models, Non-Linear Repeated Measurements,

Multi-Layer Perceptron, Radial Basis Functions, Transient Air Flow

Model
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v2(βi, ζi) Function describing the level-1 vari-

ance heterogeneity.

xij jth level-1 covariate vector for the ith

sweep.

yi Vector of observed responses for the

ith sweep.

yij jth observed response for the ith

sweep.

Notation

N Denotes the normal distribution.

x ∈ Rn x is an n-by-1 column vector of real

elements.

X ∈ Rr×c The set of real numbers.

E Expectation operator, E[x] =∫∞
−∞ xp(x)dx, with p(x) the p.d.f for

x.

R The set of real numbers.

Var Variance operator, V ar[x] =
∫∞
−∞(x−

E[x])2p(x)dx, with p(x) the p.d.f for

x.
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Introduction

1.1 Introduction

Today, modern engine systems are equipped with complex technologies such as

multiple injections, exhaust gas recirculation, combustion and after-treatment

systems; in response to the decreasing emission requirements and increasing fuel

economy demands. As a result, the challenges for engine calibration and control

are increasing. Further, even as the requirements of complying with ever lower

transient emissions regulations cannot be underestimated. The conventional en-

gine calibration techniques are time consuming, adhoc and repetitive, resulting in

low productivity of test facilities and engineering effort. These techniques will be

unable to keep up with the increased demands in workload and accuracy required

in future highly complex engine and after-treatment systems. As a result of this,

the calibration would be impossible to perform entirely in the test cell on these

complex engines.

There is a growing realisation of reducing development cost by moving as much

of the engine calibration process out of the engine test cell onto the desktop envi-

ronment, using model-based calibration methods. This method offers significant

advantages which helps in the reduction of time and effort for optimised engine

calibration.
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1.1 Introduction

There have been significant advances made in steady-state engine calibration

processes such as adaptive online data acquisition (5), rule based calibration (6)

and simulation based calibration (7; 8). Response Surface Method (RSMs) (9; 10)

is most commonly used method for steady-state engine calibration which typi-

cally use Design of Experiments (DoE) to obtain data using a structured test plan

and then typically use regression models to study the relationship between the

independent and response variables. These models then drive the DoEs towards

further data acquisition or final engine calibrations. Other examples of practical

applications of RSMs for engine system and engine subsystem calibration can be

found in the work of Montgomery and Reitz (11; 12), Edwards and Pilley (13),

Burk et al. (14) and Dimopoulos et al. (15). Examples of work where distinct

engine operating points have been optimized individually or have been considered

as a group to meet some overall cycle emission limits, while maintaining mechan-

ical and thermal limits at each engine operating point is included in work by

Kampelmuhler et al (16) who used second order models at each engine operating

point to develop an automated calibration process. Schmitz et al (17) used a La-

grangian function for multi-point optimization as part of an calibration process

development, Brooks et al (18) have used the Matlab Model Based Calibration

(MBC) toolbox to develop calibrations to comply with the New European Drive

Cycle and, Knafl et al (19) have used second order models to develop dual-use

engine calibrations. Traditional RSM methods have used least square linear re-

gression models including linear, pure quadratic and full quadratic models, but

some recent modelling techniques have demonstrated significant promise and ad-

vantages over traditional RSMs.

Neural network models used for engine optimization such as (20; 21) can be

used to represent the entire dataset. A structured test plan or DOEs are not

usually required and any amount of non-linearity can be handled. A lot of recent

work (22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32; 33; 34) has gone into utilizing the

power of neural networks for engine modelling. Qiang et al. (35) have used mul-

tiple neural networks trained at distinct engine operating points and used fuzzy

logic to interpolate at intermediate points for the purpose of engine calibration.
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Other recently used techniques include Kriging techniques, Radial Basis Func-

tions, Splines and Support Vector machines. Guerrier et al. (36) have examined

Linear Growth Models and Radial Basis Function Models for engine calibration.

The phenomenological models such as the soot model developed by Bayer and

Foster (37; 38) and Bayesian techniques (39; 40) show significant promise in engine

calibration development. The Design of Experiments for Powertrain Engineer-

ing Consortium (DEPE) led by Ricardo Inc. have claimed that their Stochastic

Modeling Methods have outperformed polynomials, neural networks and Radial

Basis Functions (41).

Most of these model based calibration process have focused on the steady state

operation. These steady state engine mapping methods, such as design of ex-

periments, do little to ensure transient emissions compliance or fuel consumption

optimization, which implies that the engine calibration optimization, if it is done

in an offline or ’virtual’ environment, must be performed using a transient or

dynamic engine model.

However, Atkinson et al. (42; 43; 44) used neural networks to predict transient

engine operation. They used a hybrid equation-based and neural network-based

data-driven technique to produce an engine model for calibration and optimisa-

tion. Brahma et al. (45) have used empirical modelling for transient emissions

and response for optimisation using full quadratic global regression model. The

model based has been used by Hafner (46) for determination of dynamic engine

control parameters. Hafner (46) and Dohmen (47) work discuss transient engine

testing procedure and post-processing techniques for transient data collection.

Transient engine calibration must account for time as an additional dimension.

Therefore, transient modelling is different from the steady state modelling in var-

ious ways. The most important is the data acquisition and processing in transient

condition is highly complex and is very important in view of model development.

Also, the model developed for the steady state condition might not be suitable

for the transient data.
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1.2 Research Problem

From the calibration point view, there is a growing demand to meet the challenges

faced by the increase in engine technologies, hence the extremely complex non-

linear processes sensitive to large number of interacting factors. Also, the steady

state engine mapping or calibration optimisation are not suited to the situation

in which the prevailing emissions standard is transient standard, such as EPA

Heavy Duty Transient Cycle (HDTTC), EPA Smoke Test, EURO III – Load

Response Test and the FTP – 75 test for light-duty engine. In these case, the

legislative requirement is based on the engine performance over a dynamic cycle,

which implies that the engine calibration optimisation must be performed using

transient or dynamic engine model (30). Transient engine model should take

into account the full dynamic nature of an engine performance, in order to more

accurately model the transient time-varying nature of the engine’s emissions,

performance and fuel consumption behaviour.

1.3 Research Objectives

This research has been initiated from a general observation that, despite the po-

tential advantages of model-based methods in engine mapping process, the cali-

bration is still limited to steady state engine conditions. The research presented

in this thesis investigates a new approach to the development and implementa-

tion of a model-based transient engine model that can enable calibration in the

transient condition with an added domain of time in the hierarchy of the model.

This research has been conducted with respect to the limited provision of transient

calibration methods currently available in commercial and public domain. First,

the emergence of new legislative requirements regarding engine performance over

a dynamic cycle imposes new requirement regarding the design and implemen-

tation of calibration optimisation methods. Secondly, the development of such

models taking into account the full dynamic nature of an engine performance

imposes new constraints on the data acquisition and hence, implantation of these

models.
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The calibration process commences with a limited data collected in a transient

test cell and is then transferred to the computational environment where dynam-

ically predictive engine models are created. To prove the accuracy of the method,

a number of transient data sets were collected from the same engine, are then

validated on the developed engine model. The engine calibration is then gener-

ated off-line using these transient models. The following objectives were satisfied

in order to achieve the research aim;

1. To identify hierarchical non-linear models with good predictive capability

over the entire region of operability accounting time as an additional degree

of freedom.

2. To determine appropriate design procedures to support the models.

3. To demonstrate the application of these models for engine calibration.

1.4 Software Tools

In order to develop the transient engine model, different software and tools were

used during the course of studies. The details are as follows:

1.4.1 Test and Measurement Software

The Engine is remotely controlled by the controlling PC located in the control

room, next to the test stand room via an Electronic Control Unit (ECU). An ATI

VISION software is used to control and measure the data from the engine. ATI

VISION Software is an integrated calibration and data acquisition tool that col-

lects signals from the ECU and external sources, measures relationships between

inputs and outputs, enables real-time calibration and modification to closed loop

control systems, time aligns and analyses all information, manages calibration

data changes and programs the ECU. VISION includes the following features:

• Recording of measurement data, calibration variables, and virtual data

items
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• Number of channels (10 ∼ 15) and multiple channel sampling rates sup-

ported

• Multiple (2 ∼ 3) measurement recorders can run simultaneously

• Multiple (2 ∼ 3) trigger conditions

• Storage in ASCII, MATLAB R©

• Offline calibration without an ECU

Also, a custom made National Instruments (NI) LabView software was designed

and build to allow transient testing of the powertrain under repeatable conditions

in a laboratory environments, and to allow a comprehensive control of the dy-

namometer controller behaviour. The software can;

• Trigger the dynamometer

• Export the designs experiment table to the controller

• Record the dynamometer data

1.4.2 Analysis Software’s

Much of the analysis for the research work is performed in the Model Based Cali-

bration Toolbox (MBC) implemented in Matlab R©. MBC is a commercial toolbox

jointly developed by The Mathworks and Ford Motor Company.

MBC provides design tools for optimally calibrating complex powertrain systems

using statistical modelling and numeric optimization. It contains tools for design

of experiment, statistical modelling, and for generating calibrations and lookup

tables for complex high-degree-of-freedom engines. These features in toolboxes

accomplished via two main user interfaces:

1. A Model Browser for experimental design and statistical modelling
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• Designing a test plan based on Design of Experiments, a methodology

that saves test time by letting to perform only those tests that are

needed to determine the shape of the engine response. The toolbox

offers a full range of proven experimental designs, including: Classical,

space-filling, and optimal designs for creating optimized test plans

• Estimation of local and global variations separately by fitting local

and global models in two stages. Two-stage modelling is used to map

the complex relationships among all the variables that control the be-

haviour of the engine. An extensive range of built-in and user-definable

libraries of empirical model forms is available at either level in the hi-

erarchy. The necessary transient engine model specified in this thesis

can be implemented directly in the toolbox.

• Boundary modelling to keep optimisation results within the engine

operating envelope. Acquiring data and modelling the engine must

account for the operating regions of the system that can be physically

tested. MBC lets you add constraints to your experimental designs and

create boundary models that describe the feasible region for testing

and simulation.

• Evaluation and comparison of single and two-stage models for model

selection. Different model performance measures, such as RMSE,

PRESS and GCV is automatically calculated.

• Response feature visualisation tools for two- and three- dimensional

surface projections, parametric plots and contour plots.

2. A Calibration Generation (CAGE) Browser for generation of lookup

tables from models, optimization results, or test data

• Generate optimal calibrations directly from empirical engine models

• Producing smooth calibration tables by table-filling wizard that en-

ables incremental filling of tables from the results of multiple optimi-

sations with smooth interpolation through existing table values. The

CAGE tool extrapolates the optimisation results to pass smoothly

through table masks and locked cells (fixed table values).
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• Compare calibrations with test data

• Export calibrations to ETAS INCA and ATI Vision

Hence, the toolbox provides an ideal environment for the design and analysis

of the engine mapping experiments and subsequent application of the resultant

models for analytical calibration purposes.

1.5 Thesis Organization

The thesis begins with the description of the calibration process in detail and

discusses the current approach to engine mapping process, before presenting the

challenge faced for the calibration due to new engine technologies. The need for

model-based transient engine calibration is discussed in Chapter 2. Chapter 3

review and analyse model based methods with the discussion of different exper-

imental design and, approximation models and fitting techniques. The chapter

also covers fundamentals of the two-stage regression approach applied in engine

mapping process and its mathematics. Recommendation of model choice and

fitting is also presented.

Chapter 4 discusses the empirical model building such as experimental design

and response feature methodology for the two-stage regression model using neu-

ral network. The experimental design is based on space filling approach, in which

the available points are spread in a relatively uniform fashion on entire region

to capture as much information as possible, and does not assume a particular

model form. A space-filling design is best for exploring a new system where prior

knowledge about the underlying effects of factors and responses is low.

Chapter 5 presents a steady state neural network based approach to the stage–2

modelling for engine calibration. The model is developed with good generalisa-

tion capability and interpolation accuracy. For the approximation of a nonlinear

input–output mapping, the multilayer neural network require a smaller number

of parameters then the radial basis function (RBF) network for the same degree
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of accuracy.

Chapter 6 presents some original work by the extension of the two-stage model to

the transient engine mapping application. The modification to the general struc-

ture at stage–1 in the hierarchy is done to allow the presence of forcing function

or identification signal at stage–1 in the model. A transient throttle body air-

flow characterisation is performed using a data from a transient engine test bed.

Transient model for a mass airflow is generated from the design data. A biological

growth profile is fitted to the data in level-1 with time as a first covariate through

a separate Simulink R©model developed. The model is validated with a separate

set of data with good predictive results.

Chapter 7 describe the application of the transient model-based engine model

to the characterisation problem (populating look-up tables). The calibration of

inferred airflow profiles is presented, and a general method of generating accurate

look-up representations of any response surface is discussed. Finally, Chapter 8

presents the conclusions and recommendations for future work.

The flowchart Figure 1.1 gives an outlook for reading this thesis. The motivation,

problems and objectives are discussed in Chapter 1. Chapter 2 and 3 gives review

and analysis of model based methodology, with discussion of designed of experi-

ments and, modelling and fitting methods. The concept of two-stage regression

approach for engine calibration and its mathematics is also discussed. Chapter

4 and 5 are intended to illustrate the two-stage regression methodology with the

development and validation of steady state engine model using neural network.

Chapter 6 discuss the modification of two-stage regression approach for solving

transient calibration. The calibration generation is discussed in Chapter 7, with

final conclusion and future work in Chapter 8.
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1.5 Thesis Organization

Figure 1.1: Flowchart for reading this thesis
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2

Literature Review 1: The

Calibration Process

2.1 Introduction

Engine mapping is an empirical modelling of the behaviour of an internal com-

bustion engine (ICE) over a wide range of operating conditions (48; 49; 50; 51),

and is a common process in ICE development. Engine data are normally collected

in large number of operating points in a dynamometer cell equipped with data

acquisition system for search of the optimal set point combination of all inde-

pendent control variables. These control variables are embedded in the engine

management system (EMS), along with various actuators and sensors. All the

actuators and sensors in the engine management system are controlled through

engine Electronic Control Unit (ECU) to allow the state of the power train to

be continually monitored and altered when required. A large number of operat-

ing parameters have to be detected with the aid of sensors, and processed using

algorithms – i.e. a set of defined mathematical rules. The results obtained take

the form of sequence of signals which are used to control actuators. A control

program or strategy is executed in a continuous loop to determine and set the

desired state. Figure 2.1 shows a schematic of a typical engine management sys-

tem.
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2.1 Introduction

Figure 2.1: Overview Engine Management System (EMS)

In conventional injection systems, for example, the driver directly controls the

throttle-valve opening through accelerator pedal. In doing so, he/she defines

the amount of fresh air drawn in by the engine. In engine-management sys-

tems with electronic accelerator pedal for cylinder-charge (also known as EGAS

or ETC/Electronic Throttle Control), the driver inputs a torque requirement

through the position of the accelerator pedal, for instance to fulfil the demand

to accelerate. Here, the accelerator-pedal sensor measures the pedal’s setting,

and the ETC subsystem uses the sensor signal to define the correct cylinder air

charge corresponding to the driver’s torque input, and opens the electronically

controlled throttle valve accordingly. These signals are provided by interrogating

a brake torque response surface model stored in the ECU in lookup table form.

These lookup tables are populated or calibrated using predictions from response

surface models developed during the course of engine mapping study.

These lookup tables form the basis of the control strategy, and are two dimen-

sional arrays indexed by the appropriate state and actuation variables.
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2.2 The Engine Calibration Process

The actual engine mapping process consists of many different steps ranging from

creation of engine map to developing calibrations for specific applications (52).

This characterisation takes place traditionally with identification of the engine

operating region, in terms of speed and load during the test cycle of interest.

The design of mapping test can be specific to a particular application, or general,

if whole ranges of applications are required. However, with the increased number

of variables, the data required to calibrate the engine increases exponentially.

Hence, testing on a full factorial results in very high number of operating points,

and conventional methods of calibration and optimization are now entirely im-

possible to implement (43; 53). As a result, there is a growing realisation that

the model based calibration can reduce burden. The model based approach to

calibration solves this problem of exponential scaling of testing time with num-

ber of control parameters by using design of experiments (53). The method is

based on building a statistical model of empirical data to capture the engine be-

haviour, which help in the reduction of the data collection for building the model.

This gives a linear dependence of testing time on the number of control param-

eters rather than the exponential dependence. These models are further used to

generate the optimised calibration tables for the electronic control unit (ECU),

for both control and estimator problems. Figure 2.2 shows a calibration process

also known as Z-process (54), which consists of the five sub-processes ’Defini-

tion of factors and responses’, ’Experimental design’, ’Measurement on the test

bench’, ’Modelling’, ’Calibration and Optimization’ and ’Filling tables of ECU’.

The experimental plan is devised through application of advanced DoE methods.

Further, statistical modelling uses data collected from the experimental plan to

produce accurate response models. Finally, high quality engine calibrations are

then developed through optimization of these models and system and calibration

verification.

Traditional calibration methods have focused on optimizing a single variable at

a time on the engine test bed which often negates the interaction between other
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input variables. With higher degrees of freedom this becomes a very time con-

suming and inefficient process. Engine mapping process is considered heavily

a statistical method (48; 49; 52) due to the empirical nature of the data, and

regression analysis are commonly used for building empirical models. With the

introduction of the model based calibration approach it has made possible to

optimize all degrees of freedom simultaneously to enable a complete systems ap-

proach. DoE is the major part in statistical models, because of the fact that

the effect of interaction between calibration settings and engine performance can

be well explain by these models, which is vital to optimal control of the engine.

Optimal engine calibrations can be generated from the models for maximum per-

formance, driveability and different constraints.

Figure 2.2: Steps of a model-based calibration process

2.2.1 Holliday’s Approach for Engine Mapping

The potential of two-stage regression method for engine mapping process in cal-

ibration process has been investigated by Holliday (49; 50). This unique method
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is based on the fact that the engine data for the mapping process are organized

in sweeps, and the empirical modelling benefits more from the two-stage of the

data. This two-stage model simplifies the data analysis, such as model selection,

validation and diagnostics, and hence provides a framework which is more readily

interpreted by engineering analysts. The method provides a very good predictions

and a major justification of this approach. The sequence of tasks undertaken in

this approach is shown in Figure 2.3

The main aim of experimental design is to select a small subset of possible input

configuration at which engine may function. These information content carried

by the experimental data at design points is assumed sufficient to illustrate the

true behaviour of the response surface of interest. Once the data is collected the

information content in that data is fixed. So it is important to design the experi-

ment prior to the data collection. Any model that is built on the insufficient data

will yield an adequate prediction, no matter how sophisticated the analysis is.

Figure 2.3: Two-stage regression approach to engine mapping

During the engine mapping experiments, the data are normally collected in

sweeps. The process involves holding the entire engine operating parameter con-

stant, while sweeping one variable from one extreme to another in discrete steps.
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This results in a cluster of data in sweeps, which comprise the fundamental ex-

perimental units.

Holliday (49; 50) first suggested the use of non-linear mixed effect models for

the analysis of repeated measurement data (55). Crowder and Hand (56) defined

the repeated measurements that are made of same characteristic on the same

observational unit but on more than one occasion. In engine mapping context,

the repeated measurement are the data sweeps. The earlier approaches in engine

mapping were based on polynomial regression (52; 57), and this method was not

explored.

Modelling is divided into two-stages: intra-sweep and inter-sweep modelling.

Intra-sweep is concerned with the variation within a given variable or, the re-

lationship between the response of interest and the swept variable. Each time a

sweep is repeated a slightly different profile is obtained, even when the settings

of the remaining experimental variables are not varied. A non-linear fit function

summarise the relationship for each sweep, while the corresponding regression

parameters characterise the shape of the sweep-specific response profile.

The inter-sweep modelling is concerned with the variation among the variables

or, the relationship in the sweep specific parameter vectors with the remaining en-

gine operating variables. The second stage is multivariate in nature as contrast to

the first stage which deals with the relationship of one variable with the response.

The hierarchical modelling techniques has an advantage from an engineering per-

spective, as the curve fit does not have any intuitive interpretation, rather their

characteristic geometric features which is of interest. The second stage of the

modelling is conducted in terms of response features (56) rather than the sweep-

specific regression parameters themselves.

Once the model is developed, it should be tested to check the behaviour in accor-

dance with the physical or empirical laws established for proper function of the

system. This validation of model is referred as internal validation. In addition,
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the model should predict the response characteristics at previously untried input

configurations not included in the training data, the external validation. If the

model is not sufficiently accurate then it may be augmented, as the resultant

calibrations can only be as good as the response surface model.

After a sufficient external validation, the model is used for the generation of

engine control strategy calibration. This involve the characterisation, populating

the lookup tables, and optimisation, determining the optimal schedule for control

problem.

The characterisation problem is straightforward, which involves selecting the ta-

ble values and the corresponding indexing scheme, or table break-points. The

objective of the characterisation problem is the selection of break-points and

the corresponding table values so that the fit to the relevant response surface

projection onto the table domain is optimised. The final lookup table is the rep-

resentation of the response surface by a control strategy. The strategy should

be improved, if the representation is insufficient and differences occur in certain

operating regimes.

A multi-objective optimisation problem is formulated in the presence of com-

peting objectives, which have to be trade-off against each other. In this case, one

objective is optimally satisfied at the expense of others. However, a multitude of

potential trade-off are evaluated in coming to a decision.

There are two valuable benefits from the Holliday’s two-stage approach. First,

it gives the engineer an opportunity to have a clear understanding of the factor

being varied, at each operating condition at a second stage. This leads to eas-

ier identification of outliers within the test data. Second, the complexity of the

designed experiments can be reduced by one factor, which will lead to reduced

model complexity. Performing sweeps will add to the total number of test points,

but the above benefits far outweigh this disadvantage. Each spark sweep may be

considered as a local model or first stage, and each DoE test point as the global

model or second stage’.
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2.2.2 Limitation of Holliday’s Approach

Rose et al (2) used the two-stage technique in selecting more realistic models and

their corresponding experimental design protocols, in contrast with the Holliday

method where the model was limited to only small data set collected over a lim-

ited range of engine operation. Their method demonstrates the effectiveness of

the 2-stage modelling approach when employed to map engine stability and com-

bustion performance parameters. Cary (58) and Guerrier (36) demonstrated the

use of two-stage methodology to a realistic calibration problem. They have also

used different modelling approaches, such as Hybrid B-Spline and radial basis

function (RBF) for the regression analysis. Tindle (59) demonstrated the meth-

ods for cold engine emissions optimization.

However, the two-stage model discussed by the researchers mentioned above as-

sumed that the covariate vector in the second stage summarizing individual char-

acteristics is constant across the observations on individual, and which further

specifies that the value of the regression parameter of first stage for individual

remains fixed for that individual over the course of observation. In some cases,

particularly in engine transient phenomena such as engine warm up and fuel dy-

namic response characteristics, individual specific information may change during

the course of observations to exhibit corresponding changes at different time.

2.3 Summary

Engine calibration process is discussed in this chapter, with reference to differ-

ent approaches. The main aim of all these methods is their performance and

predictive qualities. Holliday’s method of engine calibration process is based on

the development of empirical model; with the realisation of the data structure

compose in sweeps. The two-stage regression approach has good fitting and pre-

dictive capabilities than the other polynomial models used previously.

However, although two-stage regression methods were analysed for the engine

mapping data, but all the related work is limited to the application of the method
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to only steady stage condition. However, the steady state engine mapping or

calibration optimisation are not suited to the situation in which the prevailing

emissions standard is transient standard, which implies that the engine calibra-

tion optimisation must be performed using transient or dynamic engine model.

This lead to the research problem for the development of transient engine model

for engine calibration, based on two-stage regression approach for the transient

engine calibration application.
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3

Literature Review 2: Model

Based Methodology

Models have always been used in engineering. There are several definitions of

what a model is. The concept of model can be defined as:

A model is a simplified representation of a real or imagined system that brings out

the essential nature of this system with respect to one or more explicit purposes.

Models are used implicitly in the mindset of the engineer, in terms of construction

of physical models/prototypes. Much of today’s engineering analysis consists of

running complex experiments: applying a vector of design variables (inputs) x

and measuring a vector of responses (outputs) y. However, due to increase in

the number of variables and the response associated with them, the expense of

running an experiment remains non-trivial; a single experiment run involving a

few variables can take minutes to hours, if not longer. Moreover, this mode of

query-and-response often leads to a trial and error approach to design, whereby

a designer may never uncover the functional relationship between x and y, and

therefore never identify the ’best’ settings for input values.

Statistical techniques are widely used in engineering design to address these con-
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cerns. The basic approach is to construct approximate model that are close to

real one but more efficient and fast to run, and yield insight into the functional

relationship between x and y. If the true nature of an experiment is:

y = f(x)

then the approximate model is;

ŷ = g(x) and so y = ŷ + ε

where ε represents both the error of approximation and measurement (random)

errors. These type of methods are widely used in design and analysis of computer

experiments, and are referred as ’model of the model’ or metamodel (1; 60). Here,

in engine development context, this can be easily fitted in ’Model based methods’,

which is a combination of first principles, equation based modelling and data-

based techniques to develop high fidelity, real-time dynamic model for predicting

engine emissions, performance and operating states (43). This approach involves:

• Choosing and experimental design for generating data

• Choosing and fitting the model to the data

Model is seen as a vital element in research and development, as it may be re-

garded as a solution of a set of equations, including linear, nonlinear, ordinary,

and/or partial differential equations, and it is often impossible to obtain an an-

alytic solution for the equations. These models are always crucial in a situation

where a relationship is needed between a response y and inputs x’s and perform-

ing physical experiments are too expensive or time consuming to conduct.

There are several options available for construction of a model, Simpson et al.

(60) and Wang and Shan (61) highlighted a few of the most frequently used ones.

These are shown in Table 3.1. For example, building a neural network involves

fitting a network of neurons by means of back-propagation to data which is typ-

ically based on Latin hypercube sampling, while Response Surface Methodology
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3.1 The Designed Experiments

(RSM) usually employs central composite designs, second order polynomials and

least squares regression analysis. Also, guidelines and recommendations are given

in (60).

Table 3.1: Model Based Methods: Experiment design, model choice and fitting

Experimental Design Model Choice Model Fitting Sample Approximation Techniques

Fractional Factorial Polynomial (Linear, Quardatic)

Central Composite Spline (Linear, Cubic) Least Square regression Response Surface Methodology

Box Behnken Multivariate Adaptive

Optimal Regression Spline (MARS) Best Linear Unbiased Predictor

Plackett-Burman Kriging

Hybrid Methods Kriging Multipoint approximation

Sequential Methods Radial Basis Function (RBF)

Latin Hypercube Artificial Neural Network (ANN) Back Propagation (for ANN) Neural Network

Orthogonal Array

Select by Hand Decision Tree Entropy (for Inductive Learning)

Random Selection Hybrid Models Inductive Learning

A review of the methods used is given in next sections. Section 3.1 presents the

basic concepts related to experimental design and a survey to the design methods

used. In Section 3.2 different modelling techniques including regression, neural

networks, inductive learning and kriging are discussed. In Section 3.3, two stage

models for engine is described.

3.1 The Designed Experiments

Design of Experiment (DoE) is forming a detailed experimental plan in advance

for doing the experiment. Experimental designs minimize the number of test

points and maximize the amount of information that can be obtained for a given

amount of test. DoE is now commonly used in engine development for the reason

of increasingly complex and sophisticated modern engines, which demand high

calibration and optimization effort.

The use of experimental design is not a new concept. Other industries such

as agriculture have been utilising them since the early 1920’s, which started with

the pioneering work of Sir Ronald A. Fischer. Fisher developed an insight that
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led to the three basic principles of experimental design: randomization, replica-

tion and blocking. His work introduced a statistical thinking and principles into

designing experimental investigations, including factorial design concept, which

is the basic building block of subsequent work in the field.

Box and Wilson (62) spark the new era of statistical design with their devel-

opment of response surface methodology (RSM). Their recognition to the fact

that many experiments are fundamentally different than their agricultural coun-

terparts in two ways: the response variable can usually be observed (nearly)

immediately and, the experimenter can quickly learn crucial information from a

small group of runs that can be used to plan next experiments. These techniques

were spread to other research and development work, mainly chemical and pro-

cess industries.

The third era started with introduction of statistical designs in quality improve-

ment in western industries in late 1970s, and the work of Genichi Taguchi (63)

played an important role in that. He suggested highly fractionated factorial de-

signs and other orthogonal arrays along with some novel statistical methods in

the field. Although Taguchi concepts and objectives were well founded but there

were substantial problems with his experimental strategy and methods of data

analysis, and that led to many controversies. The positive outcome of the Taguchi

was, that statistical designs spread to other industries including automotive and

aerospace, and also it started the fourth era of statistical design. This era has

included a renewed interest in statistical design by both researchers and practi-

tioners. There are plenty of standard texts that discuss the statistics and theory

behind the concept (12; 64; 65).

However, engineers tend to shy away from the statistical theory such that addi-

tional texts that deal with the practicalities of experimental design have emerged

(66). The application of experimental design within the automotive industry for

engine, emissions and fuel economy optimisation has been around for a little more

than a decade. Applications include, optimisation of cold start emissions (67),

inlet port design (68), catalyst system optimisation (69) and the optimisation
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of variable valve trains for performance and emissions (70; 71) as well as many

others.

3.1.1 Basic Concepts in Experimental Design

Design of experiments is an efficient procedure for planning experiments so that

the data obtained can be analysed to yield valid and objective conclusions and to

derive a response relationships, describing it in term of factors (48; 72). ’Factors’

are one or more independent variables, in any experiment that are varied at each

test points in order to observe the effect on one or more dependent parameters,

known as ’response’. These factors are set to specific values, or ’levels’ in these

tests which specify the range over which each of them is to be tested. At each

test point, the objectives of an experiment and selecting the factors for the study

are to be determined. Some basic concepts relating to DoE methodology are

discussed as under:

Factor: A factor or input variable is a controllable variable or parameter that is

of interest, and is eligible to be analysed in different levels during the experiments.

A factor may be quantitative or qualitative. A quantitative factor is one whose

values can be measured on a numerical scale and that fall in an interval, e.g.,

temperature, pressure, etc. A qualitative factor, also known as categorical factor

or indicator factor is one whose values are categories such as different operators,

different material, etc. All those factors that cannot be controlled (sometimes an

experimental error), but has got influence on the experimental data, are known

as noise factors.

Experimental domain, level, and level-combination : Experimental do-

main is the space where factors (input variables) take values. In experiments,

experimental domain is also called input variable space. A factor can be tested

in experimental domain for some specific values, called as levels of the factor.

A level-combination (also called treatment combination) is one of the possible

combinations of levels of the factors. A level-combination can be considered as a

point in input variable space and called experimental point.
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Run, trial: An implementation of a level-combination in the experimental en-

vironment is known as run or trial. This can be physical experiment or computer

experiment. But the word ’trial’ is only meaningful in physical experiments, as in

computer experiment several run at same experimental point will result in same

data.

Response: Response is a result obtained by each combination of levels of the

input factors. The response can be numerical value, qualitative or categorical;

and can be a function that is called functional response. Responses are also called

as outputs in many computer experiments.

In the next section an overview of the different types of experimental design

is presented, along with measures of merit for selection comparing different ex-

perimental design.

3.1.2 A Survey of Experimental Design

A proper experimental design is essential for an effective utilisation of the system,

and hence, provides a representative data for the model generation. An experi-

mental design is represented by a matrix with rows denote experimental runs and

the columns denote particular factor settings.

3.1.2.1 Classical Designs

Much of the work that utilises experimental design involves what is now known

as classical design of experiments. This focus on planning experiments so that

the random error in physical experiments has minimum influence on the approval

or disapproval of a hypothesis. Typically, these consist of 2 or 3 level experiments

that exhibit 1st or 2nd order polynomial responses. These widely used classical

experimental design include factorial or fractional factorial, central composite

design (CCD), alphabetical optimal, and Box- Behnken designs as well as others

(73). These classic methods tend to spread the sample points around boundaries

of the design space and leave a few at the centre of the design space. Much effort
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was placed into reducing the number of tests required, where for large numbers

of variables the higher order interactions were considered insignificant.

Factorial Design Factorial design is a set of level combinations necessary to

study effect of the factors on a response. A factorial design is called symmetric

if all factors have the same number of levels; otherwise, it is called asymmetric.

One of the important type of these factorial designs is that of k factors, hav-

ing only two levels. A complete replicate of the design requires 2k observations

and it is called as a 2k factorial design. When n replicates of each treatment are

necessary there are n2k observations (65). Factorial design is particularly useful

in the early stages of experimental work, when it is likely to investigate many

factors.

Full factorial design A design where all level combinations of the factors

appear equally often is called a full factorial design or a full design. The number

of runs of a full factorial design increases exponentially with the number of factors.

Therefore, implementation of a subset of all level-combinations that have a good

representation of the complete combinations is considered.

Fractional factorial design A fraction of a full factorial design (FFD) is a

subset of all level-combinations of the factors (64). Fractional factorial designs

are used when experiments are costly, and many factors are required. A fractional

factorial design is a fraction of a full factorial design; the most common are 2(k−p)

designs, in which the fraction is 1/2(p). A half fraction of the 23 full factorial

design is shown in Figure 3.1(b).

Reduction in the number of design points in a fractional factorial design is always

with some compromise in desired response limitation. The 23 full factorial design

shown in Figure 3.1(a) allows estimation of all main effects (x1, x2, x3) all two

factor interactions (x1x2, x1x3 and x2x3), as well as the three factor interaction

(x1x2x3). For the 23−1 fractional factorial indicated by the solid dots in Figure

3.1(b), the main effects are aliased (or biased) with the two factor interactions.
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Aliased effects cannot be estimated independently unless they are known (or as-

sumed) not to exist.

A carefully FFD selected combination known as the orthogonal array is recom-

mended in the literature and has been widely used in practice.

Orthogonal Arrays The experiment designs used by Taguchi, orthogonal ar-

rays, are usually simply fractional factorial designs in two or three levels (2(k−p)

and 3(k−p) designs. These arrays are constructed to reduce the number of design

points necessary; two-level L4, L12 and L16 arrays, for example, allow 3, 11 and 15

factors/effects to be evaluated with 4, 12 and 16 design points, respectively. Often

these designs are identical to Plackett-Burman designs (74).

Central Composite and Box-Behnken Designs Even with the optimum

designs, higher numbers of levels or variables witnessed a sharp increase in the

number of points required (36). Also, to fit higher order responses, higher de-

grees of freedom would be required. The most common second order designs,

configured to reduce the number of design points, are central composite and Box-

Behnken designs.

Table 3.2: Classical Central Composite Design

Variable Number of Test Points Total

Base Star Centre

2 4 4 5 13

3 8 6 6 20

4 16 8 7 31

5 16 10 6 32

6 32 12 9 51

7 64 14 14 92
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A central composite rotatable design could be used where additional star and cen-

tre points would augment the base test matrix. Figure 3.1(c) shows a schematic

of a Central Composite Rotatable Design (CCRD) that comprises a three level,

three variable designs augmented with 6 star points and a centre point. Increasing

the number of repeated centre points would reduce the standard error of predicted

response near the centre. Table 3.2 shows the number of points required for a

CCRD designs based upon a Hadamard base design.

(a) 23 full factorial (b) 23−1 fractional factorial

(c) Composite design

Figure 3.1: Basic three-factor designs
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A Central Composite Design (CCD) is a two level (2(k−p) or 2k) factorial design,

augmented by n0 center points and two ’star’ points positioned at ±α for each

factor. This design, shown for three factors in Figure 3.1(c) and 3.2 consists of

2(k−p) + 2k + n0 total design points to estimate 2k + k(k − 1)/2 + 1 coefficients.

For three factors, setting α = 1 locates the star points on the centres of the faces

of the cube, giving a face-centred central composite (CCF) design; note that for

values of a other than 1, each factor is evaluated at five levels.

Box-Behnken designs are used when the smallest number of factor levels in an

experimental design is required. These are formed by combining 2k factorials

with incomplete block designs. They do not contain points at the vertices of the

hypercube defined by the upper and lower limits for each factor. This is desirable

if these extreme points are expensive or impossible to test. More information

about CCD and Box-Behnken designs can be found in Montgomery (65).

Figure 3.2: CCRD design space

The main drawbacks when using classical designs are the fact that they are
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not very flexible, each point must be visited, and failure to accomplish these

results in the design being compromised. Therefore the boundaries must be iden-

tified correctly and the experimental space potentially reduced (to ensure the

recommended equidistant points from the centre) to ensure valid data points.

Whilst the main testing may exhibit relatively few points, large amounts of pre-

testing (screening) would be required in order to identify the experimental space

(constraints region) accurately. For engine testing, the constraints region is not

symmetrical and difficulties in setting up each factor may witness large amounts

of screening.

Second orders polynomial equations are commonly used in construction of ex-

perimental model, and are applied in a wide range of application in automotive

engineering, from design and development to calibration and production. How-

ever, this can lead to restricted variable ranges to improve the fit. With increasing

levels of technology, the number of operating points grows exponentially, and the

limitation of using these second orders polynomial based models increase. These

thus reduce the classical designs only to linear modelling methods. However,

these points should not preclude the use of classical DoE’s, providing some con-

sideration goes into selecting the number of variables and their ranges, many

successful designs have been implemented within the field of IC engine optimi-

sation. If DoE is to be applied to multi-dimensional non-linear systems, more

advance (sophisticated) techniques need to be considered (75). Many different

techniques are available that offers non-linear capability, statistical information

and computational requirements.

3.1.2.2 Space Filling Designs

The classical design methods tend to spread the sample points around bound-

aries of the design space and leave a few at the centre of the design space. This

would not cover the experiments that involve mostly systematic error rather than

random error as in physical experiments. Sacks et al. (76) stated that in the pres-

ence of systematic rather than random error, a good experimental design tends

to fill the design space rather than to concentrate on the boundary. They also
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stated that classic designs, e.g., CCD and D-optimality designs can be inefficient

or even inappropriate for deterministic analysis. Jin et al (77) confirmed that

a consensus among researchers was that experimental designs for deterministic

analyses should be space filling.

Figure 3.3: CCRD data point projection

If the data points from the CCRD design are projected onto a two-dimensional

plane, as shown in Figure 3.3, it can be seen that the factors (A & B) only exhibit

5 discrete values. If the factor range were large, it would be possible to miss some

significant interaction. For the same number of test points, the use of advanced

DoE/modelling techniques would allow 20 levels for each of the factors, thereby

ensuring that any interaction could be identified.

Koehler and Owen (78) described several Bayesian and frequentest ”space fill-

ing” designs, including maximum entropy design, mean squared-error designs,

minimax and maximin designs, Latin hypercube designs, orthogonal arrays, and
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scrambled nets. However, four types space filling sampling methods are relatively

more often used in the literature. These are orthogonal arrays, various Latin hy-

percube designs, Hammersley sequences, and uniform designs (60; 61). The Latin

hypercube design is only uniform in one-dimensional (1D) projection while the

other methods tend to be more uniform in the entire space. Also a suitable

sample size depends on the complexity of the function to be approximated, with

more sample points offer more information of the function, however, at a higher

expense. After reaching a certain sample size, increasing the number of sample

points does not contribute much to the approximation accuracy of the low-order

functions. Moreover, when certain optimality criteria are used to generate sam-

ples, these optimality criteria such as maximum entropy are concerned with the

sample distribution and are independent to the function. While the approxima-

tion accuracy depends on whether sample points capture all the features of the

function itself. Therefore, those optimality criteria are not perfectly consistent

with the goal of improving approximation, due to which the additional computa-

tional cost of searching for the optimal sample is often not well justified.

In the classical design and analysis of physical experiments, random variation

is accounted for by spreading the sample points out in the design space, and

by taking multiple data points (replicates) 3.4(a). Sacks et al. (76) state that

the ’classical’ notions of experimental blocking, replication and randomization

are irrelevant for some experiments; thus, sample points should be chosen to fill

the design space. They suggest minimising the Integrated Mean Squared Error

(IMSE) over the design region by using IMSE-optimal designs; the ’space filling’

design illustrated in Figure 3.4(b) is and IMSE design. Simpson et al recommend

the use of space filling designs in the early stages of design when the form of the

model cannot be pre-specified.

The significant advantages of using the advanced designs are the fact that it

eliminates the complexities of the classical design since the high level interpreta-

tion is to fill a space with data points and to utilise the flexibility of the advanced

models to fit a response to the data collected. Virtually any complex surface can

be realised providing enough data points are collected.

32



3.1 The Designed Experiments

(a) Classical (b) Space Filling

Figure 3.4: Comparison between ’Classical’ and ’Space filling’ designs

This means that the identification of the constraints region is potentially less

critical than that associated with classical DOE’s. Conversely, the use of the ad-

vanced design techniques witnesses a reverse trend in the number of data points

required. Increasing the number of test points increments both time and cost

to the engine mapping process. This can be alleviated somewhat by the use of

automated mapping. Another potential downfall is the fact that it is very easy

to over-fit models in order to achieve satisfactory response model fit statistics

where any noise would be incorporated into the response surface. However, the

flexibility and advantages of utilising advanced techniques far outweighed their

disadvantages such that they were incorporated into the calibration methodolo-

gies.

Latin Hypercube Sampling Latin Hypercube Sampling (LHS) was intro-

duced by McKey, Becham and Conover (79). LHS is an extension of stratified

sampling which ensures that each of the input variable has all portion of its range

represented (76). The work of McKey, Becham and Conover (79) show that the
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LHS has a smaller variance of the sample mean than the simply random sam-

pling. In stratified sampling the range space R of x can be arbitrarily partitioned

to form n strata of equal marginal probability 1/n, the sample once from each

stratum. In Latin hypercube sampling the partitions are constructed in a specific

manner using partitions of the ranges of each component of x, where the compo-

nents of x are independent.

In fact, the LHS can be defined in terms of the Latin hypercube design (LHD),

as an n runs into s input variables (n × s) matrix, denoted by LHD(n, s), in

which each column is a random permutation of {1, 2, ..., n}.

An LHS can be generated by an algorithm which first independently take s per-

mutations πj(1), ..., πj(n) of the integers 1, ..., n for j = 1, ..., s. And then take

ns uniform variates U j
k ∼ U(0, 1), k = 1, ..., n, j = 1, ..., s, which are mutually

independent. Let xk = (x1
k, ..., x

s
k), where

xjk =
πj(k)− U j

k

n
, k = 1, ..., n, j = 1, ..., s (3.1)

Then Dn = {x1, ..., xn} is a LHS and is denoted by LHS(n, s). In the context of

statistical sampling, a square grid containing sample positions is a Latin square if

(and only if) there is only one sample in each row and each column. A Latin hy-

percube is the generalisation of this concept to an arbitrary number of dimensions,

whereby each sample is the only one in each axis-aligned hyperplane containing it.

For example, consider a case where n = 4 and s = 2. In the first step two

permutations of {1, 2, 3, 4} as {2, 1, 4, 3} and {3, 2, 1, 4} is generated to form an

LHD(4, 2).


2 3
1 2
4 1
3 4

 ,


0.3724 0.9516
0.1981 0.9203
0.4897 0.0527
0.3395 0.7378
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Now the LHS is given by

1

4




2 3
1 2
4 1
3 4

−


0.3724 0.9516
0.1981 0.9203
0.4897 0.0527
0.3395 0.7378


 =


0.4069 0.5121
0.2005 0.2699
0.8776 0.2368
0.6651 0.8155



Figure 3.5 gives plot of the design in the top left hand pane, where four points are

assigned in a grid of 16 = 42 cells, satisfying that each row and column has one

and only one point, and each point is uniformly distributed in the corresponding

cell. Also shown in figure are three other possible Latin-hypercube designs.

Figure 3.5: Four Latin-hypercube design with four runs

The LHS has many advantages (1), such as:

• Computationally cheap to generate;
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• Can deal with a large number of runs and input variables;

• Its sample mean has a smaller variance than the sample mean of a simply

random sample.

Many authors tried to improve LHS, i.e. by reducing the variance of the sample

mean. One such approach is called orthogonal array-based Latin hypercube design

(80). The orthogonal sampling adds the requirement that the entire sample space

must be sampled evenly. Although more efficient, orthogonal sampling strategy

is more difficult to implement since all random samples must be generated si-

multaneously. In two dimensions the difference between random sampling, Latin

Hypercube sampling and orthogonal sampling can be explained as follows:

• In random sampling new sample points are generated without taking into

account the previously generated sample points. It is thus not necessarily

to know beforehand the quantity of sample points needed.

• In Latin hypercube sampling the sample points quantity to be used is de-

fined; and the location for each sample point in their respective row and

column.

• In orthogonal sampling, the sample space is divided into equally probable

subspaces. All sample points are then chosen simultaneously making sure

that the total ensemble of sample points is a Latin Hypercube sample and

that each subspace is sampled with the same density.

Thus, orthogonal sampling ensures that the ensemble of random numbers is a

very good representative of the real variability, LHS ensures that the ensemble

of random numbers is representative of the real variability whereas traditional

random sampling is just an ensemble of random numbers without any guarantees.

An alternative idea for improving the performance of LHDs is to adopt some

optimality criterion for construction of LHS. One of such criteria is maximin or

minimax distance (81), which
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• A minimax design - minimising the maximum distance between the points

• A maximin design - maximising the minimum distance between the points

For a given number of runs and number of input variables, (n, s), the resulting

design space, denoted by D, can be set of U(n, ns) or some subset. Let d(u, v)

be a distance defined on T × T satisfying d(u, v) ≥ 0, d(u, v) = d(v, u), and

d(u, v) ≤ d(u,w) + d(w, v), ∀u, v, w ∈ T . Consider a design D = {x1, ..., xn} on

T .

A minimax design D∗ minimises the maximum distance between any x ∈ T

and D, d(x,D) = max{d(x, x1, ..., d(x, xn)},, i.e.,

minDmaxx∈Td(x,D) = maxx∈Td(x,D∗) (3.2)

A maximin designD∗ maximises the minimum inter-site distanceminu,v∈Dd(u, v),

i.e.,

maxDminu,v∈Dd(u, v) = minu,v∈D∗d(u, v) (3.3)

This criteria measure how uniformly the experimental points are scattered through

the design, and ensure that no point in the domain is too far from the design point.

Thus, making it possible for reasonable predictions anywhere in the domain.

3.2 Model Choice and Fitting

In the previous section various types of designs of experiments were introduced.

Once the data have been collected from an experiment, the next step is to choose

an approximating model and fitting method which describes empirical relation-

ships between the inputs and outputs. The outputs of experiments are deter-

ministic (i.e., no random errors); therefore, the relationship between the input

variables and the output variable by the model is described as:

output variable = f (input variables) (3.4)
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where f is an unspecified smooth function to be approximated. Many alternative

models and methods exist, but here only review of relevant models to the current

study is provided.

3.2.1 Polynomial Models

Polynomial Models is most popular in many modelling context including com-

puter experiments. The models employ a polynomial basis where r1, . . . , rs are

non negative integers.

B0(x) = 1, B1(x) = x1, . . . , Bs(x) = xs,

Bs+1(x) = x2
1, . . . , B2s(x) = x2

s,

B2s+1(x) = x1x2, . . . , Bs(s+3)/2(x) = xs−1xs,

(3.5)

The number of polynomial basis functions dramatically increases with the number

of input variables and the degree of polynomial. Low-order polynomials such as

the second-order polynomial model, also known as response surfaces (82; 83), are

the most popular polynomial models for experimental modelling. A second-order

polynomial model can be expressed as

ŷ = β0 +
k∑
i=1

βixi +
s∑
i=1

βiix
2
i +

∑
i

∑
j

βijxixj (3.6)

These models are usually used to find the overall trend of a true model. When the

domain is large and true model is more complicated, e.g., there are many local

minimums/maximums, so high degree polynomials are needed to approximate

the true model. It is important to use linear or second-order polynomial models

to narrow the design variables to the most critical ones, when applying these

models with a problems having large dimension. In optimization, the smoothing

capability of polynomial regression allows quick convergence of noisy functions.

In spite of the advantages, there is always a drawback when applying polynomial

regression to model highly nonlinear behaviours. Higher-order polynomials can
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be used; however, instabilities may arise, or it may be too difficult to take suffi-

cient sample data to estimate all of the coefficients in the polynomial equation,

particularly in large dimensions.

Due to the structure of the polynomial basis, as the number of variables and

the order of polynomials increase, the number of possible terms in the polyno-

mial basis grows rapidly. Hence, the number of possible candidate polynomial

interpolaters grows dramatically. As a result, the required number of data sam-

ples also increases dramatically, which can be prohibitive for computationally

expensive simulation models. Therefore, the model is usually limit to only linear

or up to lower-order models or models with fixed terms. In practice, once a poly-

nomial interpolator is selected, the second stage consists of reducing the number

of terms in the model following a selection procedure, such as a stepwise selection

based on Cp, AIC, BIC, or o-criterion. The selected model usually has better

prediction power, although it may not exactly interpolate the observed data.

3.2.2 Kriging method (KG)

The Kriging method was proposed by a South African geologist, D.G. Krige on

analysing mining data. The Gaussian Kriging method was based on his method

proposed by Matheron in 1963 for modelling spatial data in geo-statistics.

Suppose that xi, withi = 1, . . . , n are design points over an s-dimensional exper-

imental domain T , and yi = y(xi) is the associated output to xi. The Gaussian

Kriging model postulates a combination of a known fixed function fi(x) and de-

partures of the form:

ŷ =
s∑
i=1

βifi(x) + Z(x) (3.7)

where Z(x) is assumed to be a realisation of a stochastic process with mean zero

and spatial correlation function given by:

Cov(z(xi), z(xj)) = σ2R(xi, xj) (3.8)
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where σ2 is the process variance, and R is the correlation. A variety of corre-

lation functions can be chosen (84). However, the Gaussian correlation function

proposed by Sacks et al. (76) is the most frequently used.

Figure 3.6: Plot of Gaussian Kriging model fit

Figure 3.6 show fit of the data supported by Gaussian Kriging model, that has

good prediction by interpolating exactly the observed sample. The predicted

curve and the true curve are identical, which compared with the polynomial re-

gression model and regression spline is better.

In addition to being extremely flexible due to the wide range of the correlation

functions, the kriging method has to determine the important factors, and the

same data can be used for screening and building the predictor model (85). The

major disadvantage of the kriging process is that model construction can be very
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time-consuming. Determining the maximum likelihood estimates of the θ param-

eters used to fit the model is a k-dimensional optimization problem, which can

require significant computational time if the sample data set is large. Moreover,

the correlation matrix can become singular if multiple sample points are spaced

close to one another or if the sample points are generated from particular designs.

Kriging assumes that the closer the inputs are, the more positively correlated the

outputs are. For this reason the fitting problems have been observed with some

full factorial designs and central composite designs using kriging models (86).

Furthermore, the Gaussian Kriging approach admits a Bayesian interpretation.

Bayesian interpolation was proposed by Currin, Mitchell, Morris and Ylvisker

(87). Bayesian interpolation can be beneficial in that it easily incorporates aux-

iliary information in some situations. Morris (87) demonstrated how to use

Bayesian Kriging method to create computer models that can provide both the

response and its first partial derivatives.

3.2.3 Spline Method

Splines are curves, which are usually required to be continuous and smooth.

Splines are usually defined as piecewise polynomials of degree n with function

values and first n − 1 derivatives that agree at the points where they join. The

abscissa values of the join points are called knots. The term ”spline” is also

used for polynomials (splines with no knots) and piecewise polynomials with

more than one discontinuous derivative. Splines with no knots are generally

smoother than splines with knots, which are generally smoother than splines with

multiple discontinuous derivatives. Splines with few knots are generally smoother

than splines with many knots; however, increasing the number of knots usually

increases the fit of the spline function to the data. Splines are frequently used in

nonparametric regression in the statistical literature. The spline method mainly

includes smoothing splines (88), regression splines (89), and penalized splines

(90; 91). The splines can be used to approximate univariate functions as easily as

the polynomial regression. The mechanism of constructing a multi-dimensional
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spline basis is also similar to that of polynomial regression.

s(x) = β0 + β1x
2 + β2x

2 + . . .+ βpx
p +

k∑
k=1

βp+k(x− κk)p+ (3.9)

where p ≥ 1 is an integer. The s(x) in Equation 3.9 is a pth degree polynomial on

each interval between two consecutive knots and has (p−1) continuous derivatives

everywhere. Friedman (92), extended one dimensional regression spline fitting to

multidimensional model fitting.

(a) Quadratic spline basis (b) Plot of spline fit

Figure 3.7: Fit of spline method (1)

The fit supported by spline model is depicted in Figure 3.7, from which the linear

spline has a slightly better fit to data than the best polynomial fit. A better spline

fit may further be pursue by using a higher order spline and/or adding more knots.

Multivariate Adaptive Regression Splines is a flexible regression modelling method

based on recursive partitioning and spline fitting for high dimensional data. Re-

gression trees are closely related to MARS. Instead of piecewise-linear approxima-
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tion, regression trees form a piecewise constant-approximation. A MARS model

can be written as:

g(x) =
n∑
i=1

amBm(x) (3.10)

where am is the coefficient of the expansion, and Bm, the basis functions, can be

represented as

Bm(x) = ΠKm
k=1[Sk,m(xv(k,m) − tk,m)]q+ (3.11)

where Km is the number of factors (interaction order) in the mth basis function,

Sk,m = ±1, xv(k,m) is the v-th variable, 1 ≤ v(k,m) ≤ n, and tk,m is a knot

location on each of the corresponding variables. The subscript ”+” means the

function is a truncated power function

MARS is used in engineering design applications just recently. Sudjianto et al.

(93) use MARS to emulate a conceptually intensive complex automotive shock

tower model in fatigue life durability analysis. The major advantages of using

the MARS procedure appears to be accuracy and major reduction in computa-

tional cost associated with constructing the metamodel compared to the kriging

method.

3.2.4 Inductive Learning

Inductive learning is one of five main paradigms of machine learning that also

include neural networks, case-based learning, genetic algorithms and analytic

learning. Of these five, inductive learning is the most akin to regression and

meta-modelling. An inductive learning system induces rules from examples; the

fundamental modelling constructs are condition-action rules which partition the

data into discrete categories and can be combined into decision trees for ease of

interpretation (see Figure 3.8).
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Training data are required in the form (x1, y1)(x2, y2)..., (xn, yn) where xi is a

vector of attribute values (e.g., processing parameters and environmental condi-

tions), and each yi is a corresponding observed output value. Although attributes

and outputs can be real-valued, the method is better suited to discrete-valued

data; real values must often be transformed into discrete representations (94).

Once the data has been collected, training algorithms build a decision tree by se-

lecting the ’best’ divisive attribute and then recursively calling the resulting data

subsets. Although trees can be built by selecting attributes randomly, it is more

efficient to select attributes that minimize the amount of information needed for

category membership.

Figure 3.8: A inductive learning decision tree

Many of the applications of inductive learning have been in process control and

diagnostic systems, and inductive learning approaches can be used to automate

the knowledge-acquisition process of building expert systems. Furthermore, al-

though decision trees appear best suited for applications with discrete input and
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output values, there are also applications with continuous variables that have met

with greater success than standard statistical analysis.

3.2.5 Neural Network (NN) Models

Artificial neural networks, commonly referred as ’Neural Network (NN)’, has been

motivated by the recognition that the human brain computes in an entirely dif-

ferent way from the conventional digital computer. The brain works in highly

complex, nonlinear and parallel computing manner. The basic building blocks

of the biological neural system are nerve cells, or neurons. These neurons are

massively interconnected, with signals transmitting from one neuron to another

to its cell body. These neurons can either inhibit or excite a signal. The neu-

ral system has the capability to organize these neurons so as to perform certain

computations many times faster than the fastest computer in existence today.

As analogue to human neural system, the artificial neuron (AN) receives sig-

nals from the environment or other ANs, gathers these signal, and when excited,

transmits a signal to all connected ANs. Input signals are inhibited or excited

through negative or positive numerical weights associated with each connection

to the AN. This excitation is control via a function, referred to as activation

function. The neuron collects all incoming signals, and computes a net input

signal as a function of the respective weights. The net signal serves as input to

the activation function which calculates the output signal of the neuron.

Neural Network has the ability to learn complex, non-linear and multidimen-

sional relationships between multiple input and output variables, resistance to

noisy or missing data, with good generalization capability. For example, a neural

network can be trained with sufficient data to efficiently replace the engine re-

sponse functions by predicting response values associated with particular values

of engine factors. A more detailed description of the neural network theory and

its implementation consideration can be found in (95), but here a brief overview

is provided.
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Neural Network modelling approach is relatively different from other conven-

tional approaches. NN is purely a data driven technique and learn directly from

the data provided, and hence eliminating the use of any mathematical equations

or any work with the variables. It is extremely useful in the situation where the

system is too complex to find and describe, and when it is too expensive to model

the system conventionally (96).

Neural Network consists of several layers of neurons. The first layer is an ’in-

put’ layer which in actual do not perform any computation but only transfer its

value to the next layer, a ’hidden’ layer. The layer that produces output of the

network is called an ’output’ layer. The input and output layers may be sepa-

rated by any number of hidden layers, including zero. These layers are arranged

by neurons, and each layer may contain any number of these neurons. Neurons

only connect the adjacent layers, and signals are propagated via these through

each of the hidden layers to the signal layer. The weight and bias associated

are adjusted during training, to give a best fit of outputs to the target values in

correspondence with the input data.

For a given input vector, it generates the output vector by a forward pass. The

data are fed to the network at the input layer, and propagated with weights and

activation functions to the output layer to provide the response. After present-

ing the sets of inputs and associated outputs, the network is able to ’learn’ the

relationships between them by changing the weights of its connections.

Then, the mean squared error (MSE), the difference between the network output

vector and the known target vector, is computed and back-propagated through

the ANN to modify the weights for the entire network, a process referred to as

training. Learning can be of three types-supervised, unsupervised or reinforce-

ment. One of the most popular methods practised for supervised training of

neural networks is the back-propagation training algorithm. The neural networks

that are trained by this method are called multilayer feed-forward networks.
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The neuron model and the architecture of a neural network describe how a net-

work transforms its input into an output. This mapping of inputs to outputs

can be viewed as a non-parametric regression computation. Training in neural

networks is synonymous with model building and parameter estimation. There

are two popular types of neural network models for performing regression task

know as Multi-layer perceptron (MLP) and radial basis function (RBF ) networks.

3.2.5.1 Multi-Layer Perceptron Networks

A single neuron or perceptron that consists of inputs, weights and output performs

a series of linear and non-linear mapping. The set of n inputs xi(i = 1, .., n) is

processed though the following weight sum,

neti =
n∑
i=1

wixi + w0, (3.12)

Figure 3.9: A neuron model with xi as inputs, wi as weights or parameters, and

b(v) as the activation function
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and the output of the ith neuron is obtained by processing the weight sum of

inputs (Equation 3.12) with a transfer function or activation function, here a

logistic-type of function. Figure 3.9 shows a neuron model with xi as inputs, wi

as weights or parameters, and b(v) as the activation function.

Figure 3.10: A three layer multilayer perceptron (1)

A multi-layer perceptron(MLP) network (shown in Figure 3.10, consists of

input, hidden, and output layers with nonlinear and linear activation functions

in the hidden and output layer, respectively, approximates inputs and outputs as

ŷ =
d∑
j=1

βjbj(netj) + β0, (3.13)

where d is pre-specified integer, βj is the weight connection between the output

and the jth component in the hidden layer, and bj(netj) is the output of the jth
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unit in the hidden layer,

b(neti) =
1

1 + e−λnetj
orbj(netj) = tanh(λnetj), (3.14)

and

netj =
s∑
i=1

wjixi + wj0, (3.15)

where wji is the weight connection between the jth component in the hidden layer

and the ith component of the input.

Multilayer perceptrons have been successfully applied to solve some difficult and

diverse problems by training them in a supervised manner with a highly popu-

lar algorithm known as the error back-propagation algorithm or back-propagation.

The algorithm provides a computationally efficient method for the training of

multilayer perceptrons (97).

3.2.5.2 Training a Neural Network

Neural network cannot approximate beyond the information contained in the

training data. Therefore, one of the main important steps is to collect the quali-

tative data and transform it to an acceptable form for the network. The data is

pre-processed, in order to remove any outliers, handle any missing data and scale

it into the active range of the activation functions used. The steps for training

MLP networks can be summarized as follows:

Scaling and Normalization : The performance of the network can be im-

proved if inputs are scaled to the active domain of the activation functions. The

input values needs be pre-processed so that its mean value, averaged over the

entire training set, is close to zero, or else it is small compared to its standard

deviation (98). This normalization helps the training process to ensure that the

inputs to the hidden units are comparable to one another and to avoid saturation

of the activation functions.
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Network Architectures In neural network architecture the main degree of

freedom are the total number of neurons and the number of hidden layers into

which they are arranged. The number of training epochs, the run through training

set, also varies according to the criteria adopted. The network with more number

of neurons and hidden layers clearly have more degree of freedom, but a problem

known as ’overfitting’ of the training examples might occurs. Also when the

behaviour of the data is well known, it is really advantageous to use more than

one layer, like that in engine performance data (99). A proper selection of the

activation function is also important. Sigmoid or tanh activation functions are the

most popular choices for the units in the hidden layer while the linear activation

function for the output unit is appropriate for regression problems.

Initialising Weights : The gradient-based optimisation methods is very sensi-

tive to the initial weight vectors (100), and it is very important that the network

weights and biases are initialised before the training begin. This process takes a

network object as input and returns a network object with all weights and biases

initialized. Random weights centred around 0 is generally chosen as a good choice

for weight initialisation strategy (101). Wessels and Barnard (102) showed these

random weights in the range [−r, r], the range r is defined by

r =
1√
N

(3.16)

where N is the number of inputs of the particular neuron (fanin).This initializa-

tion strategy ensures that the sigmoid activation functions start in their linear

regions and not in saturation, thereby improving training performance.

Training: Train the network with the algorithm of choice (e.g., backpropa-

gation) until sufficient fitting error is achieved for the training dataset. Many

practices in neural networks suggest splitting the data sets into training and test-

ing sets, know as cross validation. The former is used for network training while

the latter is used to stop the training when prediction error on the testing data

set achieves a minimum. When the size of the data set is small, however, this

approach may be unjustified. Other practices include early stopping of training.
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That is, the training iteration process is stopped after a small number of it-

erations before the fitting errors are too small to avoid overfit. This heuristics,

however, is very adhoc as it is usually difficult to determine when to stop. Some

authors have suggested using a penalty function in addition to the least square

criterion function to eliminate some of the units in the hidden layer or to prune

some of the weights.

Outliers : Any data pattern that deviates substantially from the data distri-

bution is known as an outlier. Outliers have a great effect on the accuracy of the

network because of the large deviation from the norm. These outliers result in

large errors, and consequently large weight updates.

Since a neural network is an empirical model, it highly dependent on data used

for training and validation. Clearly, the accuracy of the model itself does not

exceed the data been used to develop the model, and the optimization method

could converge to a biased solution itself, if trained on a biased data and thus

loosing the generalization. So, it is important to consider the use of available

data during the network construction by following a cross validation procedure.

Trained network can reproduce accurately the target output at each point in the

training set.

3.2.5.3 Radial Basis Functions (RBF)

This section discuss another type of neural network, Radial Basis Functions

(RBF) along with their properties, the motivations behind their use and some of

their applications are mentioned. Radial Basis Functions emerged as a variant

of artificial neural network in late 1980s. However, their roots are entrenched

in much older pattern recognition techniques as for example potential functions,

clustering, functional approximation, spline interpolation and mixture models

(103).

RBF’s are embedded in a two layer neural network, where each hidden node
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implement a set of radial basis functions (e.g. Gaussian functions). The output

nodes implement linear summation functions as in an MLP. The network training

is divided into two stages: first the weights from the input to hidden layer are

determined, and then the weights from the hidden to output layer. The train-

ing/learning is very fast, with very good at interpolation. Due to their nonlinear

approximation properties, RBF networks are able to model complex mappings,

which perceptron neural networks can only model by means of multiple interme-

diary layers (97).

When the output function goes exactly through all the data points is called

exact interpolation. The exact interpolation of a set of N data points in a multi-

dimensional space requires all theD dimensional input vectors xp = xpi : i = 1, . . . , D

to be mapped onto the corresponding target outputs tp. The goal is to find a

function f(x) such that

f(xp) = tp ∀ p = 1, . . . , N (3.17)

The radial basis function approach introduces a set of N basis functions, one

for each data point q, which take the form φ(||x − xq||) where φ(.) is some non-

linear function whose form will be discussed later. Thus the qth such function

depends on the distance ||x− xi||, usually taken to be Euclidean, between x and

xq. The output of the mapping is then taken to be a linear combination of the

basis functions, i.e.

f(x) =
N∑
q=1

wqφ(||x− xq||) (3.18)

The idea is to find the weights wq such that the function goes through the data

points. It is easy to determine equations for the weights by combining the above

equations:

f(xp) =
N∑
q=1

wqφ(||xp − xq||) = tp (3.19)
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The distances ||xp − xq|| between data points p and q are fixed by the training

data, so

Φpq = φ(||xp − xq||) (3.20)

is simply an array, or matrix, of training data dependent constant numbers, and

the weights wq are the solutions of the linear equations

N∑
q=1

wqΦpq = tp (3.21)

This can be written in matrix form by defining the vectors t = tp and w = wq,

and the matrix Φ = φpq, so the equation for w simplifies to Φw = t .

Determining the Weights It then follows that, provided the inverse of the

matrix Φ exists, any standard matrix inversion technique can be used to give the

required weights:

w = Φ−1t (3.22)

where the inverse matrix Φ−1 is defined by Φ−1Φ=I . It can be shown that, for a

large class of basis functions φ(.), the matrix Φ is indeed non-singular (and hence

invertible) providing the data points are distinct.

Once the weights are determined, the function f(x) represents a continuous dif-

ferentiable surface that passes exactly through each data point.

Commonly Used Radial Basis Functions A range of theoretical and em-

pirical studies have indicated that many properties of the interpolating function

are relatively insensitive to the precise form of the basis functions φ(.). Some of

the most commonly used basis functions are:
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1. Gaussian Functions:

φ(r) = exp
(
− r

2σ2

)
width parameter σ > 0 (3.23)

2. Multi-Quadratic Functions:

φ(r) = (r2 + σ2)
(1/2)

parameter σ > 0 (3.24)

3. Generalized Multi-Quadratic Functions:

φ(r) = (r2 + σ2)
(β)

parameter σ > 0, 1 > β > 0 (3.25)

4. Inverse Multi-Quadratic Functions:

φ(r) = (r2 + σ2)
(−1/2)

parameter σ > 0 (3.26)

5. Generalized Inverse Multi-Quadratic Functions:

φ(r) = (r2 + σ2)
(−α)

parameter σ > 0, α > 0 (3.27)

6. Thin Plate Spline Function:

φ(r) = r2ln(r) (3.28)

7. Cubic Function:

φ(r) = r3 (3.29)

8. Linear Function:

φ(r) = r (3.30)
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Figure 3.11 shows a general architecture of a radial basis function model. In

order to use RBF network the hidden unit activation function is specified, along

with the number of processing units, a criterion for modelling a given task and a

training algorithm for finding the parameters of the network. Finding the RBF

weights is called network training. A set of input-output pairs, called training set

is the optimisation of the network parameters in order to fit the network outputs

to the given inputs. The fit is evaluated by means of a cost function, usually

assumed to be the mean square error.

Figure 3.11: Radial Basis Function (RBF) Network

The N training patterns xpi , t
p determine the weights directly. The hidden layer to

output weights multiply the hidden unit activations in the conventional manner,

but the input to hidden layer weights are used in a very different fashion.

Training the RBF Network The steps to build RBF networks are as follows:

1. Normalise the data such that ui = (xi − x̄i)/si, where x̄i and si are the

mean and standard deviation of xi, respectively. This normalisation helps
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the training process to make the input scales comparable to each other;

thus equal φ for all inputs can be applied.

2. Apply a line search algorithm to find φ that maximises the penalised like-

lihood criterion.

3. Apply least squares (or penalised least squares) to estimate w.

Problems with RBF Network It is possible to setup an RBF network for

exact interpolation, but following are the two main problems with this network

1. As for Multi-Layer Perceptrons (MLPs), it is usually not intended that the

network outputs pass through all the data points when the data is noisy,

because that will be a highly oscillatory function that will not provide good

generalization.

2. The network requires one hidden unit (i.e. one basis function) for each

training data pattern, and so for large data sets the network will become

very costly to evaluate. With MLPs the generalization can be improve by

using more training data the opposite happens in RBF networks, and they

take longer to compute as well.

However, different methods are used to improve the generalisation capability and

reduction in the computational time (97).

3.2.5.4 Network Generalization

Neural network are non-parametric models that can approximate any continu-

ous non-linear input-output relationship (104). The quality of the approximation

depends on the architecture of the network used, and on the complexity of the

target relationship. The problem of finding a suitable set of parameters that

approximate an unknown relationship is solved usually using supervised learning

algorithms, that require set of input-output training set related through a rela-

tion (105).

56



3.2 Model Choice and Fitting

Learning the training set is often posed as an optimization problem by intro-

ducing an error measure. This error is a function of the training examples as

well as of the network parameters, and it measures the quality of the network’s

approximation to the relation on the restricted domain covered by the training

set. The minimization of this error over the network’s parameter space is called

the training process. The task of learning, however, is to minimise that error for

all possible examples related through function, namely, to generalize.

Generalization is a very important aspect of neural network learning. It is the

measure of the network capability to interpolate to points not used during train-

ing, to produce a learner with low generalization error. Mathematically, the goal

of the network training can be formulated as minimization of a true risk function

(106):

Etrue =

∫
x,y

e(f(x,W ), y)p(x, y) dxdy (3.31)

where e is a local cost function, f is the function implemented by the network,

x is the input and y is the desired output vectors of the model, and p represent

the probability distribution. The objective is to optimize the weight W of the

network such that the generalization error (106) Etrue is minimized:

ŵ = argminw

∫
x,y

e(f(x,W ), y)p(x, y) dxdy (3.32)

Etrue is the expected performance of the network on new patterns randomly

chosen from p(x, y). In practice p(x, y) is not known. Instead, a training set

τ = {xp, yp}Np1 is given, where Np is the number of patterns, and an approximation

of Etrue is minimized, called as training error (106):

E =

Np∑
p=1

e(xp, yp) (3.33)

The neural network training consist of finding a parameter vector, the weights and

57



3.2 Model Choice and Fitting

bias through a learning procedure where the training error is minimize through

a cost function:

E =
1

2Np

N∑
p=1

Q∑
q=1

(f(x,W )pq − ypq )2 (3.34)

where y and f(x,W ) are the P -dimensional measured and the Q-dimensional

estimated output respectively. Also, the root mean square error (RMSE) can

also be used,

E =
1

2Np

√√√√ N∑
p=1

Q∑
q=1

(f(x,W )pq − ypq )2 (3.35)

3.2.5.5 Prediction Error Evaluation

The aim of network learning is to learn the examples presented training set well,

while still providing good generalization to examples not included in the training

set. However, it is possible that a network exhibits a very low MSE, but had a

bad generalization Etrue due to overfitting of the training patterns. That is, the

network that overfit cannot predict correct output for data patterns not seen dur-

ing training. The network generalization can be improved by using a network that

is just large enough to provide an adequate fit. The larger network you use, the

more complex the functions the network can create, and hence too many weights

(free parameters) due to too many hidden units and irrelevant input units. If a

small enough network is used, it will not have enough power to overfit the data.

Overfitting can be overcome by optimizing the network architecture and using

enough training patterns.

One of the other accuracy measurements it to calculate the correlation between

the output and target values for all patterns, referred to as the correlation coef-

ficient R:
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R =
1

σxσy

[ n∑
i=1

(xi − x̄)
n∑
i=1

(yi − ȳ)

]

=

∑n
i=1 xiyi −

1
n

∑n
i=1 xi

∑n
i=1 yi√∑n

i=1 x
2
i − 1

n
(
∑n

i=1 xi)
2

√∑n
i=1 y

2
i − 1

n
(
∑n

i=1 yi)
2

(3.36)

where x̄ and ȳ are respectively the averages over all observations xi and yi, σx

and σy are the standard deviations of the xi and yi observations respectively. The

correlation coefficient quantifies the linear relationship between the approximated

function and the true function. A correlation value close to 1 indicates a good

approximation to the true function. Also, the slope m and the y-intercept b of

the best linear regression relating approximated to true outputs, is calculated for

the post regression analysis. If there were a perfect fit (outputs exactly equal to

approximated), the slope would be 1, and the y-intercept would be 0.

Generalization is the most important aspect that has to be considered when

designing a neural network. The generalization of the network is not just the

measured accuracy achieved by it, but aspects such as computational complexity

and convergence characteristics are just as important.

3.2.6 Comparison of RBF Network and Multilayer Per-

ceptrons

Both Radial basis function (RBF) network and multilayer perceptrons are non-

linear layered feedforward networks, and are universal approximators. An RBF

network can mimic accurately a specified MLP, or vice verse. However, these two

differ from each other in several important aspects (97), these include;

1. An RBF network has a single layer in its most basic form, whereas as MLP

may have one or more hidden layers.

2. The computational nodes in the hidden layer of an RBF network are quite

different and serve a different purpose from those in the output layer of the
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network, while the computational nodes of an MLP, located in a hidden or

an output layer, share a common neuronal model.

3. The hidden layer of an RBF network is nonlinear, whereas the output layer

is linear. However, the hidden and output layers of an MLP used as a

pattern classifier are usually all nonlinear. Although, a linear layer for

the output is usually the preferred choice, when MLP is used as a pattern

regression problems.

4. The argument of the activation function of each hidden unit in an RBF

network computes the Euclidean norm (distance) between the input vector

and the centre of that unit. Meanwhile, the activation function of each

hidden unit in an MLP computes the inner product of the input vector and

the synaptic weight vector of that unit.

5. An RBF networks using exponentially decaying localized non-linearities

(e.g., Gaussian functions) construct local approximations to nonlinear input-

output mappings, while MLP network construct global approximations to

nonlinear input-output mapping.

Hence, for the approximation of a nonlinear input-output mapping, the MLP

may require a smaller number of parameters then the RBF network for the same

degree of accuracy.

3.2.7 Recommendations for Model Choice and Use

Simpson, Peplinski, Koch and Allen (60) and Chen, Tsui, Barton and Meckesheimer

(107) presented a survey and conducted some empirical comparisons of modelling

techniques, including response surface, neural networks and kriging. They rec-

ommended the following:

1. Polynomial model is linear models and is typically small and form specified

by user. It is relatively very fast to run and available in any statistical

package. The main disadvantage of this type of model is that it is not

flexible.
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2. MARS is a data-adaptive linear model and has got moderate size, because

it only includes important effects. The major advantage appears to be

accuracy and major reduction in computational cost associated with con-

structing the meta-model.

3. Kriging can model complex structure. It can predict exact at observed

values, although the assumptions are difficult to verify. Model size is large

and requires storage of all data points, and due to this also the estimation

of model parameters is computationally intensive.

4. Induction learning is best when factors and responses are discrete-valued.

It is better suited to diagnosis than engineering design.

5. Neural Networks is good for highly nonlinear or very large problem (∼
10, 000 parameters). It may be the best choice (despite of its high com-

putational expense) in the presence of many factors to be modelled in a

deterministic application.

6. Radial Basis function (RBF) is linear model and can model complex struc-

ture. The model is large and it includes a term for each data point. But it

is fast to moderate, and also it is easy to code in Matlab.

3.3 Two-stage Regression

Lindstrom and Bates (108) define repeated measurements as data generated by

observing a number of individuals repeatedly under various experimental condi-

tions, where the individuals are assumed to constitute a random sample from a

population of interest. An important class of repeated measurements is longitu-

dinal data where the observations are taken on each of a number of subjects over

time or position in space. More generally, longitudinal data is defined as repeated

measurements where the observations on a single individual are not, or cannot

be, randomly assigned to the levels of a treatment of interest.
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Holliday (48; 49) introduced a two-stage designed model to engine mapping pro-

cess, reducing the problem arising from incorrect choice of domain to the extension

of model for inclusion of more adjustable engine parameters. The fact that the

engine data for the mapping process are organized in sweeps and the empirical

modelling benefits more from the two-stage of the data.

The focus of Holliday’s work was the modelling of data taken from engine map-

ping experiments. In these experiments, engine speed, load, and air/fuel ratio

were held constant while spark was varied. Various engine response character-

istics, for example, torque or emission quantities were measured at each spark

setting. Holliday modelled the response characteristics for each sweep as a func-

tion of spark advance. Variations in the individual sweep parameters were then

modelled as a function of the global engine operating variables speed, load, and

air/fuel ratio. Conceptually, variations in the measurements taken within a sweep

represent the intra-individual component of variance. Similarly, variation in the

sweep-specific parameters between sweeps represents the inter-individual compo-

nent of variance. The principles can generalise engine modelling exercises where

the nature of data collection usually involves sweeping a single engine control

variable while the remainder are held at fixed values. These points suggest that

nonlinear repeated measurements analysis represents a general approach to the

parametrisation of mean value engines models for controls-oriented development.

Another application for models of this form is the flow equations for a throt-

tle body. Assuming the flow equations are based upon the usual one-dimensional

isentropic flow principle, then they must be modified by an effective area term,

Ae, which accounts for the fact that the true flow is multidimensional and ir-

reversible. The throttle flow characteristics can be mapped by sweeping the

throttle position at fixed engine speed. This data collection methodology natu-

rally imposes a hierarchy the analysis of which is consistent with the application

of nonlinear repeated measures. Experience in modelling effective area suggests

that free knot spline or biological growth models provide good local predictions

(58). The global phase of the modelling procedure is concerned with predicting

the systematic variation in the response features across engine speed. A free knot
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spline model has proven useful for this purpose.

Holliday’s approach contrast distinctly with that taken by many other authors

(52; 57; 109; 110; 111), which does not account for the hierarchical nature of

the data. Such model in general use ordinary or weighted least square regres-

sion methods for fitting. For models the experimental observations, under the

standard distribution assumptions applied in regression analysis, must be uncor-

related. However, it is very likely that the neighbouring points within the same

sweep will indeed be correlated if a single model is fitted to the entire data set

using least squares. If these intra-unit correlations are large then the poten-

tial consequences for the analysis can be severe. The model constructed using

two-stage method had a high level of prediction over a wide range of engine do-

main and had a performance considered better than a large polynomial based

approach having data equals three times more than it (50).These models allow

for the special correlation structure within the data by adding supplementary

random factors.

3.3.1 Non-linear Model for Repeated Measurement Data

Non-linear repeated measurement data have been divided into two broad classes

of inferential procedure. In case where sufficient measurements are available on

individual sweeps to allow construction of sweep-specific regression coefficients,

that provides the foundation of inferential procedures at stage-2 in the model, are

referred as two-stage regression approach (48; 49? ). However, if sufficient obser-

vations per sweep are not available the analyst has recourse to methods based on

linearisation.

For the purpose of this research only the first case is considered, where sufficient

data are available for all, or most, of the individual sweeps to permit estimation

of sweep-specific regression parameters. Modeling data of this kind usually in-

volves the characterization of the relationship between the measured response,

y, and the repeated measurement factor, or covariate x. In many applications,

the underlying systematic relationship between y and x is nonlinear. In some
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cases the relevant nonlinear model can be derived on physical or mechanistic

grounds. In other contexts however, a nonlinear relationship might be used sim-

ply to provide a convenient empirical description for the data. The presence

of repeated observations on an individual requires particular care in character-

izing the variation in the experimental data. In particular, it is important to

represent two sources of variation explicitly: random variation among measure-

ments within a given individual (intra-individual) and random variation among

individuals (inter-individual). Inferential procedures accommodate these differ-

ent variance components within the framework of an appropriate hierarchical

statistical model. This is the fundamental idea behind the analysis of repeated

measurement data.

In following sections, the basic hierarchical nonlinear model defined by David-

ian and Giltinan (55; 112) is discussed. The model involves two stages, with each

stage considered in detail in Sections 3.3.1.1 and 3.3.1.2

Let yij denote the jth response, j = 1, ..., ni, for the ith individual, i = 1, ...,m,

taken at a set of conditions summarized by the vector of covariates xij, so that

a total of N =
∑m

i=1 ni responses have been observed. Suppose that a nonlinear

function f may be specified to model the relationship between y and x, where β

is a (p × 1) vector of parameters. Although, the form of f is common to all in-

dividuals, the parameter β may vary across individuals. This possibility is taken

into account by specification of a separate (p × 1) vector of parameters βi for

the ith individual. The mean response for individual i depends on the regression

parameter βi specific to the individual. This may be written as

E(yij|β) = f(xij, βi) (3.37)

The two stage model is defined as follow:
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3.3.1.1 Intra-sweep Variation

For individual i, the jth response follows the model

yij = f(xij, βi) + eij (3.38)

where eij is a random error term reflecting uncertainty in the response, given the

ith individual, with E(eij|βi) = 0. Collecting the ni responses and errors for the

ith individual into the (ni × 1) vectors yi = [yi1, ..., yini ]
′ and ei = [ei1, ..., eini ]

′,

respectively. Similarly, defining the fi vector as

fi(βi) =


f(xi1, βi)

.

.
f(xini , βi)

 ,
Hence, the model for the ith individual is summarize as

yi = fi(βi) + ei, (3.39)

where E(ei|βi) = 0.

The model given in Equation 3.38 and 3.39 describe the systematic and random

variation associated with measurements on the ith individual. Systematic varia-

tion is characterized through the regression function f , while random variation is

represented by an assumption on the random errors ei. Hence, the specification of

a model for the distribution of the ei completes the description of intra-individual

variation for the ith individual.

For a given individual, variability in the yij may be a systematic function of

the mean response for that individual, other known constants, and additional,

possibly unknown parameters. Correlation among measurements on a given indi-

vidual may also arise. Thus, the random individual variation represented by the
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error ei account for heterogeneous variance within-individual as well as correla-

tion within-individual.

For intra-individual variation, as assumption is made about the conditional dis-

tribution of ei given βi. The most common distributional assumption is that of

intra-individual normality of the response, which follows the error specification:

ei|βi ∼ N[0,Ri(βi, ζ)] (3.40)

where Ri ∈ Rni×ni is a covariance matrix, and ζi ∈ Rq a vector of dispersion

parameters that may be chosen to reflect the heterogeneity of variance, within-

individual correlation, or both. The model of this type is more flexible, which

allow dependence on i to be through the individual-specific information and in-

dividual mean response, given βi

3.3.1.2 Inter-sweep Variation

To account for inter-individual variation among different sweeps, the standard

approach is to specify a model for the βi. The degree of complexity of this

model will depend on the nature of the data. The general form for a model for

inter-individual variation as a function of fixed parameters, individual specific

characteristics, and random effects is given by

βi = d(ai, θ, γi) (3.41)

where d is a p-dimensional vector-valued function, θ ∈ Rr is a vector of fixed pa-

rameters, ai is an (a×1) covariate vector corresponding to individual attributes for

individual i and γi is a vector of random effects associated with the ith individual.

Although, Equation 3.41 is extremely general in nature, in most cases sufficient

observations per sweep exist to allow construction of sweep-specific regression pa-

rameter estimates. These may be subsequently used as building blocks for further

inference and for the basis of two-stage regression analysis procedures.
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When sufficient observations exist to permit estimation of the sweep-specific pa-

rameters, the following model at second stage is assumed (58);

βi = d(ai, θ) + γi (3.42)

The curve fit parameters do not usually have any intuitive interpretation from

an engineering perspective, rather the characteristic geometric features of the

curve are of interest. The terminology ”response features” of Crowder and Hand

(56) is used to describe these geometric features of interest. In general, the

response features will be related to the fit parameters through a non-linear vector

valued function, pi(βi) say. Thus, the global model is concerned with relating

the systematic variation in the pi(βi) to changes in the remaining parameters.

Therefore, the response feature vector pi for the ith sweep is a nonlinear function

g of the corresponding curve fit parameter vector θ, such that:

pi = g(θi) (3.43)

Modelling the variation in the response features as a function of the global vari-

ables. The response features are carried through to the second stage of the

modelling procedure rather than the curve fit parameters because they have an

engineering interpretation. This ensures that the second stage of the modelling

process remains relatively intuitive. The global relationship between the response

features and the other parameters can be approximated by a linear model with

additive error. The model can be represented as

pi = Xiβ + γi, i = 1, . . . , n (3.44)

where Xi contains the information about the covariates at which the ith individual

is observed, β is the vector of global parameter estimates that must be estimated

by the fitting procedure, and γi is a vector of normally distributed random errors.

It is necessary to make some assumption about the error distribution γ, and this
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is typically a normal distribution with

γi ∼ N(0,D) (3.45)

where r is the number of response features. The dimensions of D are (r× r) and,

being a variance-covariance matrix, D is both symmetric and positive definite.

Terms on the leading diagonal of D represent the test-to-test variance associated

with the estimate of the individual response features. Off-diagonal terms repre-

sent the covariance between pairs of response features. The estimation of these

additional covariance terms in a multivariate analysis improves the precision of

the parameter estimates.

The least square method is used to estimate the coefficient of both local and

global models. This method chooses β’s so that the sum of squares of the errors

is minimized. The least square method for Equation 3.44 can be explained as

follows;

In general p is a (n × 1) vector of response feature, X is a (n × r) matrix of

parameters, β is a (r× 1) vector of coefficient, and γ is a (n× 1) vector of error.

Then,

L =
n∑
i=1

γ2
i = γ′ × γ = (p−Xβ)′ × (p−Xβ) (3.46)

where L is square of errors

L = p′ × p− β′X ′p− β′X ′p+ β′X ′Xβ

= p′ × p− 2β′X ′p+ β′X ′Xβ (3.47)

Since β′X ′p is a (1× 1) matrix, or a scalar, and its transpose (β′X ′p)′ = p′Xβ is
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the same scalar (? ). The least square method must satisfy

∂L

∂β
β̂ = −2X ′p+ 2X ′Xβ̂ = 0→ β̂ = (X ′X)−1X ′p (3.48)

Therefore, the fitted model is

p̂ = Xβ̂ (3.49)

3.3.1.3 Selection Criteria

Cross-validation, sometimes called rotation estimation,(113) is a technique for

assessing how the results of a statistical analysis will generalize to an indepen-

dent data set. It is mainly used in settings where the goal is prediction, and

one wants to estimate how accurately a predictive model will perform in prac-

tice. One round of cross-validation involves partitioning a sample of data into

complementary subsets, performing the analysis on one subset (called the train-

ing set), and validating the analysis on the other subset (called the validation

set or testing set). To reduce variability, multiple rounds of cross-validation are

performed using different partitions, and the validation results are averaged over

the rounds. Note that the validation set must be distinct from the training set

for the assessed performance to be valid.

Leave-one-out (LOO) cross-validation (114) involves using a single observation

from the original sample as the validation data, and the remaining observations

as the training data. This is repeated such that each observation in the sample is

used once as the validation data. Leave-one-out cross-validation is usually very

expensive from a computational point of view because of the large number of

times the training process is repeated. However, it possesses the advantage that

all the data can be used for training, none has to be held back for validation

purposes.

Generalized cross-validation (GCV) is just one of a number of criteria that all

involve an adjustment to the average mean-squared-error over the training set.
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The justification for GCV as a model selection criterion was first provided by

(115). Orr (114) consider Bayesian information criterion (BIC). Riply (116) dis-

cusses the use of Akaike’s information criterion (AIC) for selecting neural network

architectures. If the number of parameters is large compared to the number of

observations, the AIC may perform poorly (117). However, Burnham and Ander-

son (118) advocate the use of a second order variant of AIC termed AICc when

the ratio of the sample size to the number of parameters is less than 40(117).

3.3.2 Construction of Two-Stage Regression Model

Intra sweep variations are modelled in Local models to find the best fit of a curve

to the data in each test. Consider a case, where the test is a sweep of torque

against spark angle, with speed, load, and AFR held at a constant value for each

sweep. The following Figure 3.12(a) illustrates a single sweep with a local model

fitted.

(a) Local model fit to data (b) Test plan in Speed/Load/AFR Space

Figure 3.12: Local model fitting in Speed/Load/AFR Space

These local models provide the coefficients to accommodate inter sweep variation

in global models. The equations describing those local model curves have certain

coefficients such as peak torque (PkTQ) and MBT spark (MBT; the spark angle

that generates maximum brake torque).
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In the development of two-stage regression models, local models are fitted to

each test, in different places across the global space, as illustrated in the Figure

3.12(b). The coefficients of local models i.e. MBT and PkTQ, become the data

to which the global models are fitted. These coefficients are used to make the

second stage of modelling more intuitive; and have a much better understanding

of a feature such as MBT spark varies through the global factor space than some

esoteric curve fit parameter. These variables are helpful to engineers trying to

decide how well a model describes engine behaviour. Better intuitive understand-

ing allows much greater confidence in the models.

(a) Global model in Speed/Load/AFR

Space

(b) Surface fitted to global model

Figure 3.13: Global model fitting

Global models are the best fit of a curve to the values of, for example, MBT for

each test. This is repeated for each coefficient, producing several global models

fitted to different coefficients of the local models. These coefficients are referred

to as response features of the local models. The Figure 3.13(a) shows a global

model for maximum torque across the speed/load global space.

The two-stage model is a surface fitted across all the global models, shown in

Figure 3.13(b), to describe the behaviour across all global variables.
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It can be useful to think of local and global models as a series of 2-D slices,

while the two-stage model fits a 3-D surface across the curves of the global model

slices. It is difficult to visualize more dimensions. Figure 3.14(a) illustrate a va-

riety of 3-D plots of global models for properties of the local torque/spark curves

(such as MBT, peak torque, and torque that is number of degrees before and af-

ter MBT), showing how these properties vary across the speed/load global space.

The 2-D plot of the global MBT model (in Figure 3.14(b)) demonstrates how

MBT varies with engine speed.

(a) 3-D Plots of global model (b) 2-D Plots of global model

Figure 3.14: Plots of global model

The two-stage model can take values of each coefficient at a certain value of, say,

speed, to generate a new curve of torque against spark. This is a slice through

the two-stage model surface.

In the end, the two-stage model can be tested by comparing it with the local

fit and with the data. For example, a local torque/spark curve at an operating

point can be reconstructed by taking the values of MBT and peak torque and

the curvature from the two-stage model, and then validate this reconstructed
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curve against the original fit and the data. The two-stage model can also predict

responses between tests, for new sweeps at intermediate values for which there

is no data. If the two-stage model shows an accurate fit when compared to the

local sweeps, this is a good sign that the engine behaviour is well described by

the model across the global variables.

3.4 Summary

The chapter presented review and analysis of different types of experimental de-

sign and modelling techniques used in model based methodology. A survey of

experimental design is presented for the purpose of an effective utilisation of the

system, for the generation of a representative data for model building. An empir-

ical relationship between the input and outputs is provided with the choice of dif-

ferent approximating model and fitting methods. Parametric and non-parametric

models for the analysis purpose are discussed in detail. The chapter also provide

comparison and recommendation of different modelling methods.

Also, mathematics of two-stage regression approach for repeated measurement

data was also discussed. Two sources of variation in the experimental data is

represented, random variation within a given individual (intra-individual) and

random variation among individuals (inter-individual). These two type of varia-

tion form the basis for two-stage model, with former represented in stage-1 (local

model) and the later in stage-2 (global model).
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4

The Designed Engine

Experiments

This chapter describe the design of engine experiments for the development of

steady state engine calibration using two-stage regression method. The options

available for designing an appropriate experiment are discussed, with the discus-

sion of the metrics for design on the ground of prediction accuracy. A careful

selection of appropriate design and of input variable range are the key contribut-

ing factors to success in the model based process (119).

In the study a high-fidelity model data of Maloney (3) for a 2.2L inline 4 cylin-

der, naturally aspirated port fuel-injected spark ignition (SI) engine is used. The

engine has dual overhead cams (DOHC) 4 valve per cylinder, throttle-less, and

equipped with dual-independent variable cam-phaser (DIVCP) and continuously

variable intake valve lift (CVIVL) actuators. The simulation GT-POWER engine

model with predictive combustion capability is used by (3) with residual fraction

constraint as a surrogate indication for engine instability, in place of covariance

of indicated mean effective pressure (IMEP). The data is collected using space-

filling design that do not depend on model type; and the most suitable model

can be choose to construct a design, and when data is collected, a different model

type can be tried that produces the best fit. This is the main reason for the util-
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isation of the data in this research where different model types are constructed

and compared.

The two-stage experimental design give us the data set, based on engine out-

put variables over sweeps of spark advance values. This allow us to investigate

the non-linearity between identical spark sweeps for estimation of desired fea-

tures, such as maximum brake torque at certain spark advance. This approach

requires fewer experiments, and yet contain more information (49) and thus can

be used to fit a statistical engine model, e.g. a polynomial or neural network.

4.1 Design of Experiment Generation

As stated earlier, the two stage modelling methodology will be used. The aim

is to ensure the development of optimal engine calibrations for complex engines

with many controllable variables at minimum cost and time. The method is far

more optimum then a separate experiment designed to calibrate a particular fea-

ture, which consume too much of the test cell time and is expensive. Therefore,

it is important to design a generic experiment with enough contingencies built-in

to cope with any unexpected anomalies.

Here, the intention is to select one primary feature and then to build responses

for other features from the primary feature data set. Since the modelling was for

a gasoline engine, the Spark/Torque relationship would be used as the primary

feature. As with any experimental design it would help to choose most effective

points to run to get the maximum information in the shortest time. But it is

important that any need should be identified prior to starting any design. The

design of experiment will help both in characterising the new systems as well

as the system to complete a calibration. However, there is a vast difference in

designing an experiment for these two types of systems. For example, with the

former, all the variable interactions may not be understood and therefore the

response surfaces will identify these such that control algorithm development can

take place. While with the latter, the variable interactions have been identified
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Figure 4.1: Engine test I/O Configuration

and any insignificant ones already discarded. Experimental design test points

can be constrained based on previous experience to avoid damaging the engine at

unrealistic operating points. For the work presented, the ranges and engineering

resolutions of the test factors are shown in Table 4.1.

Table 4.1: Engine control parameter and their range

Local Inputs Units Symbol Min Max

Speed RPM N 500 6000

Load % L 0.05 0.95

Intake Cam Phase ◦ Crank ICP -5 50

Exhaust Cam Phase ◦ Crank ECP -5 50

Spark Advance ◦ BTDC S 0 50

Engine testing is required to generate data necessary to determine optimal steady-
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state engine calibration tables for intake cam phase (ICP), exhaust cam phase

(ECP), and spark advance (S) as a function of operating point defined by engine

speed. Figure 4.1 shows the test configuration of a system used.

The engine load variables here is defined as normalized cylinder fresh air mass

at intake cam phase (ICP), which can be inferred by measuring engine fuel flow

rate, engine speed, and engine exhaust air-to-fuel (AFR) ratio. Inferred cylinder

fresh air mass is normalized to a dimensionless load value by dividing it by the

cylinder air mass at piston bottom dead center (BDC), standard temperature

and pressure (STP) conditions, and zero engine speed. The spark advance (S),

engine speed (N), intake cam phase (ICP), exhaust cam phase (ECP), and AFR

is controlled directly during the engine testing. Intake valve lift is then adjusted

until a given load (LOAD) command target is reached. The AFR is adjusted

down (enriched) in cases where the engine exhaust temperature is too high for

the catalyst and/or engine materials, until the temperature falls to an acceptable

level. However, AFR is not included explicitly as an independent variable, and

non-stoichiometric operating points are taken out of the resulting data-set before

analysis of the stoichiometric operating region. Identification of the input factors

depends upon the engine architecture.

4.1.1 Space-Filling Design

Having discussed the utilisation of the second stage model, focus is now on corre-

sponding experimental design procedures. The number of points required to be

tested depend upon the type of model selected and will also determine to what

extent the curvature of a given response can best be modelled. For example, if

a response feature can be described adequately using a quadratic model, three

test points are required to generate the coefficients of such a model, then it may

seem pointless to test at more than three levels for each input variable. If the

requirement is to improve modelling of the curvature of the response, then de-

viation from a quadratic model will be necessary and more than three levels are

required for each factor. The information content in the available training data

is considered to be the most important factor in characterizing the response at
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untried input configurations of the model and the accuracy of its prediction equa-

tion. The proper experimental design increase the information content contained

in the training data, sufficient to identify the character of the true underlying

function.

Stevens et al (48) provide a quantitative example of the importance of exper-

imental design for a study involving PFI engine. The experimental design used

in his case study was a Box-Behnken (120) design for four factors (engine speed,

manifold pressure (MAP), AFR and transformed spark advance factor) employed

to map engine stability and combustion performance parameters. The design at

three level, is intended to enable the derivation of a second order response equa-

tions from the data.

Stevens’ work clearly shows the deficiency of the fitted second order equations

in predicting the responses, on the validation data set at untried input config-

uration. A non-parametric estimator is fitted to these data - a neural network,

which gives no better results than the second order polynomial models in terms

of prediction errors. Stevens suggested that, it is the design rather than the data

processing method that is a fault. Once the data is taken, no amount of sophis-

ticated analysis can be added to it. And thus, the neural network trained with

data designed fit a second order polynomial model behaves in a similar fashion.

For a fixed design size, Cary (58) suggested that experimental design protocols

that attempt to maximize the systematic information carried by the training data

should be employed as the non-parametric estimators are capable of representing

a very wide class of fit functions.

A space-filling design is best for exploring a new system where prior knowledge

about the underlying effects of factors and responses is low. In these type of

design the available points are spread in a relatively uniform fashion on entire

region to capture as much information as possible, and does not assume a partic-

ular model form. Deciding on the model to design for is vital for optimal designs

only, when there is already some knowledge of the system behaviour, and it can
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help to find the most efficient points for fitting the most robust models. However,

space-filling design do not depend on model type; and the most suitable model

can be choose to construct a design, and when data is collected, a different model

type can be tried that produces the best fit.

4.1.2 The Main Design

The first step in calibration development process is to develop a unconstrained

experimental design using the engine factors shown in Table 4.1. Here, the ex-

periment designed is based on a space filling design method of Latin Hypercube

Sampling (LHS) discussed in 3.1.2.2 to collect data in terms of torque/spark

sweeps. LHS is an extension of stratified sampling which ensures that each of the

input variables has all portions of its range represented (76; 79). The important

point to consider is the number of design points for a sweep. If the design points

are too sparsely distributed, then it will be impossible to sample the region with

rapidly changing surface curvature. It will smooth out the response surface in

such regions due to lack of sufficient data regarding its true geometry. Also, test-

ing is expensive and time-consuming and any design that is too dense will also

be costly in terms of available resources.

The process for objectively determining the cost-feasible minimum number of

torque/spark sweeps to optimally calibrate a SI DIVCP is given in (3). The fi-

nal design contain a total design points of 202 for four input factors, chosen to

characterize the operating stage of the engine. An analysis of the process outputs

shown by (3) suggested the optimal number of torque/spark sweeps required to

calibrate an SI DIVCP engine, given the assumption that the model and engine

architecture used are relevant to a production application of interest. The data

set consist of Engine speed (RPM), Load (LOAD), Intake Cam Phase (ICP) and

Exhaust Cam Phase (ECP) that are to be swept at different value of Spark Tim-

ing (S). During each sweep these four input factors are held constant while spark

sweep is varied from its minimum to maximum value.
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From the designed experiment, three outputs as Torque (BTQ), Exhaust Tem-

perature (EXTEMP) and Residual Fraction (RFRAC) are recorded. This results

in data from each operating point at different value of spark sweep, resulting in

total of 2112 points for the main design.

4.1.3 Boundary Constraints

The experimental design is subject to the different constraints, to ensure that the

engine runs in its region of operability, the set that will not seriously damage the

engine, emissions after treatment system or test cell equipment. Therefore, it is

necessary to develop a model of the operating envelope covered by the factors

in Table 4.1 that can be useful when evaluating results and global models and

could help in the optimal survey calibration development process. As shown in

the dark area of Figure 4.2, a boundary model is fitted to the N/L factor space

to account for the natural speed/load operating envelope of the engine, primarily

related to the breathing capability of the engine, but also reflecting the region of

operation where positive brake torque and stoichiometric operation were possible.

A local range-restriction boundary model was also fitted for spark advance S

as function of the global variables N, L, ICP, and ECP using a NN model type.

These boundary models are subjected to;

• Constrain solutions to lie within the boundary constraint model (to keep

the engine within its operating region),

• Constrain cam phase solutions so they do not change by more than 10◦

between table cells (that is, no more than 10◦ per 500 RPM change and per

0.1 load change), and

• Constrain residual fraction ≤ 35% at each drive cycle point (to ensure stable

combustion). Residual fraction is the percentage of burned gas mass in the

cylinder at intake valve close, relative to the total mass in the cylinder at

intake valve close. Constrain maximum residual fraction is a simple and

reasonable way of ensuring stable combustion, and
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4.2 Prediction Error Variance

• Constrain exhaust temperature≤ 1200◦ at each drive cycle point (to protect

the catalyst).

4.1.4 The Validation Design

The model is validated to a fresh data, to assess the validity of the model prior to

its use. This process of predicting fresh data is referred to as external validation

(58). In addition, the internal validation proves a critical step, ensuring generally

that the model behaves according with the physical theory by considerable atten-

tion paid to the model coefficients and their sign. A model is rarely acceptable

if it does not have good expected physical trends, even if the external validation

results of the model shows satisfactory prediction.

The process involves the collection of fresh data for the study of model’s pre-

dictive performance, i.e., the model predicts the response characteristic at input

configuration that has not been used for training. The validation design should

be compact, but should exercise over the full range of conditions associated with

its intended use.

Therefore, to assess the accuracy of the response equation maps, a validation

design is also constructed on the same design method with number of arbitrary

engine operation conditions. The design contain 25 points for the same four input

factors for each of the spark sweep, resulting in a total of 275 points. This design

is only used for the validation of the model after it has been trained on the main

experimental design.

Figure 4.3 show a two-dimensional projections for the main and validation design.

4.2 Prediction Error Variance

Prediction Error Variance (PEV) is a good metric for the quality of the predic-

tion afforded by the model. These metrics need to be defined to identify whether
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4.2 Prediction Error Variance

the designed experiment will satisfy the calibration requirements on the grounds

of prediction accuracy. A response model must be declared before so that the

design can be interrogated to identify whether enough points and their locations

are suitable to construct the response surface. Obviously this is impossible if the

response is not known a priori, to provide an insight into the type of response

some preliminary testing can be completed or alternatively an additional engine-

modelling package can be used to predict the response.

Once the response model is known the model coefficients can be identified; with

this information it can be shown (121) that the predicted error variance only

depends upon the variance of the measurement error in the observed values (i.e.

error from the predicted response surface). At this point no data has been col-

lected, but it is still useful to observe the prediction error variance (PEV) since

a number greater than 1 will magnify the measurement error and those less than

1 will reduce the error. Therefore a low PEV (tending towards zero) means that

good predictions are obtained for that point.

To be able to use the PEV as a measure of success (i.e. PEV ≤ 1 within the oper-

ational area) it is therefore impossible to design an experiment without declaring

or estimating the response model. In this instance it was decided to select a

perhaps overly complex response model since it is possible to reduce the order of

the response if required. Additionally, the use of a space filling design provides

contingency in allowing a complex model such as neural network to be used, as

its been discussed that these type of design the available points are spread in

a relatively uniform fashion on entire region and does not assume a particular

model form. A hybrid B-Spline polynomial (HBSP) model is used previously to

accurately predict the MBT spark response(36; 58). Figure 4.4 shows the PEV

for the design space and is less than one for the engine operation region.

One of the difficulties in using space filling designs is the fact that the point plac-

ing algorithm used, such as ’maximise the minimum distance between points’,

witnesses the majority of the points a significant distance from the constraints
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4.2 Prediction Error Variance

Figure 4.4: Design prediction error variance (PEV)

line or edge. Since it is difficult for the neural networks to extrapolate outside

the data point region it is imperative that data points reside upon the constraints

line in order to maximise the accuracy of the generated model. Points can, of

course, be manually added to the design in a random fashion, but it has been

found that augmenting the space filling design with an optimal design provides

significant benefits. Firstly data points will be located upon the constraint line,

and secondly, the algorithm will interrogate the current design and select points

in areas of potential weakness.

Historically D-Optimal designs have been specified in order to provide the tight-

est confidence intervals on the parameter estimates. More recently V-Optimal

designs have been seen as the way forward to improve the model prediction (2).

Optimal designs therefore rely upon the constraints region being identified cor-

rectly. This combination of completing a space filling / optimised design process

provides excellent PEV statistics but also allows non-linear neural models to be

fitted to the data thereby improving the predictability of the model. Another

advantage in providing a space filling design is the fact that rigidity of a classical
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4.3 Sweep Definition

Figure 4.5: Local model characteristics

DOE is avoided, for example if the design point cannot quite be met (due to incor-

rect constraints identification, environmental factors or noise) the experimental

design is not degraded significantly.

4.3 Sweep Definition

The local models are fitted to the data in each test. And, each test is a sweep

of torque against spark angle, with speed, load, intake and exhaust cam phase

held at constant value for each sweep. Figure 4.5 represents a spark sweep with

a local model fitted. As spark is increased throughout its range, torque rises to

a maximum, and then falls. Spark knock is not modelled, so spark advance was

not limited as it would be in normal test cell, where knock-limited spark advance

is typically modelled as a separate response and used later in optimisation.

The local model provide the coefficient to generate global models. The equations

describing those local model curves have certain coefficients such as PKTQ and

knot (abscissa values of the join points), which in this case is peak torque and

MBT spark (the spark angle that generate maximum brake torque) respectively.
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4.4 Data Quality Checks

Two cubic polynomial will be fitted to the torque/spark curves, where different

curvature is required above and below the maximum. Therefore a minimum of 7

points would be required, but increasing this to 11 generally would improves the

model fit and also ensures that there are enough points past MBT to reconstruct

the cubic curve.

4.4 Data Quality Checks

Before the data can be used for modelling, it should be ensure that the data is

of highest level and quality. The quality of the data is the level of care taken in

the design of experiment and the collection of data. If the data is of poor quality,

the information content that can be extracted from it would be limited. And no

amount of post-data analysis can rectify deficiencies in data quality.

Outliers have severe effects on accuracy. An outlier is a data pattern that devi-

ates substantially from the data distribution. Because of the large deviation from

the norm, outliers result in large errors, and consequently large weight updates.

Figure 4.6 shows that larger differences between measured and predicted values

cause an exponential increase in the error. It can be clearly seen the the fitted

function is pulled toward the outliers in an attempt to reduce the training error.

As result, the generalisation deteriorates and the prediction error increases.

All those data point that are unsuitable for modelling, for instance, unstable

points on the edge of the engine’s operating envelope, should be remove before

training starts to ensure the successful implementation of any empirical mod-

elling. However, such actions will eliminate the outlier problem, but it is believed

that important information about the data might also be removed at the same

time. Therefore, care should be taken while deciding about the nature of the data

points, and only those point should be removed which clearly effect negatively

the fit of a model.

For the data in the study, different filters are applied to remove any suspect
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Figure 4.6: Effect of outlier on model prediction

point that is badly distorting the torque spark curve. Also, for tests where ma-

jority of the points are at higher spark angles than the maximum break torque

(MBT), the fit can be improve by removing some of these long ’tails’. It can be

useful to remove outliers in this region, because there is likely to be knock at

spark values much higher than MBT where the engine is less stable. Similarly,

as there is no knock in simulation data, points can be collected far in advance of

MBT, and removing these can improve the fit.

Different other filters were also implemented in Matlab’s Model Based Calibra-

tion Toolbox (121). These filters were use to keep records with AFR value greater

than 14.25 to limit the exhaust temperature(AFR >12.25), residual fraction value
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4.5 Summary

less than 35 to ensure stable combustion (RFRAC <35), and also to keep only

those tests with sufficient points to fit the model (i.e., at least 5 points, length

(BTQ) >4).

4.5 Summary

An experimental design based on the form of the two stage regression model is

created, which allow the sweep based data collection employed in engine mapping

process. A space-filling design based on Latin hypercube sampling technique is

selected for exploring the design space for the underlying effects of factors and

responses. Space-filling design is best for exploring a new system with low knowl-

edge regarding the parameters effects, and had a significance for using in neural

network based models..

The main experimental design contain a total of 202 design points for 5 input

factors, with speed, load, intake cam and exhaust cam phase that are to be swept

at different value of spark advance. The experimental design is subjected to dif-

ferent constraints to ensure that engine runs in its operability region.

Also, external validation of the model is performed on the validation design,

which involves the collection of fresh data for the study of model’s predictive

performance.
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5

Neural Network Based Engine

Model

This chapter presents a steady state engine mapping case study illustrating the

application of two stage regression techniques to the analysis of engine brake

torque data discussed in chapter 4. To improve the predictive capability of these

models a Multi-Layer Perceptron (MLP) based neural network model is intro-

duced. At stage-2 each of the response features is modelled using MLP networks.

Neural network is used to develop accurate models for the behaviour of brake

torque, with additional responses as exhaust temperature and residual fraction

at different values of spark advance at stage 1 and the response features as a

function of speed, load and cam timings at stage-2. The engine data to build

these models is collected using an experimental design on the most useful set of

points discussed in the previous chapter.

As such, this chapter present some original work, with MLP used in the global

model form with model structure discussed. For the purpose of comparison, Ra-

dial Basis Function (RBF) models are also fitted to the same response feature

data. Model selection criteria are used to rank the models, but it is the model

behaviour to the know physics of the situation which is more important.
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5.1 Neural Network Based Two Stage Engine Model

The performance of MLP and RBF models are quite similar in terms of fit qual-

ity. However, the number of parameter increases in case of MLP with the same

number of data. Hence, for the approximation of a nonlinear input-output map-

ping, the MLP based neural network require a smaller number of parameter than

the RBF network for the same degree of accuracy. The MLP based engine model

show great improvement in the prediction capability of the steady state two-stage

regression approach. Therefore, the use of neural network make it possible to per-

form the calibration studies over a large range of operating domain, with good

model fit and prediction. The model is successfully validated on a data set that

was not used in the development of the model.

5.1 Neural Network Based Two Stage Engine

Model

The two-stage model approach separate one or more of the input variables into

a ‘first stage‘, with the remainder falling into the ‘second stage‘. A multilayer

perceptron network is used in the second stage of the model.

In the first step, the inputs combinations are determined with a design of ex-

periments (DoE) described in Section 4.1.1. This involves the creation of a sta-

tistical model of the engine that can predict the output response as a function of

input variables, and constrained at different level to ensure combustion stability,

exhaust temperature considerations and avoiding spark knock. The behaviour of

torque, exhaust temperature, and residual fraction at different values of speed,

load, cam timings and spark advance are modelled. Figure 5.1 summarise the

overall engine mapping in two-stage regression processes in schematic form.

In this study, the spark sweep is the fundamental experimental unit with each

sweep comprising of 11 (spark, Torque) pairs, under different constraints. The

spark (the local variable) is swept while the other variables, speed, load and cam

timings (the global variables) are kept constant. As discussed in previous chap-

ter, there are total of 202 designed point. These designed points are used for the
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5.1 Neural Network Based Two Stage Engine Model

collection of the engine data, ensuring the data quality and preventing engine

damage.

Figure 5.1: Two-stage modelling process schematic (2)

A space-filling design algorithm implemented in Mathworks’ Model Based Cal-

ibration Toolbox R© was employed to generate the (N, L, ICP, ECP) test plan.

The available points are spread in a relatively uniform fashion on entire region

to capture as much information as possible.Deciding on the model to design for

is vital for optimal designs only, when there is already some knowledge of the

system behaviour, and it can help to find the most efficient points for fitting the

most robust models. However, space-filling design do not depend on model type;

and the most suitable model can be choose to construct a design, and when data

is collected, a different model type can be tried that produces the best fit.

Modelling is divided into two-stages: The first stage intra-sweep and second stage
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5.1 Neural Network Based Two Stage Engine Model

inter-sweep modelling. Intra-sweep or Local Model is concerned with the varia-

tion within a given variable or, the relationship between the response of interest

and the swept variable. Each time a sweep is repeated a slightly different pro-

file is obtained, even when the settings of the remaining experimental variables

are not varied. A non-linear fit function summarise the relationship for each

sweep, while the corresponding regression parameters characterise the shape of

the sweep-specific response profile.

In local model, the curves are fitted using polynomial spline to individual sweep

response profiles, resulting a separate model for each test group. This yields 202

separate models, one for each sweep that describe the behaviour in response as

the spark advance is varied. The data diagnostic checks are conducted to remove

outliers that are badly distorting the torque spark curve to improve fits. The

desired response features are calculated from the knowledge of the stage-1 coef-

ficients.

The inter-sweep modelling is concerned with the variation among the variables

or, the relationship in the sweep specific parameter vectors with the remaining

engine operating variables. The second stage or Global Model is multivariate in

nature as contrast to the first stage which deals with the relationship of one vari-

able with the response.

In global model the focus is on the analysis of the changes in the response features

among sweeps. The MLP neural models is selected for the each response features.

At the second stage we refers to model these curves change as a function of other

engine parameters, the global variable i.e. (N, L, ICP, ECP). Each test is taken

at different point in the global variables, and each response feature is first con-

sidered separately - for ’univariate’ modelling. Once the model is obtained using

univariate methods, ’multivariate’ maximum likelihood techniques is used to es-

timate the corresponding parameters. The model fits to the response features are

visualized graphically, and considerable attention is paid to the model coefficients

to ensure that the model behaves in accordance with the physical theory. This

is referred to ’internal validation’. An internal validation is performed to ensure
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5.2 Model Structure

that the model behaves accordance to the physical theory(2). Also, the model is

validated on a fresh data , that is never been used in the modelling to investi-

gate its predictive performance, in ’external validation’. Both of these validation

studies are important steps in two-stage modelling process.

5.2 Model Structure

A simple block diagram form of two-stage model structure is shown in figure 5.2.

At first stage the model represents the variation among measurements within a

sweep (’intra-sweep variation’ ) by modelling the relationship between the spark

advance and brake torque. At second stage, neural network models are used to

describe the systematic variation in the response feature behaviour across sweeps

(’inter-sweep variation’ ). These models are use to describe the shape of the

spark advance verses brake torque variation with (N, L, ICP, ECP). These differ-

ent variance components are accommodated within the framework of hierarchical

statistical model.

Figure 5.2: Two-stage model structure

The characteristic geometric features of the curves or response features are of the

94



5.2 Model Structure

primary interest, and not the parameters associated with the stage-1 model which

has no direct engineering interpretation. Therefore, the variation in the response

features across sweeps is modelled rather than the curve fit coefficients them-

selves. The decomposition of the modelling into two stages simplifies the overall

analysis (48; 49). Constructing models to take into account the way the data is

collected helps build good models that are easily interpretable and high confident.

The detailed description of the two-stage models for engine can be found in

(48; 49; 50; 58), here only a brief description is provided for the purpose of this

study.

5.2.1 Two-Stage Model Definition

The first stage concerns the modelling of the output variables over spark sweeps.

Let Tij denote the jth measured brake torque value, j ε (1, ni), for the ith spark

sweep Sij, i ε (1,m). At the Stage-1 the specification of the ith sweep is

Tij = fi(Sij, βi) + eij (5.1)

where βi ε <r is the sweep specific parameter vector, and eij is the within-sweep

error variation vector for j = 1, . . . ,mi, and mi is the number of observation in

the ith spark sweep, about 11 in this study. It is assumed that E(eij|βi) = 0, with

E the usual expectation operator. The Equation 5.1 considers that in stage-1, fit

function may vary from sweep to sweep.

For the ith sweep, collection of responses into the vector Ti = [Ti1, . . . , Tini ]
T

and its corresponding errors into the vector ei = [ei1, . . . , eini ]
T . Similarly, define

the vector fi as fi(βi) = [fi(Si1, βi), . . . , fi(Sini , βi)]. The data for the ith sweep

can be summarized in the compact form as

Ti = fi(βi) + ei, ei|βi = Nni [0, σ
2
i Ini ] (5.2)
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5.2 Model Structure

here N is the normal distribution. The Equation 5.2 shows a relatively very sim-

ple sweep covariance model, describe both the systematic and random variation

associated with measurements taken during the ith sweep.

In the second stage of the model, the sweep-specific parameters vector, βi in

Equation 5.1 or 5.2 is related to the other engine parameters, (N, L, ICP, ECP),

through sweep output features determined in terms of these parameters.

βi = d(ai, θ) + γi (5.3)

where d is a p-dimensional vector valued function, θ ∈ Rr is a vector of fixed

parameters, ai is a suitably dimensioned matrix of level-2 covariates. Also,

gammai ∈ RP is a random effects distributed as N(0,Γ), with Γ ∈ RPP be-

ing the inter-sweep covariance matrix.

Generally, its a geometric features of the curve that is of interest, rather then

the curve fit parameters βi themselves which have a little interpretative value.

These characteristics features are defined as ’response features’ (56). The varia-

tion in the response features are modelled across sweeps rather than the βi for

engineering plausibility of their links to these variables. These response features

will be related to the fit parameters through a non-linear vector valued function,

pi(βi) say. Thus, the second stage model is relating the systematic variation in

pi(βi) to changes in the remaining engine parameters.

The second stage model assume that the response features pi can be approx-

imated to a linear parameter statistical model in (N, L, ICP, ECP), but not

in Spark S, with additive independent normal variation (or error) γi having a

common variance matrix Γi; thus

pi = aiθ + γi, γi ∼ Nr(0,Γi) (5.4)
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where ai is a model specific matrix depends on simple functions of N, L, ICP and

ECP, the mean values of the engine parameters for the ith spark sweep. Similarly,

θ is the stage-2 model parameters vector to be estimated. The form of ai will

depend of set of models used to relate pi to N, L, ICP and ECP, and involving

key engineering inputs. As spark does not feature in the design space for ai, its

data can be collected in highly effective and economical manner involving just

few value of each of these variables, which otherwise could complicate matters in

different sweeps.

Combining both the stages without considering the estimation, the final deter-

mination form of the model is

y = f(S;h(N,L, ICP,ECP )) (5.5)

while h is a function relating the scalar form of vector for β. This is a relation-

ship between the sweep output variable y and inputs spark S and other engine

parameters shown. Both of the error terms of ei and bi of stage-1 and stage-2 are

included in Equation 5.5, making it more statistical relevant.

Two stage model is mainly used for prediction (49), which mean model can pro-

duce sweeps that are good approximation of the real sweeps, for the dataset that

is not used in construction and fitting of the model. This could only be achieved

if the model is a good approximation to the intrinsically true model.

5.2.2 Local Model

At local model or stage-1, the primary focus of the model is to find a fit function

that could accurately describe the silent feature of the spark sweep. Local models

are fitted to each test, in different places across the global space. This model is

utilized to calculated the response features for the second-stage modelling.

Local models find the best fit of a curve to the data in each test. Each test
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in this case is a torque against spark angle sweep, with speed, load, intake and

exhaust cam phase at a constant value for each sweep. Figure 5.3 shows a graph-

ical representation of the typical features of the torque vs spark sweep.

Figure 5.3: Spark advance vs Torque

These local models provide the coefficient to generate global models. The equa-

tion describing those local model curve have certain coefficients for Maximum

Brake Torque (MBT) and peak torque (PKTQ) The MBT spark is one of the

primary model used within the calibration methodologies, with all the features

calibrated to operated at this setting. By modelling the torque response, the

MBT spark advance could be identified. These coefficients become the data to

which the global models are fitted, and give a much better perceptive of a feature

such as MBT spark varies through the global factor space than some obscure

curve fit parameter.

The shape of spark vs torque is well understood. The torque rises to its maximum

as the spark is advances throughout its range, and then falls. Spark knock is not
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modelled in simulation engine model used this study, so spark advance was not

limited as it would be in dynamometer based testing, where knock-limited spark

advance is typically modelled as a separate response and used later in optimisa-

tion. Each sweep is inspected for any outliers; and fitting of different alternative

model for minimizing the local RMSE statistic.

Holliday(49; 50) has suggested using a segmented or spline model for the rep-

resentation of these fits, where a quadratic curve fit function is inappropriate and

exhibit significant bias. A segmented polynomial or spline curves are useful for

fitting these shapes, where different curvature is required above and below the

maximum. Holliday suggested stage-1 model has the following form:

E(T bij) = β0i +

{
βli(sij − ki)2 if sij ≤ ki
βri(sij − ki)2 if sij ≥ ki

(5.6)

However, Cary(58) has added a cubic term to compensate the bias exhibit in

Equation 5.6 due to a high levels of spark retard for some sweeps. This results

in the equation of the form:

E(T bij) = β0i +


βci(sij − ki)3 if sij ≤ ki
βli(sij − ki)2 if sij ≤ ki
βri(sij − ki)2 if sij ≥ ki

(5.7)

The Equation 5.7 is a local regression model, that relate brake torque to spark

advance with all other parameters (N, L, ICP, ECP) held constant. Figure 5.4(a)

shows a local model at engine speed of 2685 RPM, where maximum break torque

is shown in a circle while values of torque at spark advances and retard are rep-

resented by a cross. However, it is not a full presentation of spark sweep, and

several sweeps were terminated prior to achieving maximum brake torque, or just

after, due to the onset of moderate or heavy detonation. Similarly, some of the

sweeps exhibits only limited information to the left of maximum where exhaust

gas temperature or combustion stability constraints apply. In this case Equation

5.7 is inappropriate.
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(a) Local model fit (Spline) (b) Local model fit (Quadratic)

Figure 5.4: Spark sweeps with fitted curves to data from (3) local model

However, the Equation 5.7 do not restrict the sweep specific response features cal-

culation, and at local model desired response features can be calculated from the

coefficients associated with the alternate model. For example, one of the response

feature of interest is the spark advance yielding maximum brake torque, denoted

by MBT. It is sometime possible that the MBTi(= ki) cannot be achieved for

some spark sweeps as it will be outside the range of possible spark advances

(shown in figure 5.4(b)) due to limitation by the onset of detonation.

In this case, the Equation 5.7 cannot be used to fit the data, but rather a

quadratic relationship βoi + βQisij + βLis
2
ij can be used to fit the data for the

ith sweep, which provide a good approximation to the data in this case. MBTi is

calculated now as MBTi = −βLi/2βQi, which may represent substantial extrap-

olation of the data. The MBC toolbox automatically calculates and applies the

appropriate covariance matrix Σi dependent on the choice of fi(βi).

5.2.3 Response Feature Selection

It is rather the characteristic geometric features of the curve that are of interest

then the curve fit parameters which usually do not have any intuitive interpre-
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5.2 Model Structure

tation from an engineering perspective. The terminology ”response features” of

Crowder and Hand (56) is used to describe these geometric features of interest.

In general, the response features will be related to the fit parameters through a

non-linear vector valued function, pi(βi).

Once the fi(βi) for separate sweep profiles and the corresponding pi(βi) for re-

sponse features is defined, the focus tends toward the selection of a single model

for predictive purpose. At stage-2, the response feature vector, p̂(βi) is evaluated

at different value of global variables. Then the corresponding β̂i is calculating

by inversing the function p̂(βi), to determine the appropriate response features.

Figure 5.5 shows the relationship between the global models and global factors.

Figure 5.5: Global model form

In the second stage of the model, the variation of the torque response with re-

spect to spark sweeps is modeled. A typical curve of the torque increases to the

maximum and then decrease again, except for few sweeps where the relationship

is more monotonic than concave.

The curve coefficients ki and βoi in Equation 5.6 and 5.7 having a direct en-

gineering interpretation can thus be considered as response features. ki is the

spark advance which gives the maximum brake torque (MBTi) and βoi the cor-

responding torque produced at MBTi (denoted by PKTQi). The influence of

spark timing to retarding or advancing from MBTi is related to three additional
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response features, ∆LESS10i, ∆LESS25i and ∆PLUS10i. These are observed

torque reduction from the maximum when the spark timing is retarded 10 and

25 degree from MBTi and advanced 10 degree from MBTi, respectively.

The spark sweeps is therefore characterize according to five transformations,

i.e., MBT, PKTQ, ∆ LESS10, ∆LESS25 and ∆PLUS10. The ∆LESS10i and

∆PLUS10i measure the asymmetry of the response profile about the maximum,

while ∆LESS25i measures how rapidly the response falls away under heavy spark

retard.

The corresponding response feature vector for the ith sweep using this nomen-

clature, is written as:

pi =



MBTi

PKTQi

∆LESS10i

∆LESS25i

∆PLUS10i


=



ki

β0i

102βLQi − 103βLCi

252βLQi − 253βLCi

102βRQi


(5.8)

The above Equation 5.8 is easily inverted to allow Equation 5.7 to be written in

terms of gi as follows

E(T bij) = PKTQi +



[
∆LESS25i

9375
− ∆LESS10i

1500

]
(sij −MBTi)

3 if sij ≤MBTi[
2

(
∆LESS25i

1875

)
− ∆LESS10i

60

]
(sij −MBTi)

2 if sij ≤MBTi

∆PLUS10i (sij −MBTi)
2 if sij ≥MBTi

(5.9)

5.2.4 Global Model

Global models are the best fit of a curve to the values of local model coeffi-

cients for each test. This is repeated for each coefficient, producing several global

models fitted to different coefficients of the local models. These coefficient are

the response features of the local models. The response features are modelled
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5.2 Model Structure

in stage-2 as a function of the covariates; i.e., N, L, ICP and ECP, for each of

the torque vs spark advance local model regression using MLP neural network.

The systematic variation in the response features are summarized in the second

stage using neural network. A neural network was chosen because of its ability

to accurately model fine variations in torque due to tuning effects, without the

over-fitting problems associated with other approaches such as high-order polyno-

mials. The multi-layer perceptron network is fitted with Bayesian regularization

method (i.e. trainbr). The trainbr is a network training function that updates

the weight and bias values according to Levenberg-Marquardt optimization (97).

It minimizes a combination of squared errors and weights, and then determines

the correct combination so as to produce a network that generalizes (122). The

architecture of the MLP network contain one hidden layer, with 10 number of

neurons in the layer. However, different network can be used to train different

response features data, and the architecture of the network can be changed ac-

cordingly to obtained best fit of the model with minimising the fit error.

A comparative study was also carried out with an hybrid RBF model fitted

in the global model, that is used in reference (3; 58). The radial basis function

regressions is fitted using Multi-Quadratic technique. The model algorithm is

initialised with 50 RBF centers in order to achieve a good fit and at the same

time avoid over-fitting.



MBTi

PKTQi

∆LESS10i

∆LESS25i

∆PLUS10i


=



aMBTi 0 0 0 0

0 aPKTQi 0 0 0

0 0 aLESS10i 0 0

0 0 0 aLESS25i 0

0 0 0 0 aPLUS10i





θMBTi

θPKTQi

θ∆LESS10i

θ∆LESS25i

θ∆PLUS10i


(5.10)

Figure 5.6 shows the response feature PKTQ plotted against the four covariates.

It shows a very strong linear relationship between PKTQ with ICP and Load,
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5.2 Model Structure

(a) ICP (b) ECP

(c) Load (d) Speed

Figure 5.6: PKTQ response feature trend analysis

as it would be expected. If there is more air going into the engine there should

be more power coming out. PKTQ has a cleared curved relationship with engine

speed, with a maximum torque obtained at a peak around the middle of the speed

range at 2200 rpm. The engines of this type are designed to operate at their best

near the middle of their speed range. Both intake and exhaust cam phase have

got an increasing and decreasing trend respectively, with fixed load and speed.
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5.2 Model Structure

A residual plot is a plot of the standardized residuals against the levels of another

variable, the choice of which depends on the assumption being checked. Plots like

this are useful for evaluating the assumption of constant error variance as well as

the adequacy of the model. In general, lack of fit is indicated if the residuals ex-

hibit a non-random pattern about zero in any such plot, being too often positive

for some levels of the independent variable and too often negative for others. For

∆LESS10 plot revealed observation 30 revealed to be an obvious outlier, shown in

Figure 5.7 and no obvious explanation could be determined from the local model

analysis. The presence of this outlier appreciably degraded the fit and quality of

the residual diagnostic plots. Therefore, this observation was removed.

Figure 5.7: Residual diagnostic plots
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5.2 Model Structure

Figure 5.8: Residual diagnostic plots for ∆LESS25

For ∆LESS25 fit, three observations, 16, 108 and 110 shows a considerably high

error from the model fit. Figure 5.8 show residual diagnostic plots for ∆LESS25

Improvement were observed after setting aside these observations. Also, in the

same pattern ∆PLUS10 plots were analyse for its behaviour.

A separate neural model is fitted to each response features. Table 5.1 shows

the relevant summary statistics for each of the 5 regressions using MLP and RBF

models.

Typically, a model consists of one or more equations. The quantities appearing in

the equations are classified as variables and parameters. The distinction between

these is not always clear cut, and it frequently depends on the context in which

the variables appear. A parameter is a quantity that serves to relate functions
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5.2 Model Structure
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5.2 Model Structure

and variables using a common variable when such a relationship would be difficult

to explicate with an equation.

Usually a model is designed to explain the relationships that exist among quan-

tities which can be measured independently in an experiment; these are the vari-

ables of the model. To formulate these relationships, however, one frequently

introduces some unknown constants or coefficients, which stand for inherent prop-

erties of nature (or of the materials and equipment used in a given experiment),

these are the parameters (123). These parameters often have a physical interpre-

tations, a major aim of the investigation is to estimate the parameters as precisely

as possible, and a further aim is to test the fit of the data to the model.

If several models fit the data equally well, it the simplest model that is chosen.

For example, in prediction, or in finding the maximum and minimum values of

the curve or the slope at particular points, than splines (segmented polynomials)

may be appropriate (123). However, with the model having complex structure,

these simplest polynomials models is having very little use, and the neural net-

work models does a great job in estimating the unknown parameters.

Table 5.1 shows comparison of the two different models use. The number of

parameter in case of MLP based neural model is double as compared to RBF

model, which means MLP models require a smaller number of parameters then

the RBF network for the same degree of accuracy and as the number of param-

eters increases the accuracy of the model increases. The root mean square error

(RMSE) for the MBT for MLP is 1.361◦ compared to that of RBF which is 1.911◦.

5.2.5 Exhaust Temperature and Residual Fraction Model

The MBT spark was the primary feature within the DOE, it is therefore ben-

eficial to provide an example of some secondary feature to show the quality of

the response models generated. The exhaust temperature model is an example

of such a feature. A two-stage modelling approach was used with a cubic fitted

to the local response, here the exhaust temperature was modelled as a function
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5.2 Model Structure

of spark advance. Table 5.2 reveals that the local RSME was less than 4 Deg F,

however, it should be recognised that the use of a cubic response within the local

spark range proved satisfactory, if the model response was inspected outside this

range the model would witness a significant climb towards infinity in some cases.

The temperature was measured at the point where all four manifold runners met.

Also, in addition to the MBT and exhaust temperature model, the internal resid-

ual fraction of burned gas at intake valve was modelled as a function of the global

variables N, L, ICP and ECP to act as an indicator of combustion stability. Here

also, two type of model were fitted, an RBF and a NN model, to the calculated in-

ternal residual corresponding to the maximum torque points in the torque/spark

sweeps of the the survey. Table 5.2 shows the residual differences between pre-

dicted and measured residual fraction, which is within 1% residual.

Table 5.2: Univariate regression summary statistics

Response Model Model Type Local Two-Stage Two-Stage Validation

RMSE RMSE T2 RMSE

BTQ RBF 0.358 1.146 3.214 4.681

MLP 0.358 2.033 3.126 4.546

EXTEMP RBF 3.642 7.542 2.299 33.007

MLP 3.642 7.235 0.759 49.487

RFRAC RBF 0.03 0.231 2.792 2.484

MLP 0.038 0.293 2.817 2.283

5.2.6 Model Fitting Summary

Table 5.2 compare two different modelling techniques. Comparison of the two

models rely upon several metrics, these includes inspection of residuals, root

mean square error (RMSE), response surface and the inspection of the model on
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5.2 Model Structure

the validation data. The data not used in the model development is used as a val-

idation run against the model prediction. And equivalent model based on Radial

basis function (RBF) method used by Cary (58) is also constructed to facilitate

the comparison with the current model based on neural network. Inspection of

Table 5.2 shows that there is little to separate the statistics from an engineering

viewpoint, with both models show remarkably small errors. The neural network

based models, however exhibits a smaller RMSE. However, there is no intent to

imply here that the neural networks generally out perform the RBF models.

(a) Test 33 (b) Test 72

(c) Test 157 (d) Test 195

Figure 5.9: Training data fit to various test sweeps
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5.3 Developed Model Validation

Finally, the two-stage model is examined by comparing it with the local fit and

with the data. The local torque/spark curve at an operating point is recon-

structed by taking the values of MBT and peak torque and the curvature from

the two-stage model, and then validated this reconstructed curve against the orig-

inal fit and the data. The two-stage model can also predict responses between

tests, for new sweeps at intermediate values for which there is no data.

Figure 5.9 presents some example fits for the model to a selection of sweeps

from the training data. These plots are considered representative for the entire

set of 189 sweeps. The two-stage model shows an accurate fit when compared to

the local sweeps. This is a good sign that the engine behaviour is well described

by the model across the global variables.

The individual torque predictions is calculated with Equation 5.7, assuming that

the response features are independent on the global variables (i.e., N, L, ICP,

ECP). This assumption is based on the fact that the point has been calculated

on the actual observed values of the global variables rather than the averaged for

the sweep. This result is in lack of smoothness in the predictions. Also, the com-

parison between the models should be made objectively, with some compromises

should have been taken for good reason incurring potential error.

5.3 Developed Model Validation

The model is validated to a fresh data, to excess the validity and predictive per-

formance of the model prior to its use. This process is referred to as external

validation (58).

The process involves the collection of data for the study of model’s predictive

performance, i.e., the model predicts the response characteristic at input con-

figuration that has not been used for training. The validation design should be

compact, but should exercise over the full range of conditions associated with its

intended use.
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5.3 Developed Model Validation

Therefore, to access the accuracy of the two-stage model developed, a valida-

tion design is also constructed on the space-filling design method with number of

arbitrary engine operation conditions. The design contain 25 points for the same

four input factors for each of the spark sweep.

Figure 5.10: External validation

Figure 5.10 shows the external validation of model developed in Section 5.1. These

plots are representation of the validation sweeps created in the validation design.

Again, here the local torque/spark curve at an operating point is reconstructed

by taking the values of MBT and peak torque and the curvature from the two-

stage model, and then validated this reconstructed curve against the original fit

and the data. A comparison between the torque model and the validation points

112



5.4 Summary

shows a good correlation. The root mean square error for these data is 4.546

[Nm] for brake torque.

5.4 Summary

This chapter presented a steady state engine mapping case study using two-stage

regression approach for the analysis of engine brake torque data collected on a

2.2L inline 4 cylinder, naturally aspirated Dual Overhead Cams (DOHC) and

subjected to the different constraints, to ensure that the engine runs in its region

of operatibility. The primary focus was to accurately model the brake torque as a

function of spark timing at level-1 and the response features as a function of en-

gine speed, normalised induced air charge (or load), the intake and exhaust cam

phase. Additional responses of exhaust port temperature and residual fraction is

also modelled in the same manner.

At level-1, a systematic behaviours in the brake torque with spark advance was

modelled by deriving a sweep-specific relationship. A segmented polynomial curve

is fitted, with a specification of model at level-1 as:

E(T bij) = β0i +


βci(sij − ki)3 if sij ≤ ki
βli(sij − ki)2 if sij ≤ ki
βri(sij − ki)2 if sij ≥ ki

At level-2, the focus is on representation of the variation in the response features

among sweeps. The neural network models based on Multi-Layer Perceptron

(MLP) has been introduced to adequately describe the response feature varia-

tions at the second stage. The resulting model affords an excellent fit to the data

with accurately representing the complexity of the MBT response feature with

engine speed.

A comparable model based on Radial Basis Function (RBF) was also developed

along the MLP model. It has been shown that, the MLP model has a slight im-

provement prediction capability than the RBF models, with number of parameter
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5.4 Summary

increases in case of MLP for the same number of observations. Hence, for the

approximation of a nonlinear input-output mapping, the MLP based neural net-

work require a smaller number of parameter then the RBF network for the same

degree of accuracy. A model accurately predicting the desired response features

over the entire region of operability can be developed using this approach.
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6

Neural Network Based Transient

Engine Model

In previous chapters a steady state engine mapping case study illustrating the

application of two stage regression techniques, and their associated design of ex-

periments was discussed. Models for engine brake torque, exhaust temperature

and residual fraction were developed and validated. Also, at stage-2 each of the

response features were modelled using MLP networks. The MLP based engine

model show great improvement in the prediction capability of the steady state

two-stage regression approach. And therefore, the use of MLP network make it

possible to perform the calibration studies over a large range of operating domain,

with good model fit and prediction.

However, the steady state engine mapping or calibration optimisation are not

suited to the situation in which the prevailing emissions standard is transient

standard, such as EPA Heavy Duty Transient Cycle (HDTTC), EPA Smoke Test,

EURO III – Load Response Test and the FTP – 75 test for light-duty engine. In

these case, the legislative requirement is based on the engine performance over

a dynamic cycle, which implies that the engine calibration optimisation must be

performed using transient or dynamic engine model (30).
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6.1 Transient Modelling

Thus, this chapter presents some original work regarding the development of tran-

sient engine model for engine calibration, based on two-stage regression approach.

The two-stage regression model discussed in previous chapter for the steady state

condition is modified with an introduction of an additional dimension of time in

its hierarchy. The modification allows for the presence of identification signal at

stage-1 in the model, and hence, for the transient engine calibration application.

6.1 Transient Modelling

Most of the model based calibration effort has traditionally been focused on

steady state operation. And only a few researchers like (30; 42; 44; 45; 46) have

ventured to address transient calibration. Atkinson et al. (30; 42; 44) used neural

networks to predict transient engine operation, by using a hybrid equation-based

and neural network-based data-driven technique to produce an engine model for

calibration and optimisation. Their work include the utilisation of DoE for the

data collection and using it for the development of engine model for engine cali-

bration. However, the design of transient engine experiment for the model results

in data point that is still considered too expensive to run. Brahma et al. (45)

have used empirical modelling for transient emissions and response for optimi-

sation. Their work was limited to only using full quadratic global regression for

modelling and prediction, which result in poor performance at some response

(Smoke and PM).

Transient modelling is different from the steady state modelling in various ways.

The most important is the data acquisition and processing in transient condition

is highly complex and is very important in view of model development. Also,

the model developed for the steady state condition might not be suitable for the

transient data.

6.1.1 Transient Two-Stage Regression Model

The two-stage model discussed in Section 3.3 assumed that the covariate vector

ai summarizing individual characteristics is constant across the observations on
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6.1 Transient Modelling

individual i, and which further specifies that the value of the regression parameter

βi for individual i remains fixed for that individual over the course of observation.

In some cases, particularly in engine transient phenomena such as engine warm

up and fuel dynamic response characteristics, individual specific information may

change during the course of observations, to exhibit corresponding changes at dif-

ferent time.

A slight modification to the general structure at stage-1 in the hierarchy is re-

quired to permit the individual regression parameters, to depend on changing

individual-specific information while handling time-varying individual attributes

(55; 123). Let aij represent the vector of covariate values for individual i cor-

responding to the jth condition of measurement xij, and let βij be the value

of regression parameter for individual i at conditions j. Hence, the hierarchical

model for the presence of time-dependent covariates can be written as follow (55):

Stage 1 (Intra-individual variation):

yij = f(xij, βij) + eij, V ar(eij) = σ2g2(f(xij, βij), ζ) (6.1)

Stage 2 (Inter-individual variation):

β̂ij = d(aij, θ, bi), bi ∼ N(0,Γ) (6.2)

The vector of covariates xij defined in the stage-1 modelling can be defined by the

equation, xij = [tij, uij], where tij is the time, and uij is now explicitly included

in the formal definition of fi. The above model can be written as follows:

Stage 1:

yij = fi(tij, uij, βij) + eij, V ar(eij) = σ2g2(fi(tij, uij, βi), ζ) (6.3)

Stage 2:

β̂ij = d(aij, θ, bi), bi ∼ N(0,Γ) (6.4)
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These covariates values should be available at the same times as the observations,

indexed by j within subjects.

6.2 Air Flow Modelling

The engine output torque is controlled by the throttle body in restricting the

intake airflow. Throttle plate geometry and parameters are illustrated in Fig-

ure 6.1. This type of throttle plate creates a three-dimensional flow field. The

throttle plate shaft is usually of sufficient size to affect the throttle open area.

The plate is usually completely closed at some non-zero angle (5, 10, or 15◦), to

prevent binding in the throttle bore. This is also necessary to provide the desired

flow setting during engine idle.

Figure 6.1: Throttle plate geometry (4)

The air flow out of the manifold occurs in a series of sinusoidal pulses, one go-

ing to each cylinder. For four cylinder engines, these flow pulses sequence such

that the outflow is essentially zero between pulses. When the engine is throttled,
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6.2 Air Flow Modelling

back-flow from the cylinder into the intake manifold occurs during the early part

of the intake process until the cylinder pressure falls below the manifold pressure.

Back-flow can also occur early in the compression stroke before the inlet valve

closes, due to rising cylinder pressure. The flow at the throttle will fluctuate as

a consequence of the pulsed flow out of the manifold into the cylinders. At high

intake vacuum, the flow will be continuously inward at the throttle and flow pul-

sations will be small. When the outflow to the cylinder which is undergoing its

intake stroke is greater than the flow through the throttle, the cylinder will draw

mixture from the rest of the intake manifold. During the portion of the intake

stroke when the flow into the cylinder is lower than the flow through the throttle,

mixture will flow back into the rest of the manifold. At wide-open throttle when

the flow restriction at the throttle is a minimum, flow pulsations at the throttle

location will be much more pronounced. The hot wire air flow meter senses the

magnitude of the airflow but not the direction, and this leads to gross instanta-

neous errors in the measured air flow into the engine and therefore in the metered

fuel flow.

Similarly, the mass of air in the induction system volume takes a finite time to

adjust to the new engine operating conditions when engine load is changed by

opening or closing the throttle (4). The air flow to the manifold increases as the

throttle open area increases. However, the pressure level in the manifold increases

more slowly than would be the case if steady-state conditions prevailed at each

throttle position due to the finite volume of the manifold. Thus, the pressure

difference across the throttle is larger than it would be under steady flow condi-

tions and the throttle air flow overshoots its steady-state value. The air flow into

each cylinder depends on the pressure in the manifold, so this lags the throttle

air flow. The transient air-flow phenomenon affects fuel metering. For throttle-

body injection or a carburettor, fuel flow is related to throttle air flow. However,

for port fuel injection, fuel flow should be related to cylinder air flow. Actual

results for the air flow rate and manifold pressure in response to an opening of

the throttle are shown in Figure 6.2. The overshoot in throttle air flow and lag in

manifold pressure as the throttle angle is increased are evident. Opposite effects

will occur for a decrease in throttle angle.
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6.2 Air Flow Modelling

Figure 6.2: Throttle angle, intake manifold pressure and air flow rate past the

throttle versus time for 10 deg part-load throttle opening (4)

A failure mode look-up table indexed by throttle angle (θ) and engine speed

(N) in the control strategy determined the amount of air flow through the throt-

tle body in a conditions where back-flow is indicated or in areas of high pulsation.

However, the table contains the throttle body air flow at a barometric pressure

of 29.92 [inHg] and ambient temperature of 100 [◦F] at a steady stage condition.

The table ignore the transient air flow phenomenon and therefore affects fuel

metering.

6.2.1 Experimental Setup

The intention of the experimental work is to initially identify the parameters in

the model and then follow this with a series of simple response tests to validate

the identified model. In particular the experimental work consist of the transient

engine testing according the the experimental design described below and then
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6.2 Air Flow Modelling

using it for the development of the transient engine model using two-stage regres-

sion technique. The parameter in the first stage of the model, i.e., the throttle

position sweep from its minimum value to the maximum while holding the speed,

which is the covariate of the second stage constant.

Figure 6.3: Experimental Setup

Figure 6.3 shows the experimental setup. The experimental facilities required

involved standard engine test bed equipment used for steady state mapping work

suitably enhanced for the transient testing. For this purpose, the PID dynamome-

ter controller is properly tuned for the transient operation before it could be used

for the response data collection.

6.2.1.1 Ford Fiesta 1.4 Duratec

The experimental work was carried out on a Ford Fiesta Duratec 1.4 SI engine,

fitted with Siemens Electronic Control Unit (ECU), an engine management sys-

tem prototyping facility necessary to measure, model and control. The engine
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was mounted on a test bed and connected via a propeller shaft to a transient

dynamometer. Engine control was achieved through an CAN (Control Area Net-

work) system using ATI VISION software to communicate with the ECU. Table

6.1 gives the engine specification,

Table 6.1: Ford Fiesta Engine Specification

Engine Technical Feature: 1.4 liter; 4 cylinder inline; DOHC;

16 valve; alloy cylinder head and

block; electronic multipoint fuel

injection; electronic throttle

Maximum Power 59 kW (80 PS) at 5700 min−1 (rpm)

Maximum Torque 124 Nm at 3500 min−1 (rpm)

The engine is mounted on a frame, which hold all necessary connections for engine

coolant circuit, fuel circuit, throttle valve positioner, sensor connectors, ECU etc.

The throttle valve of the engine is positioned with a servo-actuator that opens

the throttle valve to a degree which is proportional to the throttle valve set-point,

which is wired as an input to the actuator.

6.2.1.2 Measurement and Control Software

This engine is remotely controlled by the controlling PC via ECU through ATI

VISION. This software allows access to Electronic Control Unit (ECU) for cali-

bration, logging measurement data from multiple control sources, analysing col-

lected data and managing calibration data changes. An interface from VISION

to the ECU is established via a physical connection with the CAN (Control Area

Network) Interface Tools. This interface allows the information contained on the

CAN bus to be presented within the VISION software windows. The software

supports multiple recorders triggering and storing data simultaneously at user

definable channel-by-channel sample rates.
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The VISION strategy file stores the device description information, memory im-

ages, and system settings for a device. This device is usually the control module

under development. The base calibration file is setup with the strategy file, which

contain data item values. This calibration file also maintains information on each

data item, such as when it was changed and by whom.

Apart from the main controller software for the ECU, a separate interface is

developed in NI LabVIEW. This allow to control the software in the transient

mode by uploading the experimental design table via an RS232 serial bus to the

dynamometer controller. This design table contain information regarding dif-

ferent parameters to be varied at different time settings. The software can also

record the dynamometer data, which can be used to match with the data recorded

by VISION.

6.2.2 Data Collection Methodology

The experimental flow chart is represented in Figure 6.4. The process of tran-

sient data collection start with the design for the transient experiment. The

design here again based on space-filling principles was selected, with speed as the

only variable at which to experiment. For the design size m (= 23), m−unique

levels of speed is selected which is distributed uniformly over the range of 900 –

6000 [RPM].

Due to high air induction, five levels of engine speed have been assigned to the

range 3000 – 3500 [RPM]. Also, five level of engine speeds were assigned from 950

– 2000 [RPM], due to the effect of back-flow at lower speeds. This leaves with a

13 remaining levels of speed to cover the rest of extensive operating range. The

data for this work was acquired from a SI engine equipped with sophisticated

software and hardware.

The data was collected at a frequency of 5Hz, which results in 20 measured data

at 200ms for each throttle sweep. The transient designed table is fed through the
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6.2 Air Flow Modelling

Figure 6.4: Experimental flow chart

NI LabVIEW VI, shown in Figure 6.5, to the dynamometer controller, with en-

gine speed and throttle percentage at different time interval. Here, also the data

is collected in sweeps, with speed held constant while the throttle position varied

from its minimum to maximum value. The dynamometer controller is specially

tuned for the transient experiment.

The engine control system use a base engine calibration in order to allow the

engine to run through an individually appropriate range to prevent any damage

to the engine. The base calibration was useful in the current situation as there

was no constraint applied to the transient design itself. However, the required

base calibration can be relatively crude and far from optimal; although the base

calibration itself is a product of long conventional engineering effort. The mea-

surement software, ATI VISION is connected to the engine control system via

CAN, and record the measurement data which comprised of cylinder air charge,

throttle position, manifold depression, torque and speed. This results in the total

number of data for 23 levels that corresponds to an average of 460 observations.

To validate the predictive performance of the developed model, supporting vali-

dation sweeps are collected at four different level of speeds. The data collection

for these level are performed at the same time, as of the main data collection

to prevent any variation in the test data due to test conditions. The validation
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6.2 Air Flow Modelling

Figure 6.5: NI LabVIEW VI for Transient Engine Control

points are however, not used in the development of the transient model, but only

for the measurement of the predictive capability of the developed model.

For a steady state data acquisition based of standard DoE methods only re-

quire measurement at static engine behaviour, and require no sophisticated tech-

niques. However, the method is only limited to static problems. Whereas, for the

transient purpose it is important to consider the dynamic behaviour at different
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6.2 Air Flow Modelling

Figure 6.6: Throttle ramp for transient measurement of engine characteristics

stationary states. Therefore, the experiment has been designed to properly con-

sider the dynamic behaviour of the engine and the controller for speed/load and

temperature stability. This measurement technique stochastically cover a user-

defined range of amplitude and frequencies. Figure 6.6 shows a throttle ramp for

transient measurement. The throttle position is varied over time with speed held

constant at each designed level during the transient measurement. However, for

development of the model only throttle ramp-up data (highlighted), in Figure 6.6

and 6.7 is selected , and all other data is discarded for their irrelevance.

Postprocessing of Measured Data The raw data has to be thoroughly inves-

tigated before it could be used in the model building. This is especially important

for the transient measurement data where the moving average filtering is lacking,

which is commonly applied in steady state measurements. The observation at the
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6.3 Model Structure

Figure 6.7: Selected throttle ramp for transient local model generation

engine speed of 900 RPM was disregarded, for the data was not suitable for the

development of the model. Also, the data was checked for any outliers that would

deeply worsen the data-based modelling results. The correction was preformed

visually using MBC toolbox, and few data points were eliminated from different

observations. These points were mostly removed from lower engine speed.

6.3 Model Structure

The model structure in block diagram form is presented in Figure 6.8. The

justification of the formulation is presented in later sections, from Section 6.3.1

to 6.3.3.

In stage-1 model the relationship between the throttle and mass air flow on a
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6.3 Model Structure

Figure 6.8: Throttle air flow dynamics model

sweep-specific basis is modelled. Richard growth model, discussed in Section

6.3.1.1 is selected and provide an adequate fit. The specification of the first

model is:

f(x) = α(1 + (δ − 1)e−κ(x−γ))
1

1−δ + eij, V ar(eij) = σ2g2(f(xij, βij), ζ) (6.5)

where βij = [αij γij κij δij]
T , with the value of regression parameter for in-

dividual i at conditions j.

The response features with good engineering interpretation regarding the location

and value of the maximum value for mass air flow, as well as the location of the

point of inflection on the x-axis are chosen. At second-2, a MLP network models

are used to describe the systematic variation in the response features across the

sweeps.
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6.3 Model Structure

6.3.1 Local Model

At stage-1, the primary focus of the model is to find a fit function that could

accurately describe the silent feature of the throttle sweep in a time domain.

Local models are fitted to each test, in different places across the global space.

This model is utilized to calculated the response features for the second-stage

modelling.

Figure 6.9: Local model for throttle air flow

The first response to model is mass air flow (MAF) against time. Analysis of

models of this form is already supported by the Matlab MBC toolbox. Transient

models are supported for multiple input factors, where time is one of the factors.

A dynamic model is defined using Simulink and Matlab code file, that describes

parameters to be fitted in this model. The detail description of the model will be

describe in later sections.
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6.3 Model Structure

Figure 6.9 shows a local response model of mass air flow verses time at an engine

speed of 3250 RPM. The curve fitted increases to a maximum before it flatten

off. This is because of the fact that the maximum intake pressure is achieved at

the throttle angles far below the maximum value.

6.3.1.1 Richard Growth Model

The typical air flows sweep profiles, under transient operating conditions, is shown

in the Figure 6.10. In this types of data, the curve does not steadily decline, but

rather increases to a maximum before steadily declining to zero, behaving nor-

mally in biological growth curve by an S-shaped, or sigmoidal pattern.

Figure 6.10: Throttle body airflow sweep profiles under transient condition

Cary (58) suggest the growth profile proposed by Richards (123; 124; 125) for
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6.3 Model Structure

this type of data. These models had a good interpretation and have a meaning-

ful parameters from airflow modelling perspective, and hence had an advantage

over the empirical models such as polynomial equations for modelling nonlinear

growth. The Richard’s curve is written in mathematical form as:

f(x) = α(1 + (δ − 1)e−κ(x−γ))
1

1−δ , δ 6= 1 (6.6a)

f(x) = α(e−e
−κ(x−γ)

), δ = 1 (6.6b)

where α is an upper asymptote value to which the curve tends and the parameter

γ locates the point of inflection on the x-axis. κ is a growth rate parameter and δ

being the parameter that indirectly locate the point of inflection of the curve on

the f -axis at f = α/δ
1
δ−1 and thus controls the shape of the curve. The maximum

growth rate is

wm = καδ

δ

δ − 1 (6.7)

The Richards growth model treated δ as a free parameter provided a flexible

family of curves with an arbitrarily placed point of inflection. The model includes

the mono-molecular model (δ = 0), the von Bertalanffy model (δ = 2
3
), the logis-

tic model (δ = 2), and (by talking the limit as (δ → 1) the Gompertz equation,

where growth is not symmetrical about the point of inflection.

The Gompertz, logistic, Chapman-Richards, Richard’s, and the Von Bertalanffy

growth models have points of inflection and are sigmoid (126), and are suitable for

quantifying a growth phenomenon that exhibits a sigmoid patter over time. Lei

(125) discussed that the Bertalanffy-Richards function had sigmoid and concave

depends on the allometric parameter δ, and is suitable not only for representing

a growth phenomenon that exhibits a sigmoid pattern over time, but also for rep-

resenting a growth phenomenon that exhibit a concave pattern over time. This

is the reason why this curve is selected for the current study, as it can be seen
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6.3 Model Structure

(a) Growth curve with α = final size and γ = point of inflection

(b) Growth rate curve with wm = maximum growth rate

Figure 6.11: Richards family of sigmoid growth model
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6.3 Model Structure

in Figure 6.10, that the transient air flow shows a concave phenomenon at high

speed.

6.3.1.2 Transient Model in Simulink/Matlab

A transient model in a Simulink and Matlab environments defined according to

the equation 6.6a and 6.6b, before it can be used in level 1 of MBC environment.

Figure 6.12 show the model in block form.

The model calculate the value of regression parameter β = [α γ κ δ] . The

inputs to the model are time and throttle position data, while the output of the

model is mass air flow. There are two subsystems in the main system, and the

free parameter δ defined the type of the subsystem to be chosen. The subsystem

(a) is selected when the type of the model is monomolecular i.e., δ 6= 1, while for

other type of models i.e., δ = 1 subsystem (b) is used.

Starting Values for Fitting Richard Models The crude initial estimates

of the parameters can often be obtained from a scatter plot of the growth data,

perhaps with a freehand smooth curve added. For example, the final size α can

often be obtained this way. The coordinates of the point of inflection, x = γ and

f = α/δ
1

(1−δ) , can then provide starting values for γ and δ. Finally, the intercept

on the f− axis is

f(x) = α(1 + (δ − 1)e−κ(x−γ))
1

1−δ (6.8)

which can be solved for κ.

However, more sophisticated refinements are available if convergence cannot be

obtained from the above starting values. By rearranging equation 6.6a, a trans-

formation f ∗ = g(f) can be obtained as

f ∗ = −log (f/α)(1−δ) − 1

δ − 1
= κx− κγ (δ 6= 1) (6.9)
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6.3 Model Structure

(a) Main system

(b) Subsystems

Figure 6.12: Simulink model for air flow dynamics
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6.3 Model Structure

or from 6.6b

f ∗ = −log[log(α/f)] = κx− κγ (δ = 1) (6.10)

Thus for given α and δ, starting values for κ and γ can be obtained from a simple

linear regression of y∗ = g(y) on x, where y is the observation taken on f .

When the asymptote is not clear on the scatter plot, a range of several α−values

or a grid of α and δ values can be used with κ and γ obtained by linear regression

as above for each pair (α, δ). This gives a set of possible starting values (α, δ, κ, γ).

The best of these can be chosen using the optimality criterion to be employed

in fitting the model. Using least squares, for example, the 4-tuple (α, δ, κ, γ) is

chosen with the smallest value of

∑
i

[yi − α{1 + (δ − 1)e−κ(xi−γ)}
1

1−δ ]2 (6.11)

Richards described a simple method for estimating a for the monomolecular model

(δ = 0) using three equally spaced time points x1x2, andx3, which should be

widely separated. Let f̃i be the estimate of f(xi) obtained visually from a freehand

curve through the scatter plot of y versus x. Then from equation 6.6b it is easily

verified that

α− f̃2

α− f̃1

=
α− f̃3

α− f̃2

so that

α =
f̃ 2

3 − f̃1f̃3

2f̃2 − f̃1 − f̃3

(6.12)

For any δ 6= 1 the same formula applied to the f̃ 1−δ
i gives an estimate of α1−δ. For

the Gompertz curve, the method applied to logf̃i; gives an estimate of logα. Bad
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6.3 Model Structure

ill-conditioning and convergence problems have often been experienced in fitting

the Richards model to data. Both problems can occur when insufficient of the

curve is visible to provide a good initial estimate of the final size α. Data which

give rise to only moderate ill-conditioning when logistic or Gompertz curves are

fitted often give rise to pronounced ill-conditioning when the full four-parameter

Richards model is fitted. Curves with quite different α−values look very similar,

and difficulty in distinguishing between them with even a small amount of scatter

is anticipate. Indeterminacy in δ or the location of the point of inflection on the

f−axis (at x = y) leads to indeterminacy in y. The parameters δ and κ are also

tied together through the fairly stable growth-rate parameter λ = κ/[2(δ + 1)].

6.3.2 Response Feature Selection

The local model fitted to the data in Figure 6.9 shows two distinct point; the

upper asymptote α and point of inflection on x-axis γ in the curve which can

be interpreted directly as a response features. The response feature α would in-

crease with the increasing engine speed, that is easily explained by considering the

nature of a typical naturally aspirated wide-open throttle (WOT) brake torque

characteristic for an engine with fixed cam timing (4). In the mid speed range, it

is at the maximum of its value. The rate of airflow decrease with the increasing

speed at high speed, because of the the drop of intake manifold pressure at WOT

than atmospheric due to the increase in flow losses. However, these arguments

would differ by the existence of intake tuning phenomenon at specific speeds.

Similarly, the profile for γ would increase rapidly with engine speed, and the

flatten off at the higher speed. This is because of the fact that the at low engine

speed maximum intake pressure is achieved at the throttle angles far below the

maximum value. The point of inflection for the curve should correspond to a

lower throttle angle at reduced speed.

The parameter δ indirectly locates the point of inflection of the curve and con-

trol the shape of the response function. Therefore, can be treated as a response

feature. However, Richard (124) derived an equation for an average growth rate;
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6.3 Model Structure

1

α

∫ α

0

κf

1− δ

[(
f

a

)δ−1]
df =

ακ

2(δ + 1)
(6.13)

Thus for the final size, κ/[2(δ + 1)] (= λ, say) is a crude measure of ”growth

rate” for comparisons between different sweeps, with average growth increases

with increasing engine speed. Also, κ acts as a scale factor on time x, so that for

fixed δ it acts as a rate parameter.

6.3.3 Global Model

The response features are modelled in the stage-2 as a function of engine speed

to explain the variation across the sweeps. Three different modelling methods,

i.e., Polynomial, Radial basis function (RBF) and Neural Network (NN) are used

to model the systematic variation in the response features. These models are

constructed as;

• A second degree polynomial model is used (i.e. n = 2). As the order of

a polynomial increases, it is possible to fit more and more turning points.

The curves produced can have upto (n− 1) bends for polynomials of order

n. However, higher-order polynomial have an embedded tendency toward

over-fitting, that should be avoided while fitting any curve.

• The multi-layer perceptron network is fitted with Bayesian regularization

method, trainbr, that updates the weight and bias values according to

Levenberg-Marquardt optimization. The architecture of the MLP network

contain one hidden layer, with 3 number of neurons in the layer for each

response feature.

• A radial basis function model is fitted using Regularised Orthogonal Least

Squares (ROLS) (127) technique. The model algorithm is initialised with

approximately 25% of the total available data points, in order to achieve a

good fit and at the same time avoid over-fitting.
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6.3 Model Structure

(a) alpha α (b) gamma γ

(c) kappa κ (d) delta δ

Figure 6.13: Comparison of response feature trend analysis for three different

model used

The corresponding analysis is shown in the Figure 6.13, which reveal the response

features trend with respect to the second stage covariate, the engine speed. The

response feature α is increase with increase engine speed, which a typical for a

naturally aspirated wide-open throttle brake torque characteristic for an engine

with fixed cam timing. It has a maximum value at mid speed range, due to high

air induction. The point of inflection γ correspond to a lower throttle angle at
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6.3 Model Structure

reduced speed. It increase rapidly with engine speed, with a flatten trend towards

the end.

(a) Test 3 at Speed = 1200 (b) Test 6 at Speed = 2500

(c) Test 12 at Speed = 3750 (d) Test 20 at Speed = 5600

Figure 6.14: Training data fit to various test sweeps

A visual inspection of the response feature curve trend in Figure 6.13 shows a

very complex structure. The simplest polynomials models is having very little

use, where it unable to fit most of the features in the global model. The neural

network models does a great job in estimating the fit parameters. These param-

eters often have a physical interpretations, a major aim of the investigation is

to estimate the parameters as precisely as possible, and a further aim is to test
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6.3 Model Structure

the fit of the data to the model. The modelling itself is a trade off - too few

parameters means the shape of the surface cannot be captured, while too many

parameters gives a risk of overfitting.

Figure 6.13 shows comparison of the three different models used. It is clear

that the polynomial model failed to show the different features in the data and

do not fit the model to the data well. The RBF model, however shows a really

good improvement than the polynomial model, with increase number of the pa-

rameter fits and with the capture of response feature really well.

However, the MLP network model tend to show a strong relationship to the fit

of data and also avoiding the data points for unnecessary risk of overfitting. The

number of parameters in case of MLP models is increased to double as compare

to the RBF model. The parameters serves to relate functions and variables using

a common variable when such a relationship would be difficult to explicate with

an equation. These parameters often have a physical interpretations, a major aim

of the investigation is to estimate the parameters as precisely as possible, and a

further aim is to test the fit of the data to the model. The increased number of

parameters permit the possibility of fitting the response feature with great accu-

racy, with the same number of observations as for the other model choice. This

reinforce the previous discussion in Section 5.2.4, for the preference of using the

MLP neural network model over the RBF model.

Finally, the two-stage transient engine model is examined by comparing it with

the local fit and with the data. The local air charge/time curve is reconstructed

by taking the values of corresponding response feature curvatures from the two-

stage model, and then confirm this reconstructed curve against the original fit

and the data. Figure 6.14 plots the corresponding response surface for air charge

as a function of time. The developed model regression summary is presented in

Table 6.2. The response model is well represented by MLP network, with the

two-stage RMSE of 10.1517 [mg/stk], compare to polynomial and RBF model

having two-stage RMSE of 15.0769 and 31.3908 respectively.
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Table 6.2: Regression summary statistics

Response Model Model Type Local Two-Stage Two-Stage Validation

RMSE RMSE T2 RMSE

MAF Polynomial 4.1383 15.0769 3.5634 20.5551

RBF 4.1383 31.3908 2.4991 15.4398

MLP 4.1383 10.1517 2.5235 14.0596

Table 6.3 summarise the comparison of three different model types used. Their

is a clear difference between the neural network based models in terms of RMSE,

with MLP and RBF network models having the errors of 10.1517 [mg/stk] and

31.3908 [mg/stk] respectively. The polynomial model having RMSE of 15.0769

[mg/stk]. Also, the number of parameters fit in the MLP network compare to

the RBF network is double, which mean the degree of accuracy increases as the

number of parameters increases. These trends are also clear in Figure 6.13 where

polynomial model unable to fit most of the regression parameters. The RBF

model under fit in κ and δ, and could not show the required trends. However,

the MLP model has clearly good fit among these models.

6.4 Developed Model Validation

In addition to the data collection for the model development, a further four

throttle sweeps were collected to serve as a small validation data pool. These data

were collected at the same time as the training data, to ensure the consistency

and avoid any error due to variation in the test conditions. These data were not

used in training the model. The model validation plots are shown in Figure 6.15.

As discussed three different model are proposed to describe the response features

behaviour at various engine speeds. The neural network based model fit is shown

here, where it provide good predictive capability.
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6.4 Developed Model Validation

(a) Test 1 (b) Test 2

(c) Test 3 (d) Test 4

Figure 6.15: External validation

The validation root mean square error of prediction using the validation data is

14.0596 [mg/stk] for MLP network compare to 15.4398 [mg/stk] for RBF network

model.
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6.5 Summary

6.5 Summary

This chapter has presented a novel method for transient engine modelling for cal-

ibration using two-stage regression approach. The method is illustrated with a

simple example for accurately modelling the transient throttle body air flow char-

acteristics. The objective was to support subsequent calibration of look-up table

formulations for the transient air flow response surfaces characteristics. Two-

stage sweep specific data methodology was used to collect data for regression

parameters estimation.

At stage-1 a Richard growth curve was fitted to the data, which show suitable

not only for representing a growth phenomenon that exhibits a sigmoid pattern

over time, but also for representing a growth phenomenon that exhibit a concave

pattern. The local model at stage-1 were shown to provide air flow characteristic

with throttle angle in first stage.

At stage-2 MLP network was again used to describe the behaviour of the re-

sponse features with the engine speed. Also, a polynomial and RBF models were

generated for comparison and were fitted to these response features. Models were

selected on minimising a RMSE criterion.

The objective of the throttle body air flow modelling was to support the cal-

ibration of the look-up table indexed by engine speed and throttle position at

different interval of time. This look-up table is utilized in the control strategy for

fuel metering purposes during back flow or in MAF sensor failure, at transient

conditions.

The corresponding calibrations are developed in a later chapter.
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7

Application of Transient Engine

Model in Calibration

The previous chapter demonstrated the development of transient engine model

using two-stage regression approach for the analysis of structured data collected

during the course of engine mapping studies. Once the modelling stage is com-

peted the focus turns to the generating of an appropriate engine calibration.

In this chapter, a case study is presented for the application of the model for

the generation of lookup table for the throttle body air flow indexed by engine

speed and throttle position at different interval of time. This look-up table will

be utilized in the control strategy for fuel metering purposes during back flow or

in MAF sensor failure, at transient conditions.

7.1 The Characterisation Problem

The focus of the characterisation problem is the application of developed transient

engine model to engine calibration. As discussed in Chapter 1, the fundamental

response surfaces (e.g. indicated torque or MBT spark-timing) representations

are embedded within the control strategy as algebraic combination of one and two

dimensional look-up tables, each indexed by the appropriate state or actuation
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7.2 Engine Calibration Generation

variables.

First stage of the model-based calibration development process involves transient

engine modelling that can capture full engine dynamics across a wide range of

transient time scales. The approach requires a range of timescales to be captured

in the modelling, which in turn require that the underlying data contain those

transient features. As an example, for any particular engine speed and operating

torque, there are a number of potentially feasible combinations of say injection

timing and EGR rates that give rise to the same NOx levels. Thus a choice has

to be made in real-time between these competing controlling parameters.

The second part of the implementation of the model-based technology involves

the development of the strategy for the controller. The controller utilizes specific

desired engine performance, emissions and fuel efficiency outputs to dictate the

required engine control input that in turn result in those particular outputs. This

approach constitutes a situation where the fundamental response surfaces repre-

sentations are embedded within the control strategy as algebraic combination of

one and two dimensional look-up tables. The approach is very simple as com-

pare to the (43; 44) which uses complex inverse model for development of new

controller as an alternative to conventional map or table-based methods, which

require modification in engine hardware or an entirely new engine controller.

7.2 Engine Calibration Generation

The control algorithms are fixed and therefore the response models derived have

to be fitted to the appropriate control feature response. The control algorithms

for a particular feature may rely upon a set of equation coefficients or a series of

two or three-dimensional tables. The memory allocation reduces significantly by

regressing a model to its equation coefficients, however the disadvantages are that

it may be difficult to regress a response surface into a containable linear equation

(36).
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Lygoe’s (128) discusses the fitting of control look-up tables to a response sur-

face model. The paper illustrate the relationship of algebraic combinations of

look-up tables to the corresponding components of the reference surface model,

the optimal selection of the break points. These points are used to minimise the

integral squared difference between the projection of the model on the look-up

table and the surface defined by look-up table itself. The strategy generates pre-

dictions between table points using bi-linear interpolation, which results in errors

between the two surfaces. If the errors are large, then quite severe performance

limitations may occur.

If the look-up table representation is rarely capable of approximation of the true

behaviour of the response feature over the entire region of operability, then errors

between the strategy and reference model also arise. This can be reduced by

utilising the model based calibration methodology, where a model can be used to

derive an improved representation of the response characteristic in strategy.

The use of advanced model fits utilising splines or neural networks witnesses

a significant increase in the number of terms. Moreover, once in-vehicle work

commences the calibration may require subtle altering to suit in-vehicle condi-

tions. Presenting a calibrator a large number of coefficients thereby render it near

impossible for in-vehicle calibration changes due to the fact that each coefficient

may affect many areas of operation. It is therefore beneficial to utilise a series of

calibration tables, these have to be large enough to contain the complex surface

shapes but not excessively so to require significant memory allocation. A generic

tabular strategy may be represented by the following:-

X Response = Table A (Speed, Load) + Table B( Speed, Coolant Temp)

= + Table C (Lambda) + SCV Modifier + . . .
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7.3 Calibration in CAGE

7.3 Calibration in CAGE

Once the transient engine model is setup, and validated against the external

data, it can be used to setup a calibration using ’CAGE’ (Calibration Genera-

tion). CAGE is the Mathworks tool which interacts with the MBC toolbox to

allow the interrogation of the models generated (121). Several option are available

for calibration and optimisation of the engine models. However, for the purpose

of application of transient model the ’feature calibration’ tool is used.

A feature calibration is the process of calibrating lookup tables and their nor-

malizers by comparing an ECU strategy (represented by a Simulink diagram)

to a model. The collection of algebraic lookup tables is determined by a strat-

egy. It is used to estimate signals in the engine that cannot be measured and

that are important for engine control. An electronic control unit (ECU) subsys-

tem is calibrated by directly comparing it with a plant model of the same feature.

A feature calibration has an advantage compared with simply calibrating us-

ing experimental data. Data is noisy (that is, there is measurement error) and

this can be smoothed by modelling; also models can make predictions for areas

where there is no data. This means the engine can be calibrate more accurately

while reducing the time and effort required for gathering experimental data.

7.4 A Case Study Description:

The purpose of the transient airflow modelling in previous chapter was to sup-

port calibration of the main inferred airflow look-up table FNTHROTTLE with

an additional degree of freedom as time. This failure mode look-up table (FN-

THROTTLE) indexed by throttle angle (θ) and engine speed (N) in the control

strategy determined the amount of air flow through the throttle body in a con-

ditions where backflow is indicated or in areas of high pulsation. However, the

table contains the throttle body air flow at a barometric pressure of 29.92 [inHg]

and ambient temperature of 100 [◦F] at a steady stage condition (58). The table

ignore the transient mass airflow phenomenon and therefore affects fuel metering.
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A feature refers to the object that contains the model and the collection of lookup

tables. A simple feature for calibrating the lookup tables for the transient airflow

consists of:

• A model of transient mass airflow.

• A strategy that adds the two following tables:

– A speed (N), Throttle (Thr) table

– A table to account for the behaviour in Time (T)

7.4.1 Transient Airflow Model Description

A feature model is created in the first step, with assigning a response model

created in chapter 6 to it. Figure 7.1 shows a three-dimensional response charac-

teristic of throttle body air flow that has been developed and validated previously.

At lower engine speed, the airflow is a sigmoid-like profile versus throttle. There

is a sharp increase in an airflow at throttle angle even well below the maximum,

while a relatively flat surface after that.

In the mid speed range, it is at the maximum of its value. The rate of air-

flow decrease with the increasing speed at very high speed, because of the the

drop of intake manifold pressure at wide open throttle (WOT) than atmospheric

due to the increase in flow losses. Also, the profile of high engine speed verse

throttle is more concave than the sigmoid, as it is in low engine speed.

This response model across the whole time range is used to produce a final cali-

bration table.

7.4.2 Model Strategy

Considering the response features for airflow in Figure 7.1, a strategy is created.

A strategy is an algebraic collection of tables, and forms the structure of the

149



7.4 A Case Study Description:

Figure 7.1: Throttle body airflow response surface

feature. The strategy for the calibration generation resembled the following:

MAF = Fn (Speed, Throttle Position, Time) (7.1)

Hence, a simple strategy to calibrate a feature for transient MAF adds two tables:

• A table ranging over the variables speed and throttle

• A table to account for the behaviour of the model as the time varies.

To evaluate the feature side by side with the model, a strategy should takes some

or all of the same variables as the model. The strategy is expressed using a

Simulink diagram in Figure 7.2, showing a 2D lookup table for speed and throt-

tle variables, with a 1D table for the time variable. These two tables are added

together to calibrate a feature for mass air flow.
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Figure 7.2: Airflow strategy for ECU subsystem

7.4.2.1 Calibrating the Normalisers

The main aim of calibration generation is to achieve the best fit of a look-up

table to a model. And is achieved by minimising the maximum interpolation

error between the response surface model and the lookup table adjusting the

breakpoint position. These breakpoints are the number of look-up table rows

(columns) (128). A table for the speed and throttle is set to have 10 rows and 10

columns.

Initialising and Filling Breakpoints The breakpoints at even intervals along

the range of the variable are initialise for the normaliser. These normalisers are

the axes for the lookup tables. The normalisers automatically initialises the table

by spacing the breakpoints evenly over the ranges of the selected input variables.

For a MAF table with two normalizers of engine speed and throttle, the break-

points are spaced for both normalisers over the range 950 rpm to 6000 rpm for

speed and 4 to 75 percentage for the throttle sweep.

Filling breakpoints spaces the breakpoints by reference to the model. In fea-

ture calibrations the majority of the breakpoints are placed where the curvature

of the model is greatest (shown in Figure 7.3).
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For example, a model of the spark angle that produces the maximum brake

torque (MBT) has the following inputs: engine speed N, relative air charge L,

and air/fuel ratio A. The breakpoints are spaced for engine speed and relative air

charge over the range of these variables by referring to the model.

(a) Breakpoints initilised (b) Breakpoints filled

Figure 7.3: Initilisation and filling of breakpoints

CAGE spaces the breakpoints by reference to the model, at selected points of the

other model variables. For the case study, the input variables are engine speed

N, throttle Thr over a range of time T. The model have 2 number of points over

the range of time. These number of points means that it takes two slices through

the model at minimum and maximum value of T. Each slice is a surface in N and

Thr. That is, MAF(N, Thr, minT) and MAF(N, Thr, maxT). The average value

of these two surfaces is computed to give an average model MAFAV(N, Thr).

Optimising Breakpoints The main aim in the feature calibrations is to op-

timise breakpoints to alter the position of the table normalisers so that the total

square error between the model and the table is reduced. This routine improves

the fit between the strategy and response model. The breakpoints are moved to

reduce the peak error between breakpoints.
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The strategy employs bi-linear interpolation to determine the desired output be-

tween table cell sites. Figure 7.4 is a one-dimensional lookup table illustrate the

importance of breakpoints locations, and shows how the optimisation of break-

points positions can reduce the difference between the model and the table.

Figure 7.4: Effect of breakpoint selection on maximum interpolation error

The desired characteristics are depicted in black. Consider the breakpoint se-

quence A, B, C. The approximate location and magnitude of the maximum in-

terpolation error for the interval (B, C) is also portrayed. If the breakpoint B

is moved to a new location of B’, the associated interpolation error in the same

interval is decreased substantially. There is an obvious implications of breakpoint

position for the 2-dimensional case.

Lynoe (128) has suggested minimising the integral square error over the table

domain as a mechanism for selecting optimal breakpoint positions. In his study a

polynomial response surface representation was employed, and integration of the

error surface over the space spanned by the table axes was easily accomplished.
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Cary (58), however replaced integration by summation over a uniform evalua-

tion grid, which has much higher resolution then the lookup table. He suggested

6 to 10 times as many subdivisions per axis, or equivalently 36 to 100 times as

many cells, provides a good trade-off between computational speed and precision.

The effect of optimising the breakpoint is shown in Table 7.1. The reduction

in the error statistics is very obvious, and there is 90% drop in the error by opti-

mising the breakpoints.

Error Statistics for Graph Non-optimised Optimised

Maximum Absolute Error 23.14 3.62

Maximum Square Error 8.4 0.82

Total Square Error 3360 326.3

Table 7.1: Difference between optimising breakpoint

The grid is defined in the optimisation process, and combined using cubic splines

to approximate the model. Then the table filled with the mesh is calculated at

the breakpoints. Then CAGE calculates the total square error between the table

values and the mesh model.

7.4.2.2 Calibrating the Tables

A table is defined to be either a one-dimensional or a two-dimensional lookup

table. One-dimensional tables are sometimes known as characteristic lines or

functions. Two-dimensional tables are also known as characteristic maps or ta-

bles.

Each lookup table has either one or two axes associated with it. These axes

are normalizers.
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Initialising and Filling Table Values Initializing table values sets the value

of every cell in the selected table to a constant. However, these values should be

initialise by keeping in view about the strategy. In the study, the Time table is

used a modifier and added to a single speed-throttle table to adjust for the effect

of different time interval on the MAF output.

If the table is a modifier that is added to other tables, it is initially filled with

zeros; if it is a modifier that multiplies other table, it is filled with 1s.

The table values are filled and optimise by reference to the model, and multi-

ple tables at filled in this process. CAGE offers two type of filling methods for

lookup tables; filling table by extrapolation and filling table by interpolation.

Optimising Table Values The table values are optimise to minimise the cur-

rent total square error between the feature values and the model. The fit between

the strategy and the model is optimise, by shifting the cell values up and down

to minimise the overall error between the interpolation between the model and

the strategy. In this process, the constraint that the model and strategy must

agree exactly at the coordinates defined by the indexing scheme is relaxed, which

results in the reduction of interpolation errors.

The difference in optimising table values is compare with illustration in Figure

7.5. When the table value at A and B are perturbed to A’ and B’, the maximum

interpolation error is reduced. In this case, the table value will not be in exact

agreement with the reference response surface model at the coordinates speci-

fied by the corresponding index scheme. Optimal table filling is accomplished

by minimising an appropriate least squares cost function evaluated over a high-

resolution user-specified evaluation grid.

The evaluation grid is equally spaced over the space spanned by the table axes.

Again, here Cary (58), suggested 6 to 10 times as many subdivisions per axis,

or equivalently 36 to 100 times as many cells, provides a good trade-off between

computational speed and precision.
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Figure 7.5: Effect of optimising table lookup values on maximum interpolation

error

The effect of evaluation grid size is illustrated in lookup Table 7.2 and 7.3. Both

of these table are setup at time 10 sec, with the first table created at the grid size

equal to the number of cells in the table, while latter at 6 times subdivisions per

axis. The difference of these two strategies is illustrated in Table 7.4.

Table 7.2: Original evaluation grid (1x)

θ/N 952.00 1462.00 1972.00 2482.00 2992.00 3502.00 4012.00 4522.00 5032.00 5542.00 6052.00

3.31 116.64 42.24 58.53 61.26 53.15 47.49 45.86 43.84 39.43 33.10 14.27

10.58 207.96 137.77 145.05 138.78 122.17 108.27 100.50 93.95 84.44 75.92 52.21

17.85 304.47 294.53 271.41 247.90 224.81 203.78 188.44 174.67 156.48 146.42 127.10

25.12 305.95 308.01 312.19 312.78 307.01 294.54 280.81 262.78 235.65 224.02 211.74

32.38 305.95 308.04 315.53 329.98 341.86 344.12 339.23 322.71 291.30 279.03 270.38

39.65 305.95 308.04 315.71 333.29 351.96 362.18 363.65 349.93 318.00 306.32 299.50

46.92 305.95 308.04 315.71 333.87 354.48 367.56 371.75 359.64 328.15 317.26 311.58

54.19 305.95 308.04 315.71 333.97 355.10 369.08 374.25 362.85 331.71 321.34 316.36

61.46 305.95 308.04 315.71 333.98 355.21 369.40 374.81 363.60 332.60 322.41 317.69

68.73 305.95 308.04 315.71 333.98 355.25 369.51 375.01 363.89 332.96 322.87 318.29

75.99 305.95 308.04 315.71 333.99 355.28 369.61 375.22 364.18 333.32 323.33 318.89
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Table 7.3: Increased evaluation grid (6x)

θ/N 3.31 10.58 17.85 25.12 32.38 39.65 46.92 54.19 61.46 68.73 75.99

3.31 116.64 44.88 55.04 70.74 49.65 47.57 45.57 45.11 39.38 34.18 14.27

10.58 207.92 140.43 140.79 145.66 117.71 106.39 98.30 95.09 82.63 76.34 50.65

17.85 305.76 303.38 280.64 254.13 226.68 203.92 187.22 178.79 154.20 147.45 126.95

25.12 305.95 307.85 313.50 317.19 313.19 299.14 283.82 272.89 234.84 227.30 214.76

32.38 305.95 307.86 314.68 330.56 346.04 348.28 342.68 334.90 289.87 282.37 273.44

39.65 305.95 307.86 314.71 332.44 354.45 364.75 365.61 361.30 314.74 308.30 301.17

46.92 305.95 307.86 314.71 332.68 356.35 369.38 372.82 370.27 323.75 318.26 312.28

54.19 305.95 307.86 314.71 332.72 356.77 370.61 374.93 373.06 326.74 321.78 316.43

61.46 305.95 307.86 314.71 332.72 356.86 370.94 375.53 373.91 327.70 322.98 317.94

68.73 305.95 307.86 314.71 332.72 356.88 371.02 375.70 374.17 328.00 323.38 318.49

75.99 305.95 307.86 314.71 332.72 356.88 371.04 375.75 374.25 328.10 323.52 318.68

Table 7.4: Lookup table difference between evaluation grid

θ/N 3.31 10.58 17.85 25.12 32.38 39.65 46.92 54.19 61.46 68.73 75.99

3.31 0.00 2.64 -3.49 9.49 -3.50 0.08 -0.29 1.27 -0.05 1.08 0.00

10.58 -0.04 2.67 -4.25 6.88 -4.46 -1.88 -2.20 1.14 -1.81 0.41 -1.56

17.85 1.29 8.85 9.23 6.23 1.87 0.14 -1.22 4.12 -2.28 1.03 -0.15

25.12 0.00 -0.16 1.31 4.41 6.19 4.60 3.01 10.11 -0.81 3.27 3.03

32.38 0.00 -0.18 -0.85 0.58 4.19 4.16 3.45 12.18 -1.43 3.34 3.06

39.65 0.00 -0.18 -1.00 -0.85 2.49 2.57 1.95 11.37 -3.26 1.98 1.67

46.92 0.00 -0.18 -1.01 -1.18 1.87 1.82 1.07 10.62 -4.40 1.01 0.69

54.19 0.00 -0.18 -1.01 -1.25 1.66 1.53 0.68 10.21 -4.98 0.44 0.07

61.46 0.00 -0.18 -1.01 -1.26 1.64 1.54 0.72 10.31 -4.90 0.56 0.25

68.73 0.00 -0.18 -1.01 -1.26 1.63 1.51 0.69 10.28 -4.95 0.51 0.20

75.99 0.00 -0.18 -1.01 -1.27 1.60 1.43 0.53 10.06 -5.22 0.19 -0.21

Table 7.5 shows error statistics of the effect of increasing subdivisions per axis.

There is a substantial error reduction by increasing the grid size for table axes.

The error reduction is more than 70% by increasing the subdivisions. However,

increasing the number of grid points increases the quality of the approximation

and minimizes interpolation error, but also increases the computation time.

7.4.2.3 Calibrating the Feature

After the normailser and tables are initilise and filled optimally, the next step is

to calibrate the feature as a whole. The entire feature, all the table values are

filled by referring to a model. The values of the nomalisers for speed, throttle

and time over the range of each variable is initilise and put specified values into
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Table 7.5: Difference between evaluation grid

Error Statistics 1x Evaluation Grid 6x Evaluation Grid

Maximum Absolute Error 44.82 12.43

Maximum Square Error 28.27 7.835

Total Square Error 11310 3134

each cell of the two tables. The optimise values are filled in tables by reference

to the model.

To populate features with more than one calibration table is more complicated.

To generate the calibration one table is filled at a time, the other factors are

either held at some mid-range value or specified as a range. If the latter is cho-

sen the table will be filled with calibration that minimises the total error across

the range. When a strategy is calibrated by reference to a model, it is useful to

compare the strategy and the model. Figure 7.6 compares the model and a full

factorial grid filled using the breakpoints.

One of the key areas that can lead to an error is the number of breakpoints

within the table, too few will present significant error due to the incapability of

representing a complex surface, while too many use too much of ECU memory.

Figure 7.6 show the matching error surface between the strategy and the model.

The error is more obvious at relative high speed, at a range of 4000–5000 RPM.

At this spacing, the placement of the throttle break points at high speed does

not match the observed curvature in the sigmoid response characteristic, shown

in Figure 7.6(a).

Therefore, the number of breakpoint can be judiciously incremented to satisfy

the accuracy requirement across the factor range. The statistics are useful in

providing comparisons but they should not be the only metric, the maximum

error and goodness of fit across the range should be checked as well as a visual

inspection for plausibility. Another feature model, with an incremented break-
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Figure 7.6: Effect of break points on interpolation error at 4500RPM
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point is created which significantly reduce the maximum error and improve the

fit of the model to the strategy. The visual inspection shows a good calibration

fit to the response model with clear reduction in a maximum error and hence a

total square error for the surface.

Increasing number of breakpoint reduce the interpolation error, but in the same

time increase the memory allocation on the ECU strategy (128), and hence the

operationality for the powertrain controller increases. Therefore, optimal lookup

table breakpoints should be selected to satisfy only the maximum interpolation

error. For the case of transient calibration, there is already an added dimension

of time, so any increase in one dimension would exponentially increase the other.

7.5 Applications in the Calibration Process

The feasibility of controlling a 1.4 litre SI engine using full model-based tran-

sient calibration process has been demonstrated. This process required very less

dynamometer time as compare to the methods used previously by (43; 44; 45),

where the complete process took a total of 4 calender months from beginning to

end. The process also was able to shift a significant portion of the overall tran-

sient calibration process out of the overall transient engine calibration process

out of the high cost, high demand transient emissions test cell to the lower cost

desktop PC environment, thus freeing up dynamometer time for other engine

development process.

The process is scalable and is capable of accommodating highly complex control,

including variable valve actuation and aftertreatment systems. Future applica-

tions to other engines and engine technologies (such as systems with secondary

energy recovery, alternative fuels, or hybrid systems operating on multiple power

sources) are also possible. However, adding new control or calibration variable

will add required effort to the process, but in this case only in linear fashion and

not geometrically as in the case to conventional calibration techniques. With

two-stage non-linear model for repeated measurement data, the engine testing
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requirement will also not increase significantly more in proportion to the increase

in the number of calibrateable parameters. The advantage that the transient

calibration process offers is that by using high predictive engine model for cali-

bration, optimisation can occur holistically and efficiently, across the whole cycle

simultaneously, rather than in a piece-wise fashion.

Futuremore, there is a wide range of possible optimisation and cost or minimisa-

tion functions that can be employed, to allow trade-offs to be investigated between

any number of emissions, performance or fuel efficiency measures. Future im-

provements to the calibration optimisation process will include the development

of optimal time-based control schedules. This approach will greatly simplify the

development of future control systems for highly complex, multi-parameter en-

gine and aftertreatment control systems.

Future applications of similar model-based techniques may include advanced con-

trol of next generation engine and aftertreatment systems.

7.6 Summary

In this chapter the application of the transient engine calibration process has

been treated. The fundamental principle was to fit the response model to the

feature model in strategy. The main objective was to ensure that the calibrated

strategy and the model were in closest possible agreement.

To evaluate the feature side by side with the model, a strategy was created

that takes all of the same variables as the model. Hence, a simple strategy to

calibrate a feature for transient MAF adds a 2-D table of speed vs. throttle to

the 1-D table that account for the behaviour of the model as the time varies.

The transient model for the throttle inferred airflow was fitted to the lookup ta-

bles in the strategy. The process has been illustrated for the employment of the

developed model for calibration studies. Also, the method to control maximum

interpolation errors through the selection of an appropriate table index scheme
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and associated table values was discussed.

The new strategy has shown improvement by optimising the breakpoints, with

a reduction in the maximum interpolation error. The same effect is noticed by

increasing the size of the evaluation grid, and adding more breakpoints to lookup

table. For the case of transient calibration, there is already an added dimen-

sion of time, so any increase in one dimension would exponentially increase the

other, and will affect the overall memory allocation in ECU. Therefore, optimal

lookup table breakpoints selection, and judiciously increment in the number of

breakpoints have an convincing effect in the transient calibration optimisation

problem.
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8

Conclusion And Future Work

8.1 Conclusion

The thesis has detailed the concept of utilising a model based calibration approach

applied to the transient engine calibration. The main goal of the modelling was

to predict the responses of the interest in a time domain, in terms of the primary

engine state and actuation variables over the entire region of operability.

The research has build on the application of hierarchical statistical modelling

methods, and analysis of repeated experiments for the application of engine map-

ping. The methodology is based on two-stage regression approach, which organise

the engine data for the mapping process in sweeps.

Previous work concentrated on the development of model based calibration tech-

niques that was only limited to steady stage condition. The models were based

on the assumption that the covariate vector at the global model summarising

the individual characteristic is constant across the observation, the value of the

regression parameter for individual at local model remain fixed for that individ-

ual over the course of observation. This assumption is particularly not true in

engine transient phenomenon such as engine warm-up and fuel dynamic response

characteristics, where the individual specific information may change during the
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course of observation, to exhibit corresponding changes at different time.

The models were extended here with the modification of the two-stage regres-

sion methodology with the introduction of time-dependent covariates in the hi-

erarchy of stage-1 modelling. Sophisticated hierarchical empirical model capable

of accurately predicting engine response characteristics over the entire region of

operability lie at the heart of the methodology. The following section highlight

the contribution to the research in this thesis;

8.1.1 Two-Stage Regression

For the steady state mapping, a single experimental design was specified to char-

acterise the primary and secondary feature models. The primary feature was

taken as MBT spark, which was identified by modelling torque response using

MLP neural network at the second stage of the model. The secondary models

were exhaust gas temperature and residual fraction to show the quality of the

response feature models generated. It has been shown that these models exhibit

satisfactory statistics to confirm the applicability of the approach, and feasibility

of MLP network in these models.

• The space filling design allows the flexibility to generate response models

ranging from low order polynomials to advanced models such as neural

network. Also, the space filling design do not depend on model type; and

the most suitable model can be choose to construct a design, and when data

is collected, a different model type can be tried that produces the best. It

is of convenience when different models are to be compared with same set

of data.

• Mulitlayer perceptron (MLP), a neural network based model was used for

generation of response models in the multi-covariate case. The neural net-

work based models represent a class of non-parametric estimator which

allow complex surfaces to be realised over the entire region of operabil-

ity with accurate response feature predictions. A comparison between the

MLP based neural network and radial basis functions (RBF) model fits to
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the data suggest that MLP offers marginally improved performance over

their RBF counterparts. The basis of this comparison was made on as-

sessing relevant model selection criteria, as well as internal and external

validation fits.

• The number of parameter fits in the MLP neural network compare to other

modelling methods increases. Therefore, for the approximation of a nonlin-

ear input-output mapping, the MLP require a smaller number of parameters

then the RBF network for the same degree of accuracy. The ability of MLP

networks to fit a variety of response characteristics collected as the main

advantage of these models.

8.1.2 Transient Engine Model

The two-stage regression approach was extended with a slight modification to the

general structure at stage-1 in the hierarchy to permit the individual regression

parameters, to depend on changing individual-specific information while handling

time-varying individual attributes. For the transient engine model, the empirical

regression was demonstrated through its application to a practical example. For

this purpose,

• A throttle body inferred transient air flow phenomenon was addressed. The

population of throttle angle θ and engine speed N look-up table at the

transient state condition is considered.

• The data collection for the transient engine model was performed on a tran-

sient test bed, with sophisticated software and hardware installed on it. In

all cases engine testing has been performed using automated control of the

dynamometer. A custom made NI LabView software was designed and

build to allow transient testing of the powertrain under repeatable condi-

tions in a laboratory environments, and to allow a comprehensive control of

the dynamometer controller behaviour. An ATI VISION software coupled

with a VISION hub was used to control and measure the data from the

ECU and external sources of the engine.

165



8.1 Conclusion

• In the development of the local model, the Richard growth model was se-

lected. It has been shown that the Richard growth model has the ability

to address both the sigmoid as well as concave nature of the curve which

was obtained at different level of speed. The growth model was defined in

a Simulink and Matlab environment, for its used in MBC environments for

the analysis purpose.

• The MLP network was fitted to the second stage of the model where it out-

perform the other models of the choice (i.e., Polynomial and RBF), where

the later lack some of the critical curves in the response features, and was

demonstrated not suitable for mass air flow prediction. Neural network

model has shown good fit in external validation process.

8.1.3 Application of Transient Engine Model in Calibra-

tion

Finally, the general ability of the model was demonstrated in CAGE through the

course of the work to the calibration problem. The transient model for the throttle

inferred airflow was used in generation of the lookup tables in the strategy. The

function model in toolbox permits alignment of the strategy and reference model

inputs, which is a fundamental requirement for lookup-table population.

• The calibration generation is heavily dependent upon the reference model

predictions, and any error in the model will be reflected in the final lookup

tables. Therefore, emphasis should be on building a transient engine model

with accurate fit to the data and having good prediction capability.

• Optimal lookup table breakpoints should be selected to satisfy only the

maximum interpolation error, that are capable of representing a complex

surface and decrease the memory allocation on the ECU strategy. This

is very important for transient engine calibration generation where there

is a added dimension of time, and any increase in one dimension would

exponentially increase the other.
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8.2 Future Work

8.2 Future Work

The work is concentrated on the analysis of a small transient engine data set,

permitting the consideration of relatively simple model for engine calibration.

However, the work can be extended to a fully functional methodology, which

covers the entire engine operating range and optimise for different set of engine

calibration requirements.

Different prototype of engine in the development stage can be compared in a

meaningful way in order to access the effect of design changes. To compare en-

gines at a predefined set of observational points or at a set of values defined

without reference to exhaust emissions does not revel the whole story, because

in practice the engines will be operated, not at these values, but at their opti-

mum calibrations. It is impractical to compare engines in this way if it takes an

excessive amount of time to establish a near optimal calibration. A calibration

process can be established to use them to compare different engines, and it could

be embedded experimental design to investigate the effect of design changes. En-

gine could then be used to compare the total amount of fuel consumed and its

emission output over any specific drive cycle using the calibration optimal for

that engine in a specified vehicle.

The aim was to introduce a transient engine model for calibration based on a

two-stage analysis of the data. It has been shown that these method are simple

to construct and provide numerous advantages over a large polynomial model.

These model are easier to interpret for their inadequacies which lead to their

improvement.
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