34 research outputs found

    MIRACLE evaluation of results for ImageCLEF 2003

    Get PDF
    ImageCLEF is a new pilot experiment introduced in CLEF 2003. It is devoted to the cross language retrieval of images using textual descriptions related to images contents. This paper presents MIRACLE research team experiments and results obtained for this track

    Overview of the 2005 cross-language image retrieval track (ImageCLEF)

    Get PDF
    The purpose of this paper is to outline efforts from the 2005 CLEF crosslanguage image retrieval campaign (ImageCLEF). The aim of this CLEF track is to explore the use of both text and content-based retrieval methods for cross-language image retrieval. Four tasks were offered in the ImageCLEF track: a ad-hoc retrieval from an historic photographic collection, ad-hoc retrieval from a medical collection, an automatic image annotation task, and a user-centered (interactive) evaluation task that is explained in the iCLEF summary. 24 research groups from a variety of backgrounds and nationalities (14 countries) participated in ImageCLEF. In this paper we describe the ImageCLEF tasks, submissions from participating groups and summarise the main fndings

    MIRACLE’s Naive Approach to Medical Images Annotation

    Full text link
    One of the proposed tasks of the ImageCLEF 2005 campaign has been an Automatic Annotation Task. The objective is to provide the classification of a given set of 1,000 previously unseen medical (radiological) images according to 57 predefined categories covering different medical pathologies. 9,000 classified training images are given which can be used in any way to train a classifier. The Automatic Annotation task uses no textual information, but image-content information only. This paper describes our participation in the automatic annotation task of ImageCLEF 2005

    MIRACLE at ImageCLEFannot 2008: Classification of Image Features for Medical Image Annotation

    Full text link
    This paper describes the participation of MIRACLE research consortium at the ImageCLEF Medical Image Annotation task of ImageCLEF 2008. A lot of effort was invested this year to develop our own image analysis system, based on MATLAB, to be used in our experiments. This system extracts a variety of global and local features including histogram, image statistics, Gabor features, fractal dimension, DCT and DWT coefficients, Tamura features and coocurrency matrix statistics. Then a k-Nearest Neighbour algorithm analyzes the extracted image feature vectors to determine the IRMA code associated to a given image. The focus of our experiments is mainly to test and evaluate this system in-depth and to make a comparison among diverse configuration parameters such as number of images for the relevance feedback to use in the classification module

    MIRACLE at ImageCLEFanot 2007: Machine Learning Experiments on Medical Image Annotation

    Full text link
    This paper describes the participation of MIRACLE research consortium at the ImageCLEF Medical Image Annotation task of ImageCLEF 2007. Our areas of expertise do not include image analysis, thus we approach this task as a machine-learning problem, regardless of the domain. FIRE is used as a black-box algorithm to extract different groups of image features that are later used for training different classifiers in order to predict the IRMA code. Three types of classifiers are built. The first type is a single classifier that predicts the complete IRMA code. The second type is a two level classifier composed of four classifiers that individually predict each axis of the IRMA code. The third type is similar to the second one but predicts a combined pair of axes. The main idea behind the definition of our experiments is to evaluate whether an axis-by-axis prediction is better than a prediction by pairs of axes or the complete code, or vice versa. We submitted 30 experiments to be evaluated and results are disappointing compared to other groups. However, the main conclusion that can be drawn from the experiments is that, irrespective of the selected image features, the axis-by-axis prediction achieves more accurate results not only than the prediction of a combined pair of axes but also, in turn, than the prediction of the complete IRMA code. In addition, data normalization seems to improve the predictions and vector-based features are preferred over histogram-based ones

    MIRACLE-FI at ImageCLEFphoto 2008: Experiences in merging text-based and content-based retrievals

    Get PDF
    This paper describes the participation of the MIRACLE consortium at the ImageCLEF Photographic Retrieval task of ImageCLEF 2008. In this is new participation of the group, our first purpose is to evaluate our own tools for text-based retrieval and for content-based retrieval using different similarity metrics and the aggregation OWA operator to fuse the three topic images. From the MIRACLE last year experience, we implemented a new merging module combining the text-based and the content-based information in three different ways: FILTER-N, ENRICH and TEXT-FILTER. The former approaches try to improve the text-based baseline results using the content-based results lists. The last one was used to select the relevant images to the content-based module. No clustering strategies were analyzed. Finally, 41 runs were submitted: 1 for the text-based baseline, 10 content-based runs, and 30 mixed experiments merging text and content-based results. Results in general can be considered nearly acceptable comparing with the best results of other groups. Obtained results from textbased retrieval are better than content-based. Merging both textual and visual retrieval we improve the text-based baseline when applying the ENRICH merging algorithm although visual results are lower than textual ones. From these results we were going to try to improve merged results by clustering methods applied to this image collection

    Miracle’s 2005 Approach to Monolingual Information Retrieval

    Full text link
    This paper presents the 2005 Miracle’s team approach to Monolingual Information Retrieval. The goal for the experiments in this year was twofold: continue testing the effect of combination approaches on information retrieval tasks, and improving our basic processing and indexing tools, adapting them to new languages with strange encoding schemes. The starting point was a set of basic components: stemming, transforming, filtering, proper nouns extracting, paragraph extracting, and pseudo-relevance feedback. Some of these basic components were used in different combinations and order of application for document indexing and for query processing. Second order combinations were also tested, by averaging or selective combination of the documents retrieved by different approaches for a particular query

    Miracle’s 2005 Approach to Cross-lingual Information Retrieval

    Full text link
    This paper presents the 2005 Miracle’s team approach to Bilingual and Multilingual Information Retrieval. In the multilingual track, we have concentrated our work on the merging process of the results of monolingual runs to get the multilingual overall result, relying on available translations. In the bilingual and multilingual tracks, we have used available translation resources, and in some cases we have using a combining approach

    Report of MIRACLE team for the Ad-Hoc track in CLEF 2006

    Get PDF
    This paper presents the 2006 MIRACLE’s team approach to the AdHoc Information Retrieval track. The experiments for this campaign keep on testing our IR approach. First, a baseline set of runs is obtained, including standard components: stemming, transforming, filtering, entities detection and extracting, and others. Then, a extended set of runs is obtained using several types of combinations of these baseline runs. The improvements introduced for this campaign have been a few ones: we have used an entity recognition and indexing prototype tool into our tokenizing scheme, and we have run more combining experiments for the robust multilingual case than in previous campaigns. However, no significative improvements have been achieved. For the this campaign, runs were submitted for the following languages and tracks: - Monolingual: Bulgarian, French, Hungarian, and Portuguese. - Bilingual: English to Bulgarian, French, Hungarian, and Portuguese; Spanish to French and Portuguese; and French to Portuguese. - Robust monolingual: German, English, Spanish, French, Italian, and Dutch. - Robust bilingual: English to German, Italian to Spanish, and French to Dutch. - Robust multilingual: English to robust monolingual languages. We still need to work harder to improve some aspects of our processing scheme, being the most important, to our knowledge, the entities recognition and normalization

    Image Retrieval: The MIRACLE Approach

    Get PDF
    ImageCLEF is a pilot experiment run at CLEF 2003 for cross language image retrieval using textual captions related to image contents. In this paper, we describe the participation of the MIRACLE research team (Multilingual Information RetrievAl at CLEF), detailing the different experiments and discussing their preliminary results
    corecore