12,020 research outputs found
A MINLP Solution for Pellet Reactor Modeling
A fluidized bed reactor for phosphate precipitation and removal from wastewater is modeled according to a two-step procedure. The first modeling phase, based on the development of a thermodynamic model for the computation of phosphate conversion, previously presented elsewhere
is not reported here. The second step is related to the reactor modeling in the core of this paper.
The pellet reactor is modeled as a reactor network involving a set of elementary cells representing
ideal flow patterns. All the potential solutions are imbedded into a superstructure and the modeling
problem is expressed as a MINLP problem. The MINLP problem is solved by means of the GAMS package, first for two flow rate values corresponding to two experimental fluidized bed
behaviours, and then for the two flow rates considered simultaneously. In each case, the problem consists in finding an output concentration as close as possible to the experimental output concentration.
Three objective functions are studied. The results are compared with those of Montastruc et al. (2004) who used a different numerical procedure. Whatever the considered case, the solutions found are structurally simpler than the ones of Montastruc et al. (2004). A major assessment
of this study is that the reactor efficiency can easily be deduced, without any precise knowledge of some key parameters such as the density and thickness of the calcium phosphate layer. Finally a last numerical study concerning the superstructure definition shows that too complex a
superstructure does not provide significant refinements on the solution
Proposed shunt rounding technique for large-scale security constrained loss minimization
The official published version can be obtained from the link below - Copyright @ 2010 IEEE.Optimal reactive power flow applications often model large numbers of discrete shunt devices as continuous variables, which are rounded to their nearest discrete value at the final iteration. This can degrade optimality. This paper presents novel methods based on probabilistic and adaptive threshold approaches that can extend existing security constrained optimal reactive power flow methods to effectively solve large-scale network problems involving discrete shunt devices. Loss reduction solutions from the proposed techniques were compared to solutions from the mixed integer nonlinear mathematical programming algorithm (MINLP) using modified IEEE standard networks up to 118 buses. The proposed techniques were also applied to practical large-scale network models of Great Britain. The results show that the proposed techniques can achieve improved loss minimization solutions when compared to the standard rounding method.This work was supported in part by the National Grid and in part by the EPSRC. Paper no. TPWRS-00653-2009
Performance Analysis of Optimization Methods in PSE Applications. Mathematical Programming Versus Grid-based Multi-parametric Genetic Algorithms
Due to their large variety of applications in the PSE area, complex optimisation problems are of high interest for the scientific community. As a consequence, a great effort is made for developing efficient solution techniques. The choice of the relevant technique for the treatment of a given problem has already been studied for batch plant design issues. However,most works reported in the dedicated literature classically considered item sizes as continuous variables. In a view of realism, a similar approach is proposed in this paper, with discrete variables representing equipment capacities. The numerical results enable to evaluate the performances of two mathematical programming (MP) solvers embedded within the GAMS package and a genetic algorithm (GA), on a set of seven increasing complexity examples. The necessarily huge number of runs for the GA could be performed within a computational framework basedon a grid infrastructure; however, since the MP methods were tackled through single-computer computations, the CPU time comparison are reported for this one-PC working mode. On the one hand, the high combinatorial effect induced by the new discrete variables heavily penalizes the GAMS modules, DICOPTþþand SBB. On the other hand, the Genetic Algorithm proves its superiority, providing quality solutions within acceptable computational times, whatever the considered example
Recommended from our members
A Framework for Globally Optimizing Mixed-Integer Signomial Programs
Mixed-integer signomial optimization problems have broad applicability in engineering. Extending the Global Mixed-Integer Quadratic Optimizer, GloMIQO (Misener, Floudas in J. Glob. Optim., 2012. doi:10.1007/s10898-012-9874-7), this manuscript documents a computational framework for deterministically addressing mixed-integer signomial optimization problems to ε-global optimality. This framework generalizes the GloMIQO strategies of (1) reformulating user input, (2) detecting special mathematical structure, and (3) globally optimizing the mixed-integer nonconvex program. Novel contributions of this paper include: flattening an expression tree towards term-based data structures; introducing additional nonconvex terms to interlink expressions; integrating a dynamic implementation of the reformulation-linearization technique into the branch-and-cut tree; designing term-based underestimators that specialize relaxation strategies according to variable bounds in the current tree node. Computational results are presented along with comparison of the computational framework to several state-of-the-art solvers. © 2013 Springer Science+Business Media New York
- …
