3 research outputs found

    Behavior-specific proprioception models for robotic force estimation: a machine learning approach

    Get PDF
    Robots that support humans in physically demanding tasks require accurate force sensing capabilities. A common way to achieve this is by monitoring the interaction with the environment directly with dedicated force sensors. Major drawbacks of such special purpose sensors are the increased costs and the reduced payload of the robot platform. Instead, this thesis investigates how the functionality of such sensors can be approximated by utilizing force estimation approaches. Most of today’s robots are equipped with rich proprioceptive sensing capabilities where even a robotic arm, e.g., the UR5, provides access to more than hundred sensor readings. Following this trend, it is getting feasible to utilize a wide variety of sensors for force estimation purposes. Human proprioception allows estimating forces such as the weight of an object by prior experience about sensory-motor patterns. Applying a similar approach to robots enables them to learn from previous demonstrations without the need of dedicated force sensors. This thesis introduces Behavior-Specific Proprioception Models (BSPMs), a novel concept for enhancing robotic behavior with estimates of the expected proprioceptive feedback. A main methodological contribution is the operationalization of the BSPM approach using data-driven machine learning techniques. During a training phase, the behavior is continuously executed while recording proprioceptive sensor readings. The training data acquired from these demonstrations represents ground truth about behavior-specific sensory-motor experiences, i.e., the influence of performed actions and environmental conditions on the proprioceptive feedback. This data acquisition procedure does not require expert knowledge about the particular robot platform, e.g., kinematic chains or mass distribution, which is a major advantage over analytical approaches. The training data is then used to learn BSPMs, e.g. using lazy learning techniques or artificial neural networks. At runtime, the BSPMs provide estimates of the proprioceptive feedback that can be compared to actual sensations. The BSPM approach thus extends classical programming by demonstrations methods where only movement data is learned and enables robots to accurately estimate forces during behavior execution

    Hybrid modelling of time-variant heterogeneous objects.

    Get PDF
    The physical world consists of a wide range of objects of a diverse constitution. Past research was mainly focussed on the modelling of simple homogeneous objects of a uniform constitution. Such research resulted in the development of a number of advanced theoretical concepts and practical techniques for describing such physical objects. As a result, the process of modelling and animating certain types of homogeneous objects became feasible. In fact most physical objects are not homogeneous but heterogeneous in their constitution and it is thus important that one is able to deal with such heterogeneous objects that are composed of diverse materials and may have complex internal structures. Heterogeneous object modelling is still a very new and evolving research area, which is likely to prove useful in a wide range of application areas. Despite its great promise, heterogeneous object modelling is still at an embryonic state of development and there is a dearth of extant tools that would allow one to work with static and dynamic heterogeneous objects. In addition, the heterogeneous nature of the modelled objects makes it appealing to employ a combination of different representations resulting in the creation of hybrid models. In this thesis we present a new dynamic Implicit Complexes (IC) framework incorporating a number of existing representations and animation techniques. This framework can be used for the modelling of dynamic multidimensional heterogeneous objects. We then introduce an Implicit Complexes Application Programming Interface (IC API). This IC API is designed to provide various applications with a unified set of tools allowing these to model time-variant heterogeneous objects. We also present a new Function Representation (FRep) API, which is used for the integration of FReps into complex time-variant hybrid models. This approach allows us to create a practical multilevel modelling system suited for complex multidimensional hybrid modelling of dynamic heterogeneous objects. We demonstrate the advantages of our approach through the introduction of a novel set of tools tailored to problems encountered in simulation applications, computer animation and computer games. These new tools empower users and amplify their creativity by allowing them to overcome a large number of extant modelling and animation problems, which were previously considered difficult or even impossible to solve

    Hybrid modelling of time-variant heterogeneous objects

    Get PDF
    The physical world consists of a wide range of objects of a diverse constitution. Past research was mainly focussed on the modelling of simple homogeneous objects of a uniform constitution. Such research resulted in the development of a number of advanced theoretical concepts and practical techniques for describing such physical objects. As a result, the process of modelling and animating certain types of homogeneous objects became feasible. In fact most physical objects are not homogeneous but heterogeneous in their constitution and it is thus important that one is able to deal with such heterogeneous objects that are composed of diverse materials and may have complex internal structures. Heterogeneous object modelling is still a very new and evolving research area, which is likely to prove useful in a wide range of application areas. Despite its great promise, heterogeneous object modelling is still at an embryonic state of development and there is a dearth of extant tools that would allow one to work with static and dynamic heterogeneous objects. In addition, the heterogeneous nature of the modelled objects makes it appealing to employ a combination of different representations resulting in the creation of hybrid models. In this thesis we present a new dynamic Implicit Complexes (IC) framework incorporating a number of existing representations and animation techniques. This framework can be used for the modelling of dynamic multidimensional heterogeneous objects. We then introduce an Implicit Complexes Application Programming Interface (IC API). This IC API is designed to provide various applications with a unified set of tools allowing these to model time-variant heterogeneous objects. We also present a new Function Representation (FRep) API, which is used for the integration of FReps into complex time-variant hybrid models. This approach allows us to create a practical multilevel modelling system suited for complex multidimensional hybrid modelling of dynamic heterogeneous objects. We demonstrate the advantages of our approach through the introduction of a novel set of tools tailored to problems encountered in simulation applications, computer animation and computer games. These new tools empower users and amplify their creativity by allowing them to overcome a large number of extant modelling and animation problems, which were previously considered difficult or even impossible to solve.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore