7 research outputs found

    Efficient error control in 3D mesh coding

    Get PDF
    Our recently proposed wavelet-based L-infinite-constrained coding approach for meshes ensures that the maximum error between the vertex positions in the original and decoded meshes is guaranteed to be lower than a given upper bound. Instantiations of both L-2 and L-infinite coding approaches are demonstrated for MESHGRID, which is a scalable 3D object encoding system, part of MPEG-4 AFX. In this survey paper, we compare the novel L-infinite distortion estimator against the L-2 distortion estimator which is typically employed in 3D mesh coding systems. In addition, we show that, under certain conditions, the L-infinite estimator can be exploited to approximate the Hausdorff distance in real-time implementation

    The Impact of Dynamics in Protein Assembly

    Get PDF
    Predicting the assembly of multiple proteins into specific complexes is critical to understanding their biological function in an organism, and thus the design of drugs to address their malfunction. Consequently, a significant body of research and development focuses on methods for elucidating protein quaternary structure. In silico techniques are used to propose models that decode experimental data, and independently as a structure prediction tool. These computational methods often consider proteins as rigid structures, yet proteins are inherently flexible molecules, with both local side-chain motion and larger conformational dynamics governing their behaviour. This treatment is particularly problematic for any protein docking engine, where even a simple rearrangement of the side-chain and backbone atoms at the interface of binding partners complicates the successful determination of the correct docked pose. Herein, we present a means of representing protein surface, electrostatics and local dynamics within a single volumetric descriptor, before applying it to a series of physical and biophysical problems to validate it as representative of a protein. We leverage this representation in a protein-protein docking context and demonstrate that its application bypasses the need to compensate for, and predict, specific side-chain packing at the interface of binding partners for both water-soluble and lipid-soluble protein complexes. We find little detriment in the quality of returned predictions with increased flexibility, placing our protein docking approach as highly competitive versus comparative methods. We then explore the role of larger, conformational dynamics in protein quaternary structure prediction, by exploiting large-scale Molecular Dynamics simulations of the SARS-CoV-2 spike glycoprotein to elucidate possible high-order spike-ACE2 oligomeric states. Our results indicate a possible novel path to therapeutics following the COVID-19 pandemic. Overall, we find that the structure of a protein alone is inadequate in understanding its function through its possible binding modes. Therefore, we must also consider the impact of dynamics in protein assembly

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine

    Electrochemical method for the determination of arsenic 'in the field' using screen-printed grid electrodes

    Get PDF
    This project describes development and problem solving efforts to realise a viable portable sensor for arsenic, applicable to drinking water. The work is the first dedicated effort towards this goal, after the preliminary investigations previously conducted at Cranfield University (Cooper, 2004 and Noh, 2005). Using polymeric gold ink BQ331 (DuPont Microcircuit Materials, Bristol, UK) as working electrode on screen printed strips, the electrochemical procedure was studied. Due to the wealth of research on electrochemical and non electrochemical methods for arsenic determination, this project attempts to capitalise on the unique advantages of the screen-printed gold surface. In particular, the issues surrounding the performance of the sensor were evaluated by electrochemical and spectroscopic means (including infrared, nuclear magnetic resonance and X-ray photoelectron spectroscopy). A number of custom screen printed electrodes were prepared in house comparing sensor performance on compositional factors. An interference coming from silver interaction with chloride in the reference electrode was identified. As such, the design of the sensor needs to change to include either an immobilising layer, such as Nafion, over the silver, or to omit screen-printed silver altogether. The Nafion was presumed to work by excluding (or at least much reducing) the passage of negatively charged chloride ions to the silver surface preventing formation of soluble silver chloride complexes. The design of the sensor was considered in light of performance and sensitivity. The screen-printed electrodes were cut to facilitate a microband design lending favourable diffusive to capacitive current characteristics. With this design, As(III) detection was demonstrated comfortably at 5 ppb (in a copper tolerant 4 M HCl electrolyte) without electrode need for additional preparation procedures. This is below the World Health Organisation (WHO) guideline and United States Environmental Protection Agency (USEPA) regulation level of 10 ppb in drinking water. The electrode materials are already mass manufacturable at an estimated cost less than £ 0.5 per electrode. Themicroband design could, in principle, be applied to mercury and other metal ions. The procedure for As(V) either with chemical or electrochemical reduction and determination still needs to be assessed. However, the presented electrode system offers a viable alternative to the colorimetric test kits presently employed around the world for arsenic in drinking water. Also, the Nicholson Method (Nicholson, 1965a), used for characterising electron transfer kinetics at electrode surfaces, was extended for application to rough surfaces using a fractal parameter introduced by Nyikos and Pajkossy (1988). This work includes mathematical derivation and numerical evaluation and gives a number of predictions for electrochemical behaviour. These predictions could not be tested experimentally, as yet, since the physical conditions must be carefully controlled

    Electrochemical method for the determination of arsenic 'in the field' using screen-printed gold electrodes

    Get PDF
    This project describes development and problem solving efforts to realise a viable portable sensor for arsenic, applicable to drinking water. The work is the first dedicated effort towards this goal, after the preliminary investigations previously conducted at Cranfield University (Cooper, 2004 and Noh, 2005). Using polymeric gold ink BQ331 (DuPont Microcircuit Materials, Bristol, UK) as working electrode on screen printed strips, the electrochemical procedure was studied. Due to the wealth of research on electrochemical and non electrochemical methods for arsenic determination, this project attempts to capitalise on the unique advantages of the screen-printed gold surface. In particular, the issues surrounding the performance of the sensor were evaluated by electrochemical and spectroscopic means (including infrared, nuclear magnetic resonance and X-ray photoelectron spectroscopy). A number of custom screen printed electrodes were prepared in house comparing sensor performance on compositional factors. An interference coming from silver interaction with chloride in the reference electrode was identified. As such, the design of the sensor needs to change to include either an immobilising layer, such as Nafion, over the silver, or to omit screen-printed silver altogether. The Nafion was presumed to work by excluding (or at least much reducing) the passage of negatively charged chloride ions to the silver surface preventing formation of soluble silver chloride complexes. The design of the sensor was considered in light of performance and sensitivity. The screen-printed electrodes were cut to facilitate a microband design lending favourable diffusive to capacitive current characteristics. With this design, As(III) detection was demonstrated comfortably at 5 ppb (in a copper tolerant 4 M HCl electrolyte) without electrode need for additional preparation procedures. This is below the World Health Organisation (WHO) guideline and United States Environmental Protection Agency (USEPA) regulation level of 10 ppb in drinking water. The electrode materials are already mass manufacturable at an estimated cost less than £ 0.5 per electrode. Themicroband design could, in principle, be applied to mercury and other metal ions. The procedure for As(V) either with chemical or electrochemical reduction and determination still needs to be assessed. However, the presented electrode system offers a viable alternative to the colorimetric test kits presently employed around the world for arsenic in drinking water. Also, the Nicholson Method (Nicholson, 1965a), used for characterising electron transfer kinetics at electrode surfaces, was extended for application to rough surfaces using a fractal parameter introduced by Nyikos and Pajkossy (1988). This work includes mathematical derivation and numerical evaluation and gives a number of predictions for electrochemical behaviour. These predictions could not be tested experimentally, as yet, since the physical conditions must be carefully controlled.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore