4,199 research outputs found

    Calibration of multibeam echo sounders: a comparison between two methodologies

    Get PDF
    Multibeam echo sounders (MBES) are widely used in applications like seafloor imaging, fisheries, and habitat mapping. Calibration of acoustic backscatter is an important aspect of understanding and validating the performance of a MBES. Combined transmit/receive beampattern calibrations were performed on a 200 kHz Reson Seabat 7125 MBES in the acoustic tank of the University of New Hampshire utilizing two different methodologies. The first methodology employs fixed standard target spheres and a high accuracy/high resolution rotation mechanism. This method, similar to that proposed by Foote et al [ Protocols forcalibrating multibeam sonar , J. Acoust. Soc. Am. 117(4), 2005], is designed for a calibrationtank and provides accurate results but requires a large amount of operation time and cannot be performed in situ. The second methodology has been designed for field calibration of MBES. It employs a standard target sphere and a 200 kHz Simrad EK60 split-beam sonar system to provide athwartship and alongship angular information of the target sphere position. This method offers the possibility of field calibration for vessel mounted systems and a significantly reduced operation time, but has a potential reduction in accuracy. In this paper, results from these two methods applied to the same MBES are compared

    A Method for Field Calibration of a Multibeam Echo Sounder

    Get PDF
    The use of multibeam echo sounders (MBES) has grown more frequent in applications like seafloor imaging, fisheries, and habitat mapping. Calibration of these instruments is important for understanding and validating the performance of MBES. For echo sounders in general, different calibration methodologies have been developed in controlled environments such as a fresh water tank and in the actual field of operation. While calibration in an indoor tank facility can bring excellent results in terms of accuracy, the amount of time required for a complete calibration can become prohibitively large. A field calibration can reveal the actual radiation beam pattern for shipmounted sonar systems, accounting for acoustic interferences which may be caused by objects around the installed transducers. The standard target method is a common practice for field calibration of split-beam echo sounders. However, when applied to a Mills Cross MBES, this method does not provide means to determine the alongship angle of the target, since the receiver transducer is a line array. A method to determine the combined transmit/receive radiation beam pattern for a ship-mounted multibeam system was developed and tested for a Reson Seabat 7125 MBES inside the fresh water calibration tank of the University of New Hampshire. This calibration methodology employs a tungsten carbide sphere of 38.1 mm diameter as target and a Simrad EK60 split-beam sonar system to provide athwartship and alongship angular information of the target sphere position. The multibeam sonar system was configured for 256 beams equi-angle mode at an operating frequency of 200 kHz; the split-beam system was set to work passively at the same frequency. A combined transmit/receive beam pattern was computed for an athwartship angular range between –6o and +6o and an alongship angular range between –1o and +3o . The limited angular range of the measurements is due to the –3 dB beamwidth of 7.1o in the athwartship and alongship directions of the split-beam sonar system coupled with the alongship offset of 1.6o between the maximum response axes (MRA) of the two sonar systems. Possible acoustic interferences caused by the monofilament line used to suspend the target sphere in the water column were found in the measurements for alongship angle values less than –1o . Beam pattern measurements for the combined transmit/receive beam pattern at a distance of 8 m show a –3 dB beamwidth of 1.1o in the athwartship direction and a –3 dB beamwidth of 2.0o in the alongship direction for the most inner beams. The dynamic range for the measurements was approximately of –40 dB

    Wnt/beta-catenin signaling controls development of the blood–brain barrier

    Get PDF
    The blood–brain barrier (BBB) is confined to the endothelium of brain capillaries and is indispensable for fluid homeostasis and neuronal function. In this study, we show that endothelial Wnt/beta-catenin (beta-cat) signaling regulates induction and maintenance of BBB characteristics during embryonic and postnatal development. Endothelial specific stabilization of beta-cat in vivo enhances barrier maturation, whereas inactivation of beta-cat causes significant down-regulation of claudin3 (Cldn3), up-regulation of plamalemma vesicle-associated protein, and BBB breakdown. Stabilization of beta-cat in primary brain endothelial cells (ECs) in vitro by N-terminal truncation or Wnt3a treatment increases Cldn3 expression, BBB-type tight junction formation, and a BBB characteristic gene signature. Loss of beta-cat or inhibition of its signaling abrogates this effect. Furthermore, stabilization of beta-cat also increased Cldn3 and barrier properties in nonbrain-derived ECs. These findings may open new therapeutic avenues to modulate endothelial barrier function and to limit the devastating effects of BBB breakdown

    High Resolution Calibration of a Multibeam Echo Sounder

    Get PDF
    Calibration can greatly increase the utility of collecting seafloor backscattering strength with multibeam echo sounders (MBES). A calibration procedure to determine high resolution, three dimensional transmit and receive beam patterns of a Reson SeaBat 7125 MBES was performed using the fresh water calibration tank at the University of New Hampshire. The measurements employed an omni-directional Reson TC4034 projector/hydrophone as a reference transducer at an acoustic distance of 13 m. The multibeam sonar system was configured for 256 beams equi-angle mode and operating frequency of 396 kHz. The transmit beam pattern was computed for across-track angular range between +/–90o in 0.1o increments and along-track angular range between +/–2.55o in 0.09o increments. Receive directional characteristics were measured for the across-track range of +/–120o in 0.1o increments with along-track angular range of +/–1.23o in 0.18o increments. With these measurements, a three-dimensional plot of the transmit beam pattern was computed for the entire range of angles, although for the receive beam pattern it was only determined for the 0o along-track angle. The reduced angular coverage of the receive beam pattern was due to discrepancies in the off-axis results that are thought to be related to receiver saturation. Measurements for the transmit beam pattern show a –3 dB beamwidth of 0.99o for across-track angle of 0o with side lobes below –17 dB. The results show an unexplained curvature in the transmit beam pattern that would have gone un-noticed during a two dimensional beam pattern measurement. An interference effect causing ripples and attenuation of the transmit beam pattern was also observed. This effect is thought to be caused by a second 200 kHz projector mounted parallel to the 396 kHz projector. This interference occurs at an across-track angular region between +30o and +75o with gradual decrease in amplitude of about 3 dB. The receive beam pattern measurements show a –3 dB beamwidth of approximately 0.62o for the most inner beams (beams 128 and 129) and of approximately 1.40o for the most outer beams (beams 1 and 256) at along-track angular position of 0o with side-lobes below –26 dB for the most inner beams and below –17 dB for the most outer beams

    A new methodology for the quantitative visualization of coherent flow structures in alluvial channels using multibeam echo-sounding (MBES)

    Get PDF
    In order to investigate the interactions between turbulence and suspended sediment transport in natural aqueous environments, we ideally require a technique that allows simultaneous measurement of fluid velocity and sediment concentration for the whole flow field. Here, we report on development of a methodology using the water column acoustic backscatter signal from a multibeam echo sounder to simultaneously quantify flow velocities and sediment concentrations. The application of this new technique is illustrated with reference to flow over the leeside of an alluvial sand dune, which allows, for the first time in a field study, quantitative visualization of large-scale, whole flow field, turbulent coherent flow structures associated with the dune leeside that are responsible for suspending bed sediment. This methodology holds great potential for use in a wide range of aqueous geophysical flows

    Resonant optical pulses on a continuous wave background in two-level active media

    Full text link
    We present exact N-soliton optical pulses riding on a continuous-wave (c.w.) beam that propagate through and interact with a two-level active optical medium. Their representation is derived via an appropriate generalization of the inverse scattering transform for the corresponding Maxwell-Bloch equations. We describe the single-soliton solutions in detail and classify them into several distinct families. In addition to the analogues of traveling-wave soliton pulses that arise in the absence of a c.w. beam, we obtain breather-like structures, periodic pulse-trains and rogue-wave-type (i.e., rational) pulses, whose existence is directly due to the presence of the c.w. beam. These soliton solutions are the analogues for Maxwell-Bloch systems of the four classical solution types of the focusing nonlinear Schrodinger equation with non-zero background, although the physical behavior of the corresponding solutions is quite different.Comment: 10 pages, 10 figures, to appear in Europhys. Let

    Minorities and Venture Capital: A New Wave in American Business

    Get PDF
    Based on a survey and analysis of minority-oriented venture capital funds, assesses minority-owned businesses' access to venture capital, rates of return, the investment mix among industries, sources of funds, and outlook for minority-oriented investment

    RV Pelagia Cruise 64PE372, 27 Jun - 11 Jul 2013. Flow dynamics and sedimentation in an active submarine channel: a process-product approach

    Get PDF
    Novel technologies are providing new opportunities to study the structure and dynamics of submarine sediment-gravity flows; these flows are the dominant process for transfer of sediment into the deep ocean, but are very hard to monitor due their destructive and unpredictable character. The primary aim of 64PE372 was to image the 3D structure of submarine flows passing though a rare example of an active submarine channel system in the southeast Black Sea. The channel system is maintained by through-flow of relatively dense, saline water coming from the Bosporus Strait outflow. ADCP mapping of internal flow structure within and outside the channel was achieved using the NERC Autosub3 Autonomous Underwater Vehicle (AUV), supplemented by vertical, vessel-based, CTD profiling, and a fixed CTD mooring in the proximal channel for the duration of the cruise. Sedimentary features associated with the channel were imaged using towed high-resolution sidescan sonar, supported by vessel-based multibeam bathymetry and backscatter, AUV subbottom profiler data, and gravity cores. The 64PE372 cruise built upon a previous cruise to the study area in spring 2010, but was far more successful due to the increased capability of the barter vessel and the improved performance of the AUV

    U.S. Law of the Sea Cruise to Map the Foot of the Slope of the Northeast U.S. Atlantic Continental Margin: Leg 6

    Get PDF
    U.S. Law of the Sea Cruise to Map the Foot of the Slope of the Northeast U.S. Atlantic Continental Margin: Leg 6 Cruise KNOX17RR May 1 – 31, 2008 Ft. Lauderdale, FL to Woods Hole, M
    • …
    corecore