27 research outputs found

    MAVID multiple alignment server

    Get PDF
    MAVID is a multiple alignment program suitable for many large genomic regions. The MAVID web server allows biomedical researchers to quickly obtain multiple alignments for genomic sequences and to subsequently analyse the alignments for conserved regions. MAVID has been successfully used for the alignment of closely related species such as primates and also for the alignment of more distant organisms such as human and fugu. The server is fast, capable of aligning hundreds of kilobases in less than a minute. The multiple alignment is used to build a phylogenetic tree for the sequences, which is subsequently used as a basis for identifying conserved regions in the alignment. The server can be accessed at http://baboon.math.berkeley.edu/mavid/

    MAVID: Constrained ancestral alignment of multiple sequences

    Get PDF
    We describe a new global multiple alignment program capable of aligning a large number of genomic regions. Our progressive alignment approach incorporates the following ideas: maximum-likelihood inference of ancestral sequences, automatic guide-tree construction, protein based anchoring of ab-initio gene predictions, and constraints derived from a global homology map of the sequences. We have implemented these ideas in the MAVID program, which is able to accurately align multiple genomic regions up to megabases long. MAVID is able to effectively align divergent sequences, as well as incomplete unfinished sequences. We demonstrate the capabilities of the program on the benchmark CFTR region which consists of 1.8Mb of human sequence and 20 orthologous regions in marsupials, birds, fish, and mammals. Finally, we describe two large MAVID alignments: an alignment of all the available HIV genomes and a multiple alignment of the entire human, mouse and rat genomes

    The ENCODE Project at UC Santa Cruz

    Get PDF
    The goal of the Encyclopedia Of DNA Elements (ENCODE) Project is to identify all functional elements in the human genome. The pilot phase is for comparison of existing methods and for the development of new methods to rigorously analyze a defined 1% of the human genome sequence. Experimental datasets are focused on the origin of replication, DNase I hypersensitivity, chromatin immunoprecipitation, promoter function, gene structure, pseudogenes, non-protein-coding RNAs, transcribed RNAs, multiple sequence alignment and evolutionarily constrained elements. The ENCODE project at UCSC website () is the primary portal for the sequence-based data produced as part of the ENCODE project. In the pilot phase of the project, over 30 labs provided experimental results for a total of 56 browser tracks supported by 385 database tables. The site provides researchers with a number of tools that allow them to visualize and analyze the data as well as download data for local analyses. This paper describes the portal to the data, highlights the data that has been made available, and presents the tools that have been developed within the ENCODE project. Access to the data and types of interactive analysis that are possible are illustrated through supplemental examples

    Parametric Alignment of Drosophila Genomes

    Get PDF
    The classic algorithms of Needleman--Wunsch and Smith--Waterman find a maximum a posteriori probability alignment for a pair hidden Markov model (PHMM). In order to process large genomes that have undergone complex genome rearrangements, almost all existing whole genome alignment methods apply fast heuristics to divide genomes into small pieces which are suitable for Needleman--Wunsch alignment. In these alignment methods, it is standard practice to fix the parameters and to produce a single alignment for subsequent analysis by biologists. Our main result is the construction of a whole genome parametric alignment of Drosophila melanogaster and Drosophila pseudoobscura. Parametric alignment resolves the issue of robustness to changes in parameters by finding all optimal alignments for all possible parameters in a PHMM. Our alignment draws on existing heuristics for dividing whole genomes into small pieces for alignment, and it relies on advances we have made in computing convex polytopes that allow us to parametrically align non-coding regions using biologically realistic models. We demonstrate the utility of our parametric alignment for biological inference by showing that cis-regulatory elements are more conserved between Drosophila melanogaster and Drosophila pseudoobscura than previously thought. We also show how whole genome parametric alignment can be used to quantitatively assess the dependence of branch length estimates on alignment parameters. The alignment polytopes, software, and supplementary material can be downloaded at http://bio.math.berkeley.edu/parametric/.Comment: 19 pages, 3 figure

    A novel approach to identifying regulatory motifs in distantly related genomes

    Get PDF
    Although proven successful in the identification of regulatory motifs, phylogenetic footprinting methods still show some shortcomings. To assess these difficulties, most apparent when applying phylogenetic footprinting to distantly related organisms, we developed a two-step procedure that combines the advantages of sequence alignment and motif detection approaches. The results on well-studied benchmark datasets indicate that the presented method outperforms other methods when the sequences become either too long or too heterogeneous in size

    Sequence alignment, mutual information, and dissimilarity measures for constructing phylogenies

    Get PDF
    Existing sequence alignment algorithms use heuristic scoring schemes which cannot be used as objective distance metrics. Therefore one relies on measures like the p- or log-det distances, or makes explicit, and often simplistic, assumptions about sequence evolution. Information theory provides an alternative, in the form of mutual information (MI) which is, in principle, an objective and model independent similarity measure. MI can be estimated by concatenating and zipping sequences, yielding thereby the "normalized compression distance". So far this has produced promising results, but with uncontrolled errors. We describe a simple approach to get robust estimates of MI from global pairwise alignments. Using standard alignment algorithms, this gives for animal mitochondrial DNA estimates that are strikingly close to estimates obtained from the alignment free methods mentioned above. Our main result uses algorithmic (Kolmogorov) information theory, but we show that similar results can also be obtained from Shannon theory. Due to the fact that it is not additive, normalized compression distance is not an optimal metric for phylogenetics, but we propose a simple modification that overcomes the issue of additivity. We test several versions of our MI based distance measures on a large number of randomly chosen quartets and demonstrate that they all perform better than traditional measures like the Kimura or log-det (resp. paralinear) distances. Even a simplified version based on single letter Shannon entropies, which can be easily incorporated in existing software packages, gave superior results throughout the entire animal kingdom. But we see the main virtue of our approach in a more general way. For example, it can also help to judge the relative merits of different alignment algorithms, by estimating the significance of specific alignments.Comment: 19 pages + 16 pages of supplementary materia

    Functional Evolution of a cis-Regulatory Module

    Get PDF
    Lack of knowledge about how regulatory regions evolve in relation to their structure–function may limit the utility of comparative sequence analysis in deciphering cis-regulatory sequences. To address this we applied reverse genetics to carry out a functional genetic complementation analysis of a eukaryotic cis-regulatory module—the even-skipped stripe 2 enhancer—from four Drosophila species. The evolution of this enhancer is non-clock-like, with important functional differences between closely related species and functional convergence between distantly related species. Functional divergence is attributable to differences in activation levels rather than spatiotemporal control of gene expression. Our findings have implications for understanding enhancer structure–function, mechanisms of speciation and computational identification of regulatory modules
    corecore