133 research outputs found

    Memristor-Based Digital Systems Design and Architectures

    Get PDF
    Memristor is considered as a suitable alternative solution to resolve the scaling limitation of CMOS technology. In recent years, the use of memristors in circuits design has rapidly increased and attracted researcher’s interest. Advances have been made to both size and complexity of memristor designs. The development of CMOS transistors shows major concerns, such as, increased leakage power, reduced reliability, and high fabrication cost. These factors have affected chip manufacturing process and functionality severely. Therefore, the demand for new devices is increasing. Memristor, is considered as one of the key element in memory and information processing design due to its small size, long-term data storage, low power, and CMOS compatibility. The main objective in this research is to design memristor-based arithmetic circuits and to overcome some of the Memristor based logic design issues. In this thesis, a fast, low area and low power hybrid CMOS memristor based digital circuit design were implemented. Small and large-scale memristor based digital circuits are implemented and provided a solutions for overcoming the memristor degradation and fan-out challenges. As an example, a 4- bit LFSR has been implemented by using MRL scheme with 64 CMOS devices and 64 memristors. The proposed design is more efficient in terms of the area when compared with CMOS- based LFSR circuits. The simulation results proves the functionality of the design. This approach presents acceptable speed in comparison with CMOS-based design and it is faster than IMPLY-based memrisitive LFSR. The propped LFSR has 841 ps de-lay. Furthermore, the proposed design has a significant power reduction of over 66% less than CMOS-based approach. This thesis proposes implementation of memristive 2-D median filter and extends previously published works on memristive Filter design to include this emerging technology characteristics in image processing. The proposed circuit was designed based on Pt/TaOx/Ta redox-based device and Memristor Ratioed Logic (MRL). The proposed filter is designed in Cadence and the memristive median approved tested circuit is translated to Verilog-XL as a behavioral model. Different 512 _ 512 pixels input images contain salt and pepper noise with various noise density ratios are applied to the proposed median filter and the design successfully has substantially removed the noise. The implementation results in comparison with the conventional filters, it gives better Peak Signal to Noise Ratio (PSNR) and Mean Absolute Error (MAE) for different images with different noise density ratios while it saves more area as compared to CMOS-based design. This dissertation proposes a comprehensive framework for design, mapping and synthesis of large-scale memristor-CMOS circuits. This framework provides a synthesis approach that can be applied to all memristor-based digital logic designs. In particular, it is a proposal for a characterization methodology of memristor-based logic cells to generate a standard cell library for large scale simulation. The proposed framework is implemented in the Cadence Virtuoso schematic-level environment and was veri_ed with Verilog-XL, MATLAB, and the Electronic Design Automation (EDA) Synopses compiler after being translated to the behavioral level. The proposed method can be applied to implement any digital logic design. The frame work is deployed for design of the memristor-based parallel 8-bit adder/subtractor and a 2-D memristive-based median filter

    Circuit topology and synthesis flow co-design for the development of computational ReRAM

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Emerging memory technologies will play a decisive role in the quest for more energy-efficient computing systems. Computational ReRAM structures based on resistive switching devices (memristors) have been explored for in-memory computations using the resistance of ReRAM cells for storage and for logic I/O representation. Such approach presents three major challenges: the support for a memristor-oriented logic style, the ad-hoc design of memory array driving circuitry for memory and logic operations, and the development of dedicated synthesis tools to instruct the multi-level operations required for the execution of an arbitrary logic function in memory. This work contributes towards the development of an automated design flow for ReRAM-based computational memories, highlighting some important HW-SW co-design considerations. We briefly present a case study concerning a synthesis flow for a nonstateful logic style and the co-design of the underlying 1T1R crossbar array driving circuit. The prototype of the synthesis flow is based on the ABC tool and the Z3 solver. It executes fast owing to the level-by-level mapping of logic gates. Moreover, it delivers a mapping that minimizes the logic function latency through parallel logic operations, while also using the less possible ReRAM cells.Supported by Synopsys, Chile, by the Chilean grants FONDECYT Regular 1221747 and ANID-Basal FB0008, and by the Spanish MCIN/AEI/10.13039/501100011033 grant PID2019-103869RB-C33Peer ReviewedPostprint (author's final draft

    Variability-tolerant memristor-based ratioed logic in crossbar array

    Get PDF
    The final publication is available at ACM via http://dx.doi.org/10.1145/3232195.3232213The advent of the first TiO2-based memristor in 2008 revived the scientific interest both from academia and industry for this de- vice technology, with several emerging applications including that of logic circuits. Several memristive logic families have been pro- posed, each with different attributes, in the current quest for energy- efficient computing systems of the future. However, limited en- durance of memristor devices and variations (both cycle-to-cycle and device-to-device) are important parameters to be considered in the evaluation of such logic families. In this work we build upon an accurate physics-based model of a bipolar metal-oxide resistive RAM device (supporting parasitics of the device structure and va- riability of switching voltages and resistance states) and use it to show how performance of memristor-based logic circuits can de degraded owing to both variability and state-drift impact. Based on previous work on CMOS-like memristive logic circuits, we propose a memristive ratioed logic scheme, which is crossbar-compatible, i.e. suitable for in-/near-memory computing, and tolerant to device variability, while also it does not affect the device endurance since computations do not involve switching the memristor states. As a figure of merit, we compare such new logic scheme with MAGIC, focusing on the universal NOR logic gate.Peer ReviewedPostprint (author's final draft

    MemSPICE: Automated Simulation and Energy Estimation Framework for MAGIC-Based Logic-in-Memory

    Full text link
    Existing logic-in-memory (LiM) research is limited to generating mappings and micro-operations. In this paper, we present~\emph{MemSPICE}, a novel framework that addresses this gap by automatically generating both the netlist and testbench needed to evaluate the LiM on a memristive crossbar. MemSPICE goes beyond conventional approaches by providing energy estimation scripts to calculate the precise energy consumption of the testbench at the SPICE level. We propose an automated framework that utilizes the mapping obtained from the SIMPLER tool to perform accurate energy estimation through SPICE simulations. To the best of our knowledge, no existing framework is capable of generating a SPICE netlist from a hardware description language. By offering a comprehensive solution for SPICE-based netlist generation, testbench creation, and accurate energy estimation, MemSPICE empowers researchers and engineers working on memristor-based LiM to enhance their understanding and optimization of energy usage in these systems. Finally, we tested the circuits from the ISCAS'85 benchmark on MemSPICE and conducted a detailed energy analysis.Comment: Accepted in ASP-DAC 202
    • …
    corecore