
1

Copyright

by

Thomas Charles Sweeney

2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211347808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MADX: Memristors-As-Drivers for Crossbar logic

Thomas Charles Sweeney

EE 679H

Engineering Honors

The University of Texas at Austin

December 12, 2017

Lizy Kurian John, Ph.D.

Department of Electrical and Computer Engineering

Supervising Professor

Jonathan Valvano, Ph.D.

Department of Electrical and Computer Engineering

Second Reader

Abstract

MADX: Memristors-As-Drivers for Crossbar logic

Thomas Charles Sweeney, Bachelor of Science

The University of Texas at Austin, 2017

Supervisor: Lizy Kurian John

Memristors have the potential to not only replace conventional memory, but also

to open up new design possibilities because they store 1s and 0s as resistances rather than

voltages. A memristor architecture that has attracted interest for its versatility and ease of

integration with existing CMOS technologies is the crossbar array. In this paper, I modify

the MAD scheme to create the MADX scheme for performing basic logic operations

within a crossbar array. Then, I compare this scheme against two of the most well-known

schemes, MAGIC and IMPLY. In the case study of a full-adder, both a one-bit and an 8-

bit version, the MADX scheme achieves lower latency and substantially lower area

requirements than both MAGIC and IMPLY. This is because it is more flexible about

storing output values than either, does not destroy input values unlike IMPLY, and has

more basic operations. In particular, it has XOR, which neither IMPLY nor MAGIC have

and is useful for addition.

Table of Contents

Introduction ..1

Chapter 1 Introduction To Memristors ...3

Memristor Basics ..3

Memristors for Boolean and Crossbar Logic ..5

Chapter 2 MAD Gates ..7

Original MAD Gate ..7

Conversion for Crossbar Logic ...11

Limitations of MAD for Crossbar Logic ..13

Chapter 3 MADX ..14

Key Modifications to MAD Gates ...14

Sneak Path Problem ...16

N-input Gates ...17

Parallel Operations ...17

Chapter 4 Comparison to Alternatives ..20

Full-Adder Case Study ...20

Alternative Logic in Memory Schemes ..22

Chapter 5 Prior Work ..24

Memristor Physics ..25

Memristor Applications ..25

Chapter 6 Proposed Future Work ...26

Conclusion ...27

Bibliography ..29

1

Introduction

Memristors carry tremendous potential for reshaping memory, logic operations, and

matrix multiplication, but work remains to be done to actualize that potential. Leon Chua first

predicted a resistor with memory, the memristor, in his seminal 1972 paper [1]. In 2008, 36 years

after Chua’s original paper, there was a breakthrough by a team at HP that found memristive

properties in a thin-film (5 nm) crosspoint Pt-TiO2-Pt cell [2].

The key properties of memristors that make them so attractive are that: (1) they are non-

volatile [3], fast [4], and dense [5]; (2) they are compatible with the CMOS manufacturing

process [3], [5]; and, (3), storing logical values in resistance rather than voltage creates new

design opportunities to exploit because each cell can be used as both operand and operator.

Several studies [5], [6], [7] have good discussions of these properties. The properties in (1) are

the most important. Non-volatility means memristors can replace NAND flash as permanent

storage devices with higher densities and much higher endurance (10^10 vs 10^5) [8]. High-

density [5], combined with read and write times at least as good as DRAM [5, 4], raises the

possibility of replacing DRAM and creates the opportunity for memory-intensive or non-Von

Neumann architectures [9]. (2), compatibility with CMOS, means any limitations in memristor

functionality can be buttressed by more complex CMOS elements. Finally, (3), the resistance

property, has led to Boolean logic applications [6], [9]-[11], potential one-cycle dot-product

multiplication [12], a variety of proposed machine learning accelerators [13]-[15], and even

neuromorphic computing [16], [17].

2

Figure 1: From [9]. (a) shows the physical crossbar structure while (b) shows the schematic

representation of a crossbar. In (a) there is a top and a bottom layer of vias where each junction is

connected by a memristor.

 There have been a number of papers developing Boolean logic using memristors both

inside and outside the crossbar structure. The original Memristors-as-Drivers (MAD) gate work

[18], [19], IMPLY [10], [9], and MAGIC [11], [6] all have gate designs that are designed to also

work outside the bounds of the crossbar in adders, multipliers, and dividers. Alternatively, papers

like Xie et al. [20] have focused specifically on using the crossbar structure to perform any

Boolean equation, but not in the context of logic in memory.

This thesis uses a popular memristor memory structure, the crossbar array, to perform

logic operations in memory. The crossbar array, as shown in Figure 1, has drawn a significant

amount of interest for its applications in memory, matrix multiplication, and logic. A number of

schemes have been proposed for performing logic operations in memory of which IMPLY [10]

and MAGIC [11] have gotten the most attention. These schemes have so far been limited; either

only offering a few native operations, as in IMPLY and MAGIC, or requiring extensive

hardware changes as with CRS [21], Zhang et al. [22], or the original MAD in crossbar schemes

[18].

3

This thesis’s contribution is MADX (Memristors-as-Drivers for Crossbar logic), a

modification of the MAD gate crossbar framework [18]. MADX offers a greater range of basic

operations than IMPLY or MAGIC, but avoids the additional hardware requirements and error

vulnerability of the original MAD crossbar framework. These advantages are illustrated in a case

study of an 8-bit full-adder implementation that has a lower latency and a smaller area than either

the IMPLY or MAD frameworks. The MADX scheme is also much more flexible in terms of the

area it needs as it can write the result of each operation into any cell in the crossbar.

Figure 2a and 2b from [2] and [11]. (a) shows the distinctive pinched hysteresis loop or Lissajous

figure that characterized the memristor IV relationship. (b) shows the circuit symbol and

illustrates how the flow of current across the device induces switching depending on the

memristor’s polarity.

Introduction to Memristors

Memristor Basics

A memristor, in the simplest definition, is a two-terminal (one-port) device whose

resistance is dependent on the state variable w. Its most distinctive feature is its IV relationship,

4

the pinched hysteresis loop that crosses the origin as shown in Figure 2a. The circuit symbol is

shown in Figure 2b. The simplest mathematical description, as outlined in [2] and [1] is shown

in equations 1 and 2.

w here is the state variable, a mathematical convenience for representing some internal physical

change that occurs when current flows through the device. However, as Strukov [2] also notes,

this simplest memristor definition has yet to be realized. Instead, what we are interchangeably

calling memristors and memristive systems are usually described by the dynamic equations from

Chua and Kang in 1976 [23]

where w is a state variable or a set of state variables. How one defines the functions R and f is

crucial to the properties of the model, but a detailed discussion of the various models used is

beyond the scope of this paper. Most papers use this model of a current-controlled memristor,

but for Boolean logic, as in this paper, it is useful to use a voltage-controlled memristor model.

For a voltage-controlled, time-invariant memristive device [24][1], the equations become

With f(w,v) further described in the VTEAM [24] model as

(5a)

(5b)

5

where kon, koff, αon, and αoff are chosen constants and von and voff are the threshold voltages. foff

and fon are window functions that ensure the state variable w is between won and woff. In this

model, the state variable w will only change when the voltage is above the set voltage or below

the reset voltage. In addition, in both this equation and the earlier current-controlled model, w is

bounded such that it has a min and a max. The max and the min values for w correspond to two

distinct resistances. These resistances can be assigned to logical ‘1’ and logical ‘0’ and are called

Ron and Roff, respectively. Ron is the low resistance and Roff is the high resistance.

There has been some debate about whether devices we currently call memristors should

be classified as memristors or memristive devices [24], but, similarly to other papers written on

memristors for logic [6], [9]-[11], [20], this paper uses the two terms interchangeably.

Memristors For Boolean and Crossbar Logic

Since we are using memristors for Boolean logic, in a similar fashion to [6], [9], [20], we

can first simplify the memristor model by making a couple of assumptions. First, we assume the

memristors used only have the two states represented by the two different sloped lines in the

hysteresis curve in Figure 1a. These two states, Ron and Roff, are mapped to the Boolean values

of ‘1’ and ‘0’. Two, we use a voltage-threshold memristor model, as outlined in [24], as voltage-

threshold memristors are generally more useful for crossbars and digital logic in general. For the

crossbar, voltage-threshold memristors are more useful because they will not switch states due to

sneak path current. They are also more useful from a power and voltage supply perspective as

can be seen from looking at the equation for resetting a current-threshold memristor

6

 I(t) = |
𝑉𝑟𝑠𝑡

𝑅(𝑡)
| ≥ |𝐼𝑡ℎ| (7)

When we write a logical 0 to a memristor (a high resistance), R(t) will increase during the

writing process such that Vrst will have to be high enough that the current is still above the

threshold cutoff for even a high resistance. However, high voltages increase the power

consumption and increase the problem of sneak path resistances. As a result, there is a need for a

voltage threshold cutoff, a physical property which has been shown, as noted in the VTEAM

paper [24].

Figure 3: From [9]. (a) shows how current can leak. (b) shows a model of this behavior with Rm

as the memristors resistance and Rsp as the sneak path resistance. (a) only shows one sneak path,

but there are several additional sneak paths that will lower Rsp as they are in parallel.

Sneak path problems, as shown in Figure 3, are a key issue holding back crossbar arrays

[25]. Sneak paths are alternative paths that current could travel through the crossbar that lie in

parallel to the intended path. An equivalent circuit is shown in Figure 3b. Sneak paths greatly

complicate the read operation in the crossbar because they make it difficult to tell the difference

between high and low resistances. A wide range of solutions have been proposed, as shown in

7

[25] and [5]. Since the MADX scheme uses voltage sensing and a 1M crossbar structure, it is

vulnerable to sneak paths, but not necessarily more vulnerable than MAGIC or IMPLY. In this

thesis, we will generally assume the techniques outlined in [25] are used to mitigate the problem.

We explicitly consider sneak paths in some places, but more work remains to be done to ensure

this scheme is not vulnerable to them.

MAD Gates

Original MAD Gate

Memristors-As-Drivers (MAD) gates [18], [19], integrate CMOS with memristors in

order to solve problems with fanout, signal degradation, and buffering issues as well as shorten

the number of steps per logic operation as presented in Figure 4.

There are two different sense positions, V1 and V2, possible for the MAD gate, as can be

seen in Figure 4. V1 is the sense position on the p-terminal of the second memristor that comes

after the two memristors. V2 is the sense position on the n-terminal of the first memristor that

comes before the two memristors.

8

Figure 4: From [18]. MAD implementation of an AND gate. V1 and V2 values are shown in

Table 1.

Table 1 shows the values for the two sense positions for Vcond = 1.5, Rg = 10kOhms,

Ron = 1kOhm and Roff = 100kOhms. The setup in Figure 4 with V1 gating the output

memristor is used for the AND, OR, and COPY operations is described by equations 8 and 9:

 𝑉1 = 𝑉𝑐𝑜𝑛𝑑 ∗
(1−(𝑅𝑠+𝑅𝑎+𝑅𝑏))

(2𝑅𝑠+𝑅𝑎+𝑅𝑏)
 (8)

 𝑂𝑢𝑡 = {
1 𝑉1 ≥ 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} (9)

Where Rg is the resistance of the sense resistors used for voltage division labeled as 10k in

Figure 4. Vthreshold is the voltage threshold of the switch.

V2

V1

9

Table 1: Sense voltages for the various sense positions and input memristor combinations in a

conventional MAD gate.

For an AND gate, the sensed voltage should only be greater than Vthreshold when both

Ra and Rb are equal to Ron (logical 1), which is the low resistance state. As a result, we should

choose a Vthreshold between 0.68 V (‘11’) and 0.12 V (’10’). For an OR gate, the same setup

can be used, but the threshold voltage must change to be between 0.12 V (‘01’) and 0.07 V

(‘00’). The COPY operation will only have 1 memristor instead of 2, so it is the same as equation

(8) with Rb set to 0 Ohms. Both the OR gate and the COPY gate are shown in Figure 5.

For the NAND, NOR, and NOT operations, the same setup as in Figure 5 is used, but

with the sense position set to V2, the purple label. This is demonstrated for the NOT gate in

Figure 5. For a NAND gate, we can set the voltage threshold to be between 0.81 V (‘11’) and

1.38 V (‘10’). Similarly to the COPY operation, the NOT operation is just a special case of the

setup with a single memristor instead of two, i.e. with Rb = 0.

AB
V1 (V) V2 (V)

11 0.681818182 0.818181818

10 0.123966942 1.376033058

01 0.123966942 1.376033058

00 0.068181818 1.431818182

10

Figure 5: MAD OR, XOR, COPY, NOT gates from [18]

For the XOR and XNOR operations, we need to sense at both V1 and V2, as shown in

Figure 5. As a result, there must be two switches instead of one, with both switches’ threshold

voltages chosen in accordance with Table 1. For instance, for the XOR gate, the switch

connected to V1 should have a voltage threshold between 0.07 V (‘00’) and 0.12 V (‘01’), and

the switch connected to V2 should have a voltage threshold between 0.82 V (‘11’) and 1.38 V

(‘10’).

A key contribution of this paper is the insight that we can also reuse some thresholds; for

instance, the threshold for an AND gate can be reused as the threshold for a COPY gate.

Similarly, the threshold for a NAND gate can be reused as the threshold for a NOT gate. Most

importantly, the XOR gate can reuse the threshold voltage of the OR gate for V1 and the

threshold voltage of the NAND gate for V2. Although this is not particularly relevant to the case

of a static MAD gate, this flexibility becomes very important when we discuss the conversion to

the crossbar array later on.

11

Conversion for Crossbar Logic

As shown in Figure 5a, the MAD gate needs to be modified to be more compatible with

the crossbar structure so that the two memristors are now in parallel rather than in series. It is

possible to use memristors in series in a crossbar array; however, that process is difficult and

vulnerable to the sneak path problem. For instance, if we set the column containing Va in Figure

5b to Vcond and set the column containing Vb to ground then p and q would be connected in

series. Guckert [18] notes that this can cause the memristors to switch. Recalling the memristor

schematic from Figure 2b, if p was set to ‘1’ (Ron) and q was ‘0’ (Roff), then almost the entire

voltage drop across the pair of memristors would be across q. Since this would be flowing into

the p-terminal (the marked end), it could potentially cause q to switch to 1 from 0. This is true

for current-threshold memristors, but, if Vcond is sufficiently small and we are using voltage-

threshold memristors, it should not cause this behavior. However, using a smaller Vcond reduces

the voltage differences between different combinations of p and q. In this series model, there

would also be sneak-paths all the way up between the two columns. This means that there would

be a significant amount of resistance in parallel. This problem could potentially be met by one of

the standard sneak path solutions [25] of tying all of the unselected row lines to ground, but that

is beyond the scope of this paper.

12

Figure 5: From [18]. (a) Conversion of the MAD gate into a crossbar compatible structure. (b)

XNOR implementation of MAD gate in crossbar.

Guckert’s original way for performing the MAD operation for the XNOR gate is shown

in Figure 5b. In the first step, the output memristor must be set to ‘0’. In the second step, Vcond

is applied to the two columns containing the input memristors, and the two rows containing the

input memristors are connected to ground. We will call this the sense operation. The values Va

and Vb are latched in the controller. In the final step, the set operation, Va and Vb are used to

gate a transistor connecting Vset to the column line containing the output resistor and to gate a

transistor connecting ground to the row line containing the output resistor, respectively. If the

Vt

13

values are greater than the threshold voltages for the transistors, the voltage will be connected

across the output resistor and will set the value to 1. For other operations like AND and OR, we

instead sense and latch Vt, rather than Va and Vb, during the sense operation and then use that

value to gate one of the transistors during the set operation.

Limitations of MAD for Crossbar Logic

The original MAD scheme has problems in the form of additional hardware requirements

and threshold sensitivity. For hardware, one issue is that the MAD gate scheme needs at least one

transistor, two for XOR and XNOR, with a different threshold for every type of logical operation

it wants to accomplish. Therefore, the total number of additional transistors is equal to the

number of logic operations + 2. Another issue that arises from adding these extra transistors is

the amount of MUXing required to tie all those transistors together. The issue with threshold

sensitivity is that the thresholds for Va and Vb are very close together for some inputs of p and q,

as shown in Table 2. For example, the Va for pq = 00 is 1.57 V and 1.58 V for pq = 01. Taking

into account the parasitic resistance from the crossbar wires, sneak path problems, and stochastic

error in both transistors and memristors, it is unrealistic to expect those two cases to be

distinguishable.

The biggest issue with the MAD scheme is the required precision of the voltages,

memristors, and transistors. If we take the numbers from Guckert’s thesis [18], for an XOR

operation with Vset of 2 V, Vcond of 1 V, Ron of 1KOhm, and Roff of 100KOhm, the transistor

needs to be able to distinguish between 0.975 V and 0.982 V. Guckert suggests choosing Rg,

Ron, Roff, and Vcond appropriately to maximize the difference in Vthreshold, but this is not a

viable solution for several reasons. One, increasing Rg and Vcond increases the power

consumption of the scheme. Two, increasing Vcond brings Vcond closer to Vset, increasing the

14

probability of accidentally switching memristors. Three, increasing Rg and Vcond doesn’t

increase the gap between the threshold voltages by very much. Four, the sneak path error and

memristor stochastic error are large enough that any design using 1M crossbar arrays should

attempt to maximize the error tolerance of the scheme.

MADX

Key Modifications to MAD

Due to these problems, the key changes made in this thesis to the original MAD gate in a

crossbar are: to use the same two transistors (the one on the row line and the one on the column

line) for every gate and to only use Vt, instead of Va and Vb. To enable support for a greater

range of operations, the MADX scheme also changes the row switches (the row-select

transistors) into p-type transistors such that they only are closed for sensed voltages less than the

threshold. This allows use of the less-than operation in addition to the greater-than operation,

enabling the XOR and NOR operations. Using the same two switches limits the number of

possible operations, but reduces the hardware changes. Solely using Vt increases the error

tolerance of the scheme because the differences between the values of Vt for various inputs are

greater than Va and Vb, as shown in Table 2. Using only Vt also enables column grounding [25]

to reduce sneak path error and creates the possibility for parallelization.

p,q Va(V) Vb(V) Vt(V)

00 1.57 1.57 0.06

01 1.58 0.97 0.65

10 0.97 1.58 0.65

11 1.14 1.14 0.91

Table 2: Voltages for the various possible sense positions in a crossbar array. Assuming ideal

situation with no sneak path resistance for values of Rg = 2kOhms, Ron = 1k, Roff =100k,

Vcond = 1.6V

15

Using Vt as the sole voltage in conjunction with changing the row transistors to p-types

from n-types is more fault-tolerant, simplifies the logic, and still supports 4 basic operations.

Looking at Table 2, the voltages for the sense positions can be examined and used to select two

thresholds corresponding to the two switches. Using the OR gate as an example, we should select

the threshold for the n-types to be .35 (midway between the Vt for ‘00’ and ‘01’). If we select the

threshold 0.78 V (midway between the Vt for ‘10’ and ‘11’) for the p-types, such that any Vt less

than 0.78 V will cause writeback, then we now have a NAND gate. If we use Vt as the input for

both the p-types and the n-types at the same time, then any Vt value between 0.35 and 0.78 will

set the output value. Therefore, for this selection of threshold values, we can immediately realize

3 types of native operations: OR, NAND, and XOR. An important point is that for the OR and

NAND cases we will only use one of the two switches and we will connect Vlow or Vhigh to the

other switch, respectively. That should not be too costly because the memristor crossbar must

already have that functionality in order to select any particular memristor. We can also realize at

least one additional gate by looking at Table 3, the sensed voltages for a single memristor. Since

the Vt for p = 1 of 0.64 is greater than threshold voltage of 0.35 V for the OR gate, we can also

realize the COPY operation with the same threshold voltages and, hence, with the same

transistors. The NOT operation can be realized with slightly more difficulty by NANDing p with

a memristor pre-set to 1.

P Va (V) Vt (V)

0 1.57 0.03

1 0.96 0.64
Table 3: Sensed voltages for a single memristor. Ideal case with no sneak paths for values of Rg

= 2kOhms, Ron = 1k, Roff =100k, Vcond = 1.6V. Vt for COPY operation highlighted in red.

16

pq Vt(V) 1 SP Vt(V) 2 SP

00 0.48 0.72

10 0.68 0.85

11 0.93 0.95
Table 4: Sensed voltages for cases with 1 worst-case sneak path and 2 worst-case sneak paths.

SP stands for sneak path. Values of Rg = 2kOhms, Ron = 1k, Roff =100k, Vcond = 1.6V

Sneak Path Problem

Sneak paths pose a significant challenge not just to this scheme but to all memristor

memory, in particular 1M crossbar arrays as used in this paper. As shown in Table 4, if there is

just one worst-case sneak path (in a the worst-case sneak path, all the memristors in the sneak

path are in the Ron, low-resistance state) the values change substantially from the ideal case

presented earlier in Table 2, in particular for the ‘00’ case. With two worst-case sneak paths, the

Vt for the ‘00’ case will be greater than ‘01’ for the ideal case in Table 2, meaning the n-type

transistors are no longer able to distinguish between ‘00’ and ‘01’. Furthermore, there are always

more than two sneak paths, and they all lie in parallel, reducing the worst-case resistance

between the row lines, especially as the size of the array scales as in [25]. However, this is not a

reason to reject the MADX scheme, as other Boolean logic-in-crossbar schemes like IMPLY [9]

and MAGIC [6] are just as vulnerable to these issues. Furthermore, there are effective strategies

for mitigating the problem, as discussed in [6], [25]. For instance, we can eliminate the sense

resistors on the columns and ground the unselected columns, which showed good effects in [25].

Alternative crossbar structures like 1T1M (1 transistor 1 memristor) or 1D1M(1 diode 1

memristor) solve the sneak path problem as well. This thesis doesn’t consider alternative

memristive structures like 1T1M or 1D1M because, although they are not as vulnerable to the

sneak path problem, they have significant drawbacks due to their added elements, and both

IMPLY [9] and MAGIC [6] use 1M crossbars.

17

p,q,r Va(V) Vb(V) Vc(V) Vt(V)

000 1.57 1.57 1.57 0.09

100 0.98 1.58 1.58 0.66

110 1.15 1.15 1.59 0.92

111 1.24 1.24 1.24 1.07

Table 5: Sensed voltages for a 3-input operation. Ideal case with no sneak paths for values of Rg

= 2kOhms, Ron = 1k, Roff =100k, Vcond = 1.6V.

N-input gates

The MADX design can realize 3-input OR gates, but cannot realize more than 2-input

NAND gates. This can be demonstrated by comparing Table 2 and Table 5. In Table 5, the 3-

input OR gate threshold voltage must be between 0.09 V and 0.66 V. Clearly, we can select a

voltage that falls within that range and the range of 0.06 V and 0.61 V for the 2-input OR gate as

demonstrated in Table 2. In Table 2, the NAND threshold voltage must be less than 0.91 V.

However, in Table 5, the NAND threshold voltage for a 3-input NAND gate must be between

0.92 V and 1.06 V, eliminating the possibility of having a switch that satisfies both conditions. 4

or 5-input OR gates should be possible, but examining that question and how the 3+ input OR

gate interacts with sneak paths is beyond the scope of this thesis. Standard sneak path mitigation

techniques, as presented in [25], should help solve the problem.

Parallel Operations

Under the MADX scheme, it also becomes possible to perform multiple sense or multiple

set operations in parallel, but not sense operations at the same time as set operations. The final

set operation cannot be conducted in parallel with the sense operation because the Vset voltage

will be high over all the memristors in the column, including whichever memristor is connected

to the row we are trying to sense. This will change Vt and might even change the value of the

18

memristor that connects the column to the sensed row. Furthermore, we cannot perform the sense

operation in parallel on different columns and rows because that would affect the values for the

row we are sensing. However, there still exists the possibility of setting multiple elements in a

column or performing multiple sensing operations for elements in different rows, but in the same

columns, in a single cycle. As long as the sensing generates values that are compatible with the

normal operation case, then the set operation should be able to write back as many results in the

same column as we can generate.

However, sneak paths could derail this just as they could derail the normal operation

case, and the controller logic for handling this parallelism would need to be more sophisticated.

Let’s say we are doing two operations, with sense operation being conducted with inputs of p,q =

0,0 and the other with p,q = 1,1. In the ideal case, one row line (00) would be equal to 0.06 V and

the other row line would be equal to 0.91 V as shown in Table 2; however, there could be as little

as 2kOhms (2 * Ron) of resistance in between the two row lines due to sneak paths. That would

cause the low voltage to be pulled up to 0.39 V and the high voltage to be pulled down to 0.751

V. Examining Table 2, those values are still within values that could be captured – the threshold

for the OR gate would just have to be between 0.39 V and 0.65V and the threshold for the

NAND gate would need to be between 0.65 and 0.75 V. However, those are very slim margins

for error. It seems possible to perform operations in parallel for sets of inputs on the same

columns, but it needs further exploration.

Parallel operations might even help mitigate the sneak path problem because the selected

row lines will all be less than 0.91 V. The voltage of the unselected row line lying on the sneak

path must always be greater than the voltage of the selected row line since current is flowing

through at least two more memristors between the unselected row line and the selected row line.

19

The selected lines will always have a lower voltage than the voltage of any floating, unselected

row line lying along a sneak path. As a result, adding parallel operations should generally help

solve the sneak path problem.

MADX Flexibility

Since the MADX scheme does not require the addition of additional circuitry to the

crossbar array beyond the resistors added in IMPLY, it could be integrated with IMPLY. The

best way to combine the two is beyond the scope of this paper, but it illustrates the flexibility and

simplicity of the MADX scheme.

The MADX scheme and the MAD scheme it derives from can be described as voltage

division and sensing schemes. The name underscores the simplicity and flexibility of the

concept. By dividing the sense and set steps, MADX enables much more flexibility in terms of

what area it needs to use and where the inputs are in memory. This flexibility might be the most

important aspect of the whole design and is demonstrated in the Comparison to Alternatives

section through the case study of an adder.

Limitations

There are some important caveats to keep in mind both for this thesis and for the other

schemes that do logic in memory. Using memristors for logical operations greatly increases the

amount of writing to them, as the authors of [6] pointed out. They note that memristor endurance

is still low, 10^10 [8], so this is a substantial drawback. However, they also note that memristor

endurance should increase substantially in the coming years, citing [26]. Moreover, sneak paths

and the high stochastic of memristors remain challenges. As shown in [25], the size of the

difference in voltage drops across an on and an off memristor is reduced to a fifth of its value in

the ideal case by the time we reach an array size of 256 in an array with some 1s, declining to

20

practically 0 by the time we get to an array size of 1024. Parasitic resistance on the row and

column lines can also cause problems in getting accurate values as the size of the array scales.

The MADX scheme itself is limited in that it can only perform logical operations between

memristors that are on the same row. It also requires the addition of resistors to the crossbar

array as in IMPLY. Moreover, questions about how to best implement the controller logic

remain.

Comparison To Alternatives

Full Adder Case Study

A 1-bit half-adder is described by the equations

SUM = A XOR B

CARRY = A AND B

The MADX design does not implement AND as a basic operation, but it can be done in two

steps by doing

CARRY = NOT(A NAND B)

As a result, even without parallelization, the total number of operations for a half-adder in the

MADX scheme is 3 operations, which, at three cycles per operation, takes 9 cycles. For the 1-bit

full-adder, there are three inputs Cin, A, and B and two outputs, whose relationship is described

by the equations

SUM = Cin XOR (A XOR B)

CARRY = A AND B OR (Cin AND (A XOR B))

The SUM function takes 2 steps while the CARRY function takes only 5 steps because

we can reuse the A XOR B output generated during the SUM function. A detailed walkthrough

(10a)

(10b)

(11)

(12a)

(12b)

21

is as follows. First, the output of A XOR B is generated and stored on an output row line

somewhere that has Cin on it as well. Then, that output is XORed with Cin to generate SUM for

2 total steps. For the CARRY operation, the output of A XOR B generated in the first step is

ANDed with Cin by performing NOT(NAND) as with the half-adder. A similar procedure is

followed for A AND B. Then those two outputs are ORed together to give the CARRY output

for 5 total steps. In total, there are 7 serial operations for each 1-bit full adder. Since MADX

gates can writeback the output to any part of the crossbar structure, the scheme avoids the

substantial initializing required by IMPLY and MAGIC.

Generalizing this result to an 8-bit adder, MADX requires 7n operations for an n bit

adder, which equals 56 operations for an 8-bit full-adder. In terms of area, it needs at least one

free memristor on the same line as Cin for every Cin. It also needs two free memristors on an

arbitrary row line in which to place the result of A AND B and CIN AND (A XOR B). For the

AND operation, there also should be a row line somewhere with a memristor preset to 1 and a

free memristor. This gives a total of 1 + 2 + 2 for 5 total functional memristors. We need only

preset the ‘1’ used for doing the NOT operation, which adds one additional cycle. Even without

parallelization, which this thesis noted early should be possible, MADX gates are substantially

better than MAGIC and IMPLY gates, as shown in Table 6. These improvements are a direct

result of the increased number of basic operations provided and the flexibility of writing the

result to wherever we want it. Moreover, IMPLY and MAGIC gates require all the inputs to be

on the same line, while MADX only requires each operand in any particular operation to be on

the same line.

22

Scheme Latency

Area (# functional

memristors)

IMPLY Base [10] 89N 4

IMPLY Serial [9] 20N 2

IMPLY Parallel [9] 5N + 18 6N - 1

MAGIC Conv., area optimized

[6] 15N 5

MAGIC Conv., latency

optimized[6] 12N + 1 11N - 1

MADX Serial 7N + 1 5

Table 6: Latency and area comparisons for an N-bit adder

MADX is better than a variety of MAGIC and IMPLY schemes in terms of latency and

dramatically better in terms of area, as shown in Table 6. IMPLY Parallel [9] does achieve better

latency in terms of number of operations, but it requires switches between the different rows of

the crossbar. In defense of IMPLY and MAGIC, it should be noted that MADX operations take

three cycles while IMPLY and MAGIC operations only take two cycles. Therefore, the MADX

serial scheme is only slightly better than MAGIC in terms of latency; however, it still offers the

best combination of latency and area while being very flexible.

Alternative Logic in Memory Schemes

A number of alternative logic designs have been proposed. The two types that have

attracted the most attention are the memristor-aided logic (MAGIC) scheme proposed by

Kvatinsky et al. [11], expanded on in Talati et al. [6], and the IMPLY scheme proposed in 2012

[10] and improved in 2014 [9]. These schemes are explained below and a comparison of them

with MADX across some key categories is shown in Table 5. Both the IMPLY scheme and the

MAGIC scheme, notably developed by the same group, are the only schemes that perform

logical operations in a 1M crossbar without additional CMOS logic. This gives them substantial

benefits with regards to size and ease of integration. Two other schemes that have achieved

23

some recognition are CRS [21] and Zhang et al. [22]. However, they are not considered here

because they require substantial alterations to the basic crossbar hardware. A future area of

research would be to do a more thorough comparison with these alternative schemes.

Scheme Voltages

Required

Basic

Ops

Steps

per Op

Memristors

per op

Destructive

Operation

Input/Output

restrictions

MAGIC

[6] [11]

1 (Vo) NOR 2 3 No Inputs and

Output same

row

IMPLY

[9], [10]

3

(Vcond,

Vset,

Vreset)

IMPLY

(with

FALSE)

2 2

(destroys

an input)

Yes Inputs and

Output same

row

MADX 3, same as

IMPLY

5 3 3 No Inputs same

row, Output

anywhere

Table 5: Comparison of MADX scheme to alternatives. MADX’s 5 basic operations are NOT,

COPY, NAND, OR, and XOR

The MAGIC approach solely uses memristors to perform logic operations. The MAGIC

scheme can be used to perform all logic operations outside of a crossbar, but can only be used to

perform NOR operations within a crossbar due to the constraints imposed by the crossbar. In the

MAGIC scheme, two or more memristors on the same bit or word line can write to an output

memristor on the same bit or word line. This is a key drawback when compared to the MAD

structure where the result can be placed on any word or bit line. Innovations in the 2016 paper

demonstrated a crossbar can have the ability to perform those NOR operations in parallel in a

column-wise fashion, greatly increasing the efficiency of the scheme [6]. Even with this

parallelization, the MAGIC gate is worse in terms of latency and substantially worse in terms of

24

area when compared with MADX for the full-adder case study due to its lack of flexibility and

limited basic operations.

The IMPLY scheme uses memristors without any additional CMOS logic to perform

material implication, and it is the most established and popular gate design. Despite only

performing material implication, when combined with FALSE (a logical function that only

yields 0) it can perform any Boolean function [27]. It was the original inspiration for the MAD

gates and, like MAD, adds resistors to the rows and columns.

Methodology

This paper assumed a 1M crossbar. Extensions of the MADX scheme to 1T1M or 1D1M

crossbars are beyond the scope of this paper. The voltage values for the tables were generated

using NGSPICE. The VTEAM Verilog-A model [24] was used to model the behavior of the

memristors. We used the parameters used in MAGIC [11] for our VTEAM model. We modeled

the memristors as linear. Non-linear models could be used in the future to help eliminate the

sneak path problem. However, the thresholds of non-linearity would have to be chosen with care

if they were to be compatible with this scheme; Vcond must be in the linear region, but also be

less than the voltage used to set the memristor.

Prior Work

Memristor research can be classified into research done into understanding the physics

and improving the basic properties of memristors and research done into the applications of

memristors. The former includes improving the endurance and read and write times of

memristors in addition to developing better mathematical models for memristor behavior.

Regarding the latter, there are a wide range of potential applications, but this section will focus

25

on applications having to do with crossbar arrays and Boolean logic, as well as some discussion

of the more novel applications of memristors.

Memristor Physics

While this paper and many others have focused on the applications of memristors, there

has been a tremendous amount of work put into understanding the physics and improving the

material science behind memristors [5]. This has included the development of new types of

memristors in addition to the original TiO2 version. These papers have also lead to the

development of more accurate models for memristive behavior as in VTEAM [24]. As many

researchers on the applications of memristors are not actually using a physical memristive

device, the development of memristor models has been and will continue to be crucial to

memristor development. With regards to improving the basic properties of memristors,

experiments have led to sub 1 ns read and write latencies [4] and durability of up to 10^10 write

cycles [5].

Memristor Applications

The research into the applications of memristors has touched on a massive number of

topics. Like the other fundamental circuit elements did, the memristor will likely have an impact

across all elements of circuit theory and design. Even if we restrain our scope to just a digital,

computing perspective, summarizing the work is a massive endeavor. However, three areas do

seem to stand out.

Memristor crossbar structures, as shown at the beginning of this thesis in Figure 1a, offer

tremendous potential for improving every layer in the memory hierarchy, speeding up dot-

product matrix multiplication, and realizing processing-in-memory (PIM). The crossbar array is

capable of performing dot-product vector multiplication in one step [12]. This property is

26

tremendously valuable to modern machine learning algorithms as convolution and inference in

neural nets require extensive matrix multiplication. Crossbars have also been successfully

fabricated at a small scale and used for training simple classifiers so they are probably the most

currently practical of the memristor research areas [28].

Resistive RAM (RRAM), memory using memristors, takes the form of a crossbar

structure and has the potential for order of magnitude improvement over conventional memory in

terms of density [25],[29],[30] in addition to being non-volatile. This and the one-cycle dot-

product vector multiplication outlined above have together generated significant enthusiasm for

building memories and accelerators designed specifically for machine learning. PipeLayer [13],

PRIME [14], and ISAAC [15] showed in simulation how large-scale RRAM memories with PIM

capabilities could achieve several orders of magnitude improvement over even the best

conventional accelerators like DaDianNao [31]. The important caveat is that those papers were

just simulation. However, there have been several papers that have realized more limited

physical versions of some machine learning algorithms [16]. Another factor speeding adoption in

the machine learning space is that memristors are better suited for storing weights in neural

networks (NNs) than they are for storing conventional data because NNs are more error tolerant.

A final field is the application of memristors to neuromorphic circuits. As outlined in

Hamdioui et al. [7], memristors have been used as weights in conventional artificial neural

networks (ANNs) [16] and as pseudo-synapses in spiking neural network architectures that more

closely mimic biological systems [17].

A final, fascinating area is the discovery of memristive properties in nature. Venus

flytraps [32] and amoebas [33] have been shown to have some memristive properties.

Memristors may be a useful framework for understanding hysteretic behavior in nature.

27

Proposed Future Work

There are a number of future research avenues for MADX. The first is investigating this

design’s potential for parallelism and mitigating the sneak path problem. The effect of parasitic

resistance on this design should be explored. The timing and power consumption of the scheme

should also be investigated. The next design step is implementing the controller and routing logic

to ensure the MADX scheme is compatible with conventional crossbar hardware and to get an

accurate picture of the total costs of the design. Finally, manufacturing a physical prototype that

uses this scheme is the ultimate goal. Additionally, a speculative route would be exploring

possible integration with IMPLY logic.

Conclusion

In this paper, we extend and modify a design for Boolean logic, the MAD gate from

Guckert’s 2016 thesis [18], to make it more compatible for integration into a crossbar array,

creating the MADX scheme. This scheme leverages voltage thresholds and separates the sense

and set operations. It supports a wider range of basic operations than IMPLY and MAGIC and is

more flexible than either. Those advantages are reflected in the case studies of a 1-bit half adder

and an 8-bit full adder where the MADX scheme has less latency, consumes significantly less

area, and is much more flexible about where the area needs to be allocated.

Memristors and memristive devices can be manufactured more densely [5], consume less

power, and could have quicker read and write times than current DRAM [4]. At the very least,

they should be able to replace some NAND flash and hard-drive functionality. However, the key

challenges regarding sneak paths, more frequent errors, integration of voltage sources, and

manufacturing are difficult and will take a significant length of time to solve [7]. In the interim,

IC designers and computer architects should continue to strive to explore how memristors can

28

both augment conventional designs and open up entirely new avenues of research. By

demonstrating the potential of memristors, we can hopefully also help spur additional research

into the elements holding them back.

29

Bibliography

[1] L. O. Chua, "Memristor-The Missing Circuit Element," IEEE Transactions on Circuit

Theory, Vol. 18, pp. 507-519, 1971.

[2] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The Missing Memristor

Found," Nature, Vol. 453, pp. 80-83, May 2008.

[3] J. Borghetti et al.,“A hybrid nanomemristor/transistor logic circuit capable of self-

programming,” Proc. Nat. Acad. Sci., vol. 106, no. 6, pp. 1699–1703, 2009.

 [4] A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S. Williams, “Sub-

nanosecond switching of a tantalum oxide memristor,” Nanotechnology, vol. 22, pp.

485203-1–485203-7, Nov. 2011.

 [5] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for computing,”

Nature Nanotechnol., vol. 8, pp. 13–24, Jan. 2013.

[6] Talati et al., "Logic Design Within Memristive Memories Using Memristor-Aided loGIC

(MAGIC)," IEEE Trans. Nanotechnology, Vol. 15, No. 4, pp. 635-649, Jul. 2016.

[7] Hamdioui et al., "Memristor For Computing: Myth or Reality?," in Design, Automation,

and Test in Europe (DATE), 2017.

[8] J. J. Yang et al.,“High switching endurance in TaOx memristive devices,” Appl. Phys.

Lett., vol. 97, no. 23, pp. 232102-1–232102-3, 2010.

[9] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C. Weiser,

"Memristor-Based Material Implication (IMPLY) Logic: Design Principles and

Methodologies," IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

Vol. 22, pp. 2054-2066, 2014.

[10] S. Kvatinsky, A. Kolodny, U.Weiser, and E. Friedman, “Memristor-based IMPLY logic

design procedure,” in Proc. IEEE 29th Int. Conf. Comput. Des., Oct. 2011, pp. 142–147.

[11] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A. Kolodny,

and U. C. Weiser, "MAGIC Memristor Aided LoGIC," IEEE Transactions on Circuits

and Systems II: Express Briefs, Vol. 61, pp. 1-5, 2014.

[12] M. Hu et al., “Dot-Product Engine for Neuromorphic Computing: Programming 1T1M

Crossbar to Accelerate Vector-Matrix Multiplication”, in DAC, 2016.

[13] L. Song, et al. “Pipelayer: A pipelined reram-based accelerator for deep learning,” in

HPCA, 2017.

30

[14] P. Chi et al., “Prime: A novel processing-in-memory architecture for neural network

computation in reram-based main memory," in ISCA, 2016.

[15] A. Sha_ee et al., “Isaac: A convolutional neural network accelerator with in-situ analog

arithmetic in crossbars," in ISCA, 2016.

[16] F. Alibart, E. Zamanidoost and D. Strukov, "Pattern classification by memristive crossbar

circuits using ex situ and in situ training," Nature communications, vol. 4, 2013.

[17] A. Serb, J. Bill, A. Khiat, R. Berdan, R. Legenstein and T. Prodromakis, "Unsupervised

learning in probabilistic neural networks with multi-state metal-oxide memristive

synapses," Nature Communications, vol. 7, no. 12611, 2016.

[18] L. Guckert, “Memristor-Based Arithmetic Units,” Ph.D. dissertation, Dept. Elect. Eng.,

Univ. of Texas., Austin, TX, 2016.

[19] L. Guckert and E. E. Swartzlander, Jr., "MAD Gates - Memristor Logic Design

Using Driver Circuitry," IEEE Transactions on Circuits and Systems II: Express

Briefs, Vol. 99, pp.1, Apr. 2016.

[20] L. Xie, H. A. Du Nguyen, M. Taouil, S. Hamdioui and K. Bertels, "Fast Boolean Logic

Mapped on Memristor Crossbar," IEEE International Conference on Computer Design,

pp. 335-342, 2015.

[21] Y. Yang, J. Mathew, S. Pontarelli, M. Ottavi and D. K. Pradhan, "Complementary

Resistive Switch-Based Arithmetic Logic Implementations Using Material Implication,"

IEEE Transactions on Nanotechnology, Vol. 15, pp. 94-108, Jan. 2016.

[22] Y. Zhang; Y. Shen; X. Wang; L. Cao, "A Novel Design for Memristor- Based Logic

Switch and Crossbar Circuits," IEEE Transactions on Circuits and Systems I: Regular

Papers, Vol. 62, pp.1402-1411, May 2015.

[23] L. O. Chua and S. M. Kang, “Memristive devices and systems,” Proc. IEEE, vol. 64, no.

2, pp. 209–223, Feb. 1976.

[24] S. Kvatinsky, M. Ramadan, E. Friedman, and A. Kolodny, “VTEAM: A general model

for voltage-controlled memristors,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no.

8, pp. 786–790, Aug. 2015.

[25] M. A. Zidan, H. A. H. Fahmy, M. M. Hussain, and K. N. Salama, “Memristor-based

memory: The sneak paths problem and solutions,” Microelectron. J., vol. 44, pp. 176–

183, Feb. 2013.

[26] J. Nickel, “Memristor material engineering: From flash memory replacement

31

towards a universal memory,” in Proc. IEEE IEDM Adv. Memory Technol. Workshop,

Oct. 2011, pp. 142–147.

[27] J. Borghetti et al., “Memristive switches enable stateful logic operations via material

implication,” Nature, vol. 464, pp. 873–876, Apr. 2010.

[28] M. Prezioso et al. , “Training and operation of an integrated neuromorphic network based

on metal-oxide memristors,” Nature, 2015, vol. 521, p. 61–64. DOI:10.1038/nature14441

[29] International technology roadmap for semiconductors. URL http://www.itrs2.net/

[30] M. Kryder, C. Kim, After hard drives-what comes next?, IEEE Transactions on

Magnetics, 2009l 45 (10) (2009) 3406–3413.

[31] Y. Chen et al., Dadiannao: A machine-learning supercomputer," in Proc. MICRO, 2014.

[32] A. G. Volkov, C. Tucket, J. Reedus, M. I. Volkova, V. S. Markin, and L. Chua,

“Memristors in plants,” Plant Signal. Behav., vol. 9, no. 2, pp. e28152(1)–e28152(8),

Feb. 2014

[33] Y. V. Pershin, S. L. Fontaine, and M. D. Ventra, “Memristive model of amoeba's

learning,” Phys. Rev. E, vol. 80, no. 2, pp. 021926(1)–021926(6), Jul. 2010.

