

Circuit Topology and Synthesis Flow Co-Design for
the Development of Computational ReRAM

Carlos Fernandez
Dept. of Electronic Engineering

Universidad Tecnica Federico Santa
Maria (UTFSM)
Valparaiso, Chile

carlos.fernandezh@sansano.usm.cl

Ioannis Vourkas
Dept. of Electronic Engineering

Universidad Tecnica Federico Santa
Maria (UTFSM)
Valparaiso, Chile

ioannis.vourkas@usm.cl

Antonio Rubio
Dept. of Electronic Engineering

Universitat Politècnica de Catalunya
(UPC)

Barcelona, Spain
antonio.rubio@upc.edu

Abstract— Emerging memory technologies will play a
decisive role in the quest for more energy-efficient computing
systems. Computational ReRAM structures based on resistive
switching devices (memristors) have been explored for in-
memory computations using the resistance of ReRAM cells for
storage and for logic I/O representation. Such approach
presents three major challenges: the support for a memristor-
oriented logic style, the ad-hoc design of memory array driving
circuitry for memory and logic operations, and the development
of dedicated synthesis tools to instruct the multi-level operations
required for the execution of an arbitrary logic function in
memory. This work contributes towards the development of an
automated design flow for ReRAM-based computational
memories, highlighting some important HW-SW co-design
considerations. We briefly present a case study concerning a
synthesis flow for a nonstateful logic style and the co-design of
the underlying 1T1R crossbar array driving circuit. The
prototype of the synthesis flow is based on the ABC tool and the
Z3 solver. It executes fast owing to the level-by-level mapping of
logic gates. Moreover, it delivers a mapping that minimizes the
logic function latency through parallel logic operations, while
also using the less possible ReRAM cells.

Keywords— memristor, resistive RAM, in-memory computing,

logic synthesis, electronic design automation, ratioed logic

I. INTRODUCTION

Emerging nonvolatile memory technologies will play an
important role in the current quest for more energy efficient
computing systems, driven by the rising amounts of data
needed to be processed [1]. Resistive switching devices
(memristors) organized in crossbar arrays to form resistive
random-access memories (ReRAM), are considered among
the key enabling device technologies for computational
memory structures [2]. Different from the classical Von
Neumann approach, such novel system architectures will
reduce (or eliminate) the data movement between memory
and processing modules. The driving circuitry of the crossbar
will allow not only the control and the communication with
the memory, but also the fusion of storage and logic in the
same hardware.

The potential benefits of in-memory computing, along
with the high integration/storage density of a ReRAM

Supported by Synopsys, Chile, by the Chilean grants FONDECYT

Regular 1221747 and ANID-Basal FB0008, and by the Spanish
MCIN/AEI/10.13039/501100011033 grant PID2019-103869RB-C33.

crossbar array and its CMOS BEOL compatibility, are the
driving force behind current efforts towards developing robust
and viable solutions for computational ReRAM structures
within the reach of today’s technology. In this context, many
logic families are being studied which exploit specific
interconnection patterns of memristors that are compatible
with the crossbar topology [3]. Some operate in a stateful way,
using the resistance of memristor cells for logic input/output
representation, whereas in other logic styles the resistance is
used only for logic input data but the logic output is
represented by voltage [4]. Selecting a logic style that does not
imply conditional switching of memristors during information
processing, could lead to higher reliability [5].

Given a specific logic primitive selected for in-memory
computations, further considerations concern the adequate
memory driving circuitry, co-designed to support both
memory (read/write) and logic operations. It should guarantee
a universal logic set and offer flexibility of data movement,
required for multi-level (sequential) logic computations.
Moreover, device variability is a reliability limiting factor, so
its effects must be mitigated at circuit level with proper
read/write methodologies that incorporate testability during
normal circuit operation [6]. Furthermore, ad-hoc synthesis
tools are required to bridge the gap between primitive logic
gates and large-scale logic circuits. A synthesis process
developed for ReRAM technology should be a combination
of logic synthesis and physical synthesis. It should decompose
an arbitrary logic function to a sequence of logic operations
supported by the ReRAM driving circuit, and also compute
the spatio-temporal properties of all the multi-level logic
operations necessary for its execution in the physical ReRAM
array. Solutions published so far in this field are almost
exclusively oriented to stateful logic primitives [7].

In this direction, here we highlight important HW-SW co-
design considerations and issues to be addressed towards the
development of ReRAM-based computational memories. We
support our claims through a case study concerning a
synthesis flow (SW) for a nonstateful logic style [4] and the
co-design of the underlying 1T1R crossbar array driving
circuit (HW). We discuss certain topological and performance
constraints that make imperative the HW-SW co-design, and
also focus on the synthesis algorithm that computes the
position in the crossbar array and the timing of the result of
every logic operation.

 295

(a)

(b) (c)

Fig. 1 Memristor-based logic primitives. (a) Schematic of a stateful logic
style with three bipolar memristors [3]. (b) Schematic of a nonstateful
ratioed-logic style for a NOR logic gate [4]. (c) Plot of the expected output
voltage in (b) and the comparison for every input combination shown below.

Our synthesis approach minimizes the logic function

latency by exploiting parallel execution of operations in a
multi-level logic implementation, which are also carried out
using the minimum required number of cross-point cells.
Moreover, preliminary performance results prove the fast
execution of the algorithm, owing to the level-by-level
mapping of logic gates to the array cross-points which
minimizes the potential exploration space.

II. CHALLENGES IN COMPUTATIONAL RERAMS

A. Basic Device Operation & Supported Logic Style
The devices most widely-studied and used in logic

principles are bipolar. When a memristor is forward biased
with a voltage pulse of amplitude higher than a VSET threshold,
then a SET process occurs and the resistance decreases
towards a low resistive state (LRS or RON). On the contrary,
when it is reverse-biased with a voltage pulse of amplitude
higher than a |VRESET| threshold, then a RESET process occurs
and the resistance increases towards a high resistive state
(HRS or ROFF). According to the read- out circuit used, the
devices store a logic ‘0’ with a HRS and a logic ‘1’ with LRS
(or vice versa). Bipolar memristors can be used for logic
operations and a review of different logic styles can be found
in [3]. The selected logic style should be independent of
memristor device technology features and tolerant to
variability. Stateful logic schemes normally use a series
connection of memristors and functionally depend on the fact
that, upon the application of a voltage, some memristor
(previously initialized to a specific state) is subjected to a
conditional change of its state which depends on the state of
the memristors that store the input data. Fig. 1(a) shows an
example representative of this concept. Note that, while in
many works it has been assumed that such conditional
switching of the “output” memristor is deterministic, under
certain circumstances it becomes probabilistic [8]. Moreover,
certain constraints apply for Vlogic to guarantee that the
operands´ state is unchanged, as desired.

However, solutions based on nonstateful logic primitives
do not rely on probabilistic switching of memristors, and are
less-prone to effects of variability. In such styles,
computations are equivalent to modified memory read

Fig. 2 1T1R crossbar with memristor-transistor cross-point cells. The
schematic presents simplified driving circuitry for wordlines/bitlines, with
the sensing scheme located at the lower part both for memory read and logic.

operations where logic output is available as voltage in the
peripheral circuitry of the ReRAM array. Such read-based
computing was applied in [9]. Logic output can be stored back
to a memory element via a reliable memory write operation
and no previous initialization of any output memristor is
required. The circuit design shown in Fig. 1(b) supports such
concept, whereas Fig. 1(c) shows the resulting voltage
margins for reading logic ‘1’ and ‘0’ output. It corresponds to
the logic design scheme proposed by Escudero et al. in [4].
The overall circuit is a voltage divider between a pull-down
network of 2 parallel memristors and a PMOS transistor as
resistive load tuned aprox. equal to the nominal LRS
resistance of memristors. Such topology implements a 2-input
NOR gate. When at least one memristor is in LRS (logic ‘1’),
the output voltage measured at the intermediate output node
Vout drops significantly compared to when all devices are in
HRS, thus output logic level is identified via comparison with
Vcomp. The same topology is applied to implement a NOT gate
when only one input memristor is used.

B. Ad-hoc Read/Write Driver for Logic Operations
Adaptive write methods, multi-level sensing as well as

complementary logic operations in the periphery and
parallelization, are some issues to be taken into consideration
in the design of the memory read/write drivers, which can
require asynchronous circuit techniques. Moreover, design-
for-test (DfT) techniques are required [6] to detect undefined
state faults (USFs) during memory operation (not covered in
this paper). In the context of our case study, Fig. 2 shows an
overview of a 1T1R ReRAM array topology with a simplified
driving and sensing circuitry to support nonstateful logic
operations according to the style described in Fig. 1(b, c).
Computation takes place in the periphery, while logic gate

296

Fig. 3 A multi-level NOT/NOR logic implementation of a 2-input XOR
function and the corresponding weighted directed graph representation.

inputs need to be aligned column-wise. The rows holding the
input memristors are activated and row drivers apply Vref,
while target column drivers apply Vdd. Thus, by using a
voltage comparator (and a reference voltage Vcomp) followed
by a register, the Vout levels for logic ‘0’ and ‘1’ are properly
interpreted and captured. Moreover, through a MUX in the
final stage, we have readily available the original and the
complement of the memory/logic result. Hence, the circuit
supports OR and NOR gates, whereas NOT and COPY
operations are also possible in such extended universal logic
set. If necessary, the output voltage can be converted to the
corresponding resistive level once it is stored in a target
memristor “anywhere in the array”, via a reliable memory
write operation. This way we achieve flexibility in the cross-
point used to store the logic output. For instance, the
destination cross-point can be aligned with another memristor
to be used as input in posterior cascaded logic operations. This
topology also supports parallel logic operations, exploited in
the synthesis algorithm described in the following section.

C. Ad-hoc Synthesis for ReRAM-Centric Computing System
The synthesis will produce delay/area-efficient solutions,

compatible with the co-designed peripheral circuitry of the
ReRAM and the supported logic primitives. For a multi-level
logic description of an arbitrary logic function, it will
determine the array position of the inputs and the output of
every logic gate in every level of computation, in the shortest
possible time. Different optimizations, such as parallelization
of operations per logic level, can lead to higher efficiency in
delay or in the area occupied for computations. In the context
of our case study, we present our early development steps
towards a synthesis tool for the abovementioned ReRAM
topology and logic scheme.

The necessary topology-dependent considerations are that

the primary logic operation is the 2-input NOR and that the
NOT gate is readily available in the periphery. Note that all
input memristors of a NOR gate should be aligned column-
wise. Logic gates in the same level are computed in parallel,
thus their input memristors are aligned column-wise but in
separate columns, because every crossbar output line (bitline)
is the output node of a single logic gate. At the same time, all
the cells acting as inputs in parallel gate computations need to
be in the same wordlines (rows). Therefore, we use only 2-
input NOR gates since it is not possible to execute in parallel
NOR gates with unequal number of inputs. NOR/NOT based
multi-level logic gate descriptions are mapped to a weighted
directed graph where gates correspond to graph vertices and
interconnections to graph edges, as shown in Fig. 3 for the
XOR function. The edges with negative weight in Fig. 3
indicate complementary signals. The graph representation
indicates existing dependencies of logic gates and the
algorithm identifies the gates belonging to every logic level,
whose output values can be computed simultaneously. So, the
minimum number of steps required to compute a logic
function depends on the number of gate levels. However, the
exact number of system cycles depends on limitations
imposed by the array topology; e.g. copying the same logic
gate output to different array columns cannot be performed in
a single step. With the NOT gate available in the periphery the
required logic levels decrease, which has a positive impact to
the total latency of computations. This said, the objective of
logic synthesis is to find a correspondence between graph
vertices and cross-points where the data are stored.

III. SYNTHESIS IMPLEMENTATION & PERFORMANCE DETAILS

Figure 4 summarizes the synthesis flow, which was
inspired on work in [7], [10], and is described below:

1) Netlist processing: We use the ABC tool [11] to
generate the gate netlist and convert any logic function to
equivalent expressions using NOR/NOT gates.

2) Graph mapping: Based on the ABC output netlist, the
next stage creates the weighted directed graph whose vertices
have the information that allows mapping to the crossbar:

ï Level: the level of a particular vertex in the graph.

Fig. 4 Parts composing the developed synthesis flow, using the ABC tool and the Z3 solver [12]. The inset shows a graphical representation of the post-
processed information given by the synthesis tool for the circuit in Fig. 3(b). The execution occupied a 2×2 crossbar. The layout shows spatio-temporal
information for the data stored in all moments in the four cross-points. Level 0 is used to indicate the location of initial input values.

297

ï Input vertices: vertices whose output value is input to
a particular vertex.

ï Destination vertices: vertices in subsequent levels to
which the output of a particular vertex acts as input.

ï Edge weights: weight applied to the output of a vertex
for each destination vertex to which it acts as input.

ï Max. Level: the maximum level with a vertex to which
the output of a particular vertex acts as an input.

3) Mapping to crossbar array: The last stage consists in
the mapping of the graph to the array cross-points, in every
level. Essentially, we seek the position of every logic gate in
the crossbar. To this end, we use the Z3 Theorem Prover [12]
to satisfy the constraints associated with the memory
topology and with the used logic style. Z3 finds the gate
locations using the level-wise mapping of the graph vertices,
so that all vertices belonging to the same level can be
computed in parallel. Unlike other approaches in the
literature, the proposed algorithm realizes the mapping in an
iterative manner individually for every level to minimize the
exploration space. The aforementioned constraints include:

ï All memristors acting as inputs for a particular logic
gate, should be aligned in the same crossbar column.

ï Vertices should be mapped in valid array positions.

ï For the parallel computation of vertices whose outputs
act as inputs to the same gate in the next level, they
both have to be mapped to the same column.

ï Vertices acting as inputs to different gates should be
mapped to different columns, but always in the same
rows (wordlines) to be activated for logic operations.

Processing of the information delivered by Z3 results in a
layout (see Fig. 4) for the position where the gate output
values will be stored in every step. The outcome of the
synthesis consists in spatio-temporal information for every
graph vertex. We compute the logic value to be mapped in
different levels of computation. When no requirement is
placed to keep the input data, their cells can be overwritten to
minimize to total cross-points used. We evaluated the
performance of the synthesis flow using a subset of
combinational benchmarks from LGynth93 suite [13]. Table I
presents the number of inputs and outputs for every
benchmark, the number of gate levels in the weighted directed
graph (excluding Level 0), the minimum crossbar dimensions
for which a solution was found by Z3, and the total time
required for the synthesis in a PC with Intel Core i7-4510U
CPU @ 2.00GHz and 16GB of RAM while Z3 was configured
to find a potentially sub-optimal solution that satisfied the
given area requirements. We compared our preliminary
results with results from the Simple MAGIC (SM) synthesis
flow, for the same input netlists given by the ABC tool. SM
was used as configured in [7] for an exhaustive space-
exploration to minimize latency. Footnote of Table I
comments on time required by SM for some benchmarks.
Performance on synthesis time and area requirement leave a
positive impression for the potential impact of our work in this

TABLE I. SYNTHESIS RESULTS

Benchmark Number of

Inputs
Number of

Outputs
Gate

Levels
Crossbar

Dimensions
Sintesis
time (s)

Used cros s-points

This work Simple
MAGIC

C17 5 2 3 2×4 0,841515 8 -
Parity 16 1 8 2×16 1,308009 32 240
x2 10 7 5 2×23 1,238206 46 168
misex1 8 7 5 2×21 1,319345 42 294
majority 5 1 4 2×6 0,7549 12 -
clip 8 5 9 2×129 27,274695 258 444
5xp1 7 10 7 2×59 3,280317 118 315
newtag 8 1 5 2×7 0,847877 14 -
CLPL 11 5 10 2×10 0,893361 20 -
t 5 2 3 2×4 0,811575 8 -
cm162a 14 5 8 2×18 1,18506 36 186
cm150a 21 1 9 2×31 1,277649 62 189

* Simple MAGIC synthesis took 2,3s for C17, 74,8s for majority, and 76,9s for CLPL.

in this field, whereas logic latency comparison requires further
analysis of architectural aspects, not yet fully explored, as well
as case-specific details.

IV. CONCLUSIONS & FUTURE WORK

Preliminary results for a first prototype of the proposed
toolchain, demonstrate how parallel gate execution and level-
wise mapping optimizations can lead to fast execution, and to
more time-efficient multi-level function implementations, not
considered elsewhere so far. Time-efficiency of the synthesis
execution showed promising results owing to level-wise
optimizations; a major advantage for its practical utilization.

REFERENCES
[1] C. Li, et al., “In-Memory Computing with Memristor Arrays,” in Proc.

IEEE Int, Memory Workshop (IMW), Kyoto, Japan, 13-16 May, 2018
[2] A. Sebastian, et al., “Temporal correlation detection using

computational phase-change memory,” Nat. Comm., vol. 8, no. 1115,
2017

[3] I.Vourkas and G. Ch. Sirakoulis, “Emerging memristor-based logic
circuit design approaches: A review,” IEEE Circuits Syst. Mag., vol.
16, no. 3, pp. 15–30, Third Quarter 2016

[4] M. Escudero, I. Vourkas, A. Rubio, and F. Moll, “Memristive Logic in
Crossbar Memory Arrays: Variability-Aware Design for Higher
Reliability”, IEEE Trans. Nanotechnol., vol. 18, pp. 635-646, 2019

[5] X.Zhu, et al., “Implication of unsafe writing on the MAGIC NOR
gate,” Microelectronics Jour., vol. 103, pp. 104866, 2020

[6] E. Kondratyu, et al., "Automated Testing Algorithm for the
Improvement of 1T1R ReRAM Endurance," IEEE Trans. Electron
Devices, vol.68, no. 10, pp. 4891-4896, 2021

[7] R. Ben Hur, N. Wald, N. Talati, and S. Kvatinsky, “Simple magic:
Synthesis and in-memory Mapping of logic execution for memristor-
aided logic,” 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), Irvine, CA, USA, Nov. 13-16

[8] R. Naous, et al., "Theory and experimental verification of configurable
computing with stochastic memristors," Sci. Rep., vol. 11, no. 4218,
2021

[9] L. Xie et al., “Scouting logic: A novel memristor-based logic design
for resistive computing,” in Proc. IEEE Comput. Soc. Annu. Symp.
VLSI, Bochum, Germany, Jul. 2017, pp. 176–181

[10] Z. Zhu, et al., “A General Logic Synthesis Framework for Memristor-
based Logic Design,” 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), Westminster, CO, USA, Nov. 4-7

[11] A. Mishchenko, “Abc: A system for sequential synthesis and
verification,” Accessed: May, 2020. [Online]. Available:
http://www.eecs.berkeley.edu/~alanmi/abc/.

[12] N. Bjorner, “The z3 theorem prover,” Accessed: May, 2020. [Online].
Available: https://github.com/Z3Prover/z3/graphs/contributors

[13] K. McElvain, “IWLS'93 Benchmark Set: Version 4.0,” Distributed as
a part of IWLS'93 benchmark set, May 1993

298

