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Abstract— Emerging memory technologies will play a 
decisive role in the quest for more energy-efficient computing 
systems. Computational ReRAM structures based on resistive 
switching devices (memristors) have been explored for in- 
memory computations using the resistance of ReRAM cells for 
storage and for logic I/O representation. Such approach 
presents three major challenges: the support for a memristor- 
oriented logic style, the ad-hoc design of memory array driving 
circuitry for memory and logic operations, and the development 
of dedicated synthesis tools to instruct the multi-level operations 
required for the execution of an arbitrary logic function in 
memory. This work contributes towards the development of an 
automated design flow for ReRAM-based computational 
memories, highlighting some important HW-SW co-design 
considerations. We briefly present a case study concerning a 
synthesis flow for a nonstateful logic style and the co-design of 
the underlying 1T1R crossbar array driving circuit. The 
prototype of the synthesis flow is based on the ABC tool and the 
Z3 solver. It executes fast owing to the level-by-level mapping of 
logic gates. Moreover, it delivers a mapping that minimizes the 
logic function latency through parallel logic operations, while 
also using the less possible ReRAM cells. 
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I. INTRODUCTION 

Emerging nonvolatile memory technologies will play an 
important role in the current quest for more energy efficient 
computing systems, driven by the rising amounts of data 
needed to be processed [1]. Resistive switching devices 
(memristors) organized in crossbar arrays to form resistive 
random-access memories (ReRAM), are considered among 
the key enabling device technologies for computational 
memory structures [2]. Different from the classical Von 
Neumann approach, such novel system architectures will 
reduce (or eliminate) the data movement between memory 
and processing modules. The driving circuitry of the crossbar 
will allow not only the control and the communication with 
the memory, but also the fusion of storage and logic in the 
same hardware. 

The potential benefits of in-memory computing, along 
with the high integration/storage density of a ReRAM 
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crossbar array and its CMOS BEOL compatibility, are the 
driving force behind current efforts towards developing robust 
and viable solutions for computational ReRAM structures 
within the reach of today’s technology. In this context, many 
logic families are being studied which exploit specific 
interconnection patterns of memristors that are compatible 
with the crossbar topology [3]. Some operate in a stateful way, 
using the resistance of memristor cells for logic input/output 
representation, whereas in other logic styles the resistance is 
used only for logic input data but the logic output is 
represented by voltage [4]. Selecting a logic style that does not 
imply conditional switching of memristors during information 
processing, could lead to higher reliability [5]. 

Given a specific logic primitive selected for in-memory 
computations, further considerations concern the adequate 
memory driving circuitry, co-designed to support both 
memory (read/write) and logic operations. It should guarantee 
a universal logic set and offer flexibility of data movement, 
required for multi-level (sequential) logic computations. 
Moreover, device variability is a reliability limiting factor, so 
its effects must be mitigated at circuit level with proper 
read/write methodologies that incorporate testability during 
normal circuit operation [6]. Furthermore, ad-hoc synthesis 
tools are required to bridge the gap between primitive logic 
gates and large-scale logic circuits. A synthesis process 
developed for ReRAM technology should be a combination 
of logic synthesis and physical synthesis. It should decompose 
an arbitrary logic function to a sequence of logic operations 
supported by the ReRAM driving circuit, and also compute 
the spatio-temporal properties of all the multi-level logic 
operations necessary for its execution in the physical ReRAM 
array. Solutions published so far in this field are almost 
exclusively oriented to stateful logic primitives [7]. 

In this direction, here we highlight important HW-SW co- 
design considerations and issues to be addressed towards the 
development of ReRAM-based computational memories. We 
support our claims through a case study concerning a 
synthesis flow (SW) for a nonstateful logic style [4] and the 
co-design of the underlying 1T1R crossbar array driving 
circuit (HW). We discuss certain topological and performance 
constraints that make imperative the HW-SW co-design, and 
also focus on the synthesis algorithm that computes the 
position in the crossbar array and the timing of the result of 
every logic operation. 
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Fig. 1 Memristor-based logic primitives. (a) Schematic of a stateful logic 
style with three bipolar memristors [3]. (b) Schematic of a nonstateful 
ratioed-logic style for a NOR logic gate [4]. (c) Plot of the expected output 
voltage in (b) and the comparison for every input combination shown below. 

 
Our synthesis approach minimizes the logic function 

latency by exploiting parallel execution of operations in a 
multi-level logic implementation, which are also carried out 
using the minimum required number of cross-point cells. 
Moreover, preliminary performance results prove the fast 
execution of the algorithm, owing to the level-by-level 
mapping of logic gates to the array cross-points which 
minimizes the potential exploration space. 

II. CHALLENGES IN COMPUTATIONAL RERAMS 

A. Basic Device Operation & Supported Logic Style 
The devices most widely-studied and used in logic 

principles are bipolar. When a memristor is forward biased 
with a voltage pulse of amplitude higher than a VSET threshold, 
then a SET process occurs and the resistance decreases 
towards a low resistive state (LRS or RON). On the contrary, 
when it is reverse-biased with a voltage pulse of amplitude 
higher than a |VRESET| threshold, then a RESET process occurs 
and the resistance increases towards a high resistive state 
(HRS or ROFF). According to the read- out circuit used, the 
devices store a logic ‘0’ with a HRS and a logic ‘1’ with LRS 
(or vice versa). Bipolar memristors can be used for logic 
operations and a review of different logic styles can be found 
in [3]. The selected logic style should be independent of 
memristor device technology features and tolerant to 
variability. Stateful logic schemes normally use a series 
connection of memristors and functionally depend on the fact 
that, upon the application of a voltage, some memristor 
(previously initialized to a specific state) is subjected to a 
conditional change of its state which depends on the state of 
the memristors that store the input data. Fig. 1(a) shows an 
example representative of this concept. Note that, while in 
many works it has been assumed that such conditional 
switching of the “output” memristor is deterministic, under 
certain circumstances it becomes probabilistic [8]. Moreover, 
certain constraints apply for Vlogic to guarantee that the 
operands´ state is unchanged, as desired. 

However, solutions based on nonstateful logic primitives 
do not rely on probabilistic switching of memristors, and are 
less-prone to effects of variability. In such styles, 
computations are equivalent to modified memory read 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 1T1R crossbar with memristor-transistor cross-point cells. The 
schematic presents simplified driving circuitry for wordlines/bitlines, with 
the sensing scheme located at the lower part both for memory read and logic. 

 
operations where logic output is available as voltage in the 
peripheral circuitry of the ReRAM array. Such read-based 
computing was applied in [9]. Logic output can be stored back 
to a memory element via a reliable memory write operation 
and no previous initialization of any output memristor is 
required. The circuit design shown in Fig. 1(b) supports such 
concept, whereas Fig. 1(c) shows the resulting voltage 
margins for reading logic ‘1’ and ‘0’ output. It corresponds to 
the logic design scheme proposed by Escudero et al. in [4]. 
The overall circuit is a voltage divider between a pull-down 
network of 2 parallel memristors and a PMOS transistor as 
resistive load tuned aprox. equal to the nominal LRS 
resistance of memristors. Such topology implements a 2-input 
NOR gate. When at least one memristor is in LRS (logic ‘1’), 
the output voltage measured at the intermediate output node 
Vout drops significantly compared to when all devices are in 
HRS, thus output logic level is identified via comparison with 
Vcomp. The same topology is applied to implement a NOT gate 
when only one input memristor is used. 

B. Ad-hoc Read/Write Driver for Logic Operations 
Adaptive write methods, multi-level sensing as well as 

complementary logic operations in the periphery and 
parallelization, are some issues to be taken into consideration 
in the design of the memory read/write drivers, which can 
require asynchronous circuit techniques. Moreover, design- 
for-test (DfT) techniques are required [6] to detect undefined 
state faults (USFs) during memory operation (not covered in 
this paper). In the context of our case study, Fig. 2 shows an 
overview of a 1T1R ReRAM array topology with a simplified 
driving and sensing circuitry to support nonstateful logic 
operations according to the style described in Fig. 1(b, c). 
Computation takes place in the periphery, while logic gate 
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Fig. 3 A multi-level NOT/NOR logic implementation of a 2-input XOR 
function and the corresponding weighted directed graph representation. 

 
inputs need to be aligned column-wise. The rows holding the 
input memristors are activated and row drivers apply Vref, 
while target column drivers apply Vdd. Thus, by using a 
voltage comparator (and a reference voltage Vcomp) followed 
by a register, the Vout levels for logic ‘0’ and ‘1’ are properly 
interpreted and captured. Moreover, through a MUX in the 
final stage, we have readily available the original and the 
complement of the memory/logic result. Hence, the circuit 
supports OR and NOR gates, whereas NOT and COPY 
operations are also possible in such extended universal logic 
set. If necessary, the output voltage can be converted to the 
corresponding resistive level once it is stored in a target 
memristor “anywhere in the array”, via a reliable memory 
write operation. This way we achieve flexibility in the cross- 
point used to store the logic output. For instance, the 
destination cross-point can be aligned with another memristor 
to be used as input in posterior cascaded logic operations. This 
topology also supports parallel logic operations, exploited in 
the synthesis algorithm described in the following section. 

C. Ad-hoc Synthesis for ReRAM-Centric Computing System 
The synthesis will produce delay/area-efficient solutions, 

compatible with the co-designed peripheral circuitry of the 
ReRAM and the supported logic primitives. For a multi-level 
logic description of an arbitrary logic function, it will 
determine the array position of the inputs and the output of 
every logic gate in every level of computation, in the shortest 
possible time. Different optimizations, such as parallelization 
of operations per logic level, can lead to higher efficiency in 
delay or in the area occupied for computations. In the context 
of our case study, we present our early development steps 
towards a synthesis tool for the abovementioned ReRAM 
topology and logic scheme. 

 
The necessary topology-dependent considerations are that 

the primary logic operation is the 2-input NOR and that the 
NOT gate is readily available in the periphery. Note that all 
input memristors of a NOR gate should be aligned column- 
wise. Logic gates in the same level are computed in parallel, 
thus their input memristors are aligned column-wise but in 
separate columns, because every crossbar output line (bitline) 
is the output node of a single logic gate. At the same time, all 
the cells acting as inputs in parallel gate computations need to 
be in the same wordlines (rows). Therefore, we use only 2- 
input NOR gates since it is not possible to execute in parallel 
NOR gates with unequal number of inputs. NOR/NOT based 
multi-level logic gate descriptions are mapped to a weighted 
directed graph where gates correspond to graph vertices and 
interconnections to graph edges, as shown in Fig. 3 for the 
XOR function. The edges with negative weight in Fig. 3 
indicate complementary signals. The graph representation 
indicates existing dependencies of logic gates and the 
algorithm identifies the gates belonging to every logic level, 
whose output values can be computed simultaneously. So, the 
minimum number of steps required to compute a logic 
function depends on the number of gate levels. However, the 
exact number of system cycles depends on limitations 
imposed by the array topology; e.g. copying the same logic 
gate output to different array columns cannot be performed in 
a single step. With the NOT gate available in the periphery the 
required logic levels decrease, which has a positive impact to 
the total latency of computations. This said, the objective of 
logic synthesis is to find a correspondence between graph 
vertices and cross-points where the data are stored. 

III. SYNTHESIS IMPLEMENTATION & PERFORMANCE DETAILS 

Figure 4 summarizes the synthesis flow, which was 
inspired on work in [7], [10], and is described below: 

1) Netlist processing: We use the ABC tool [11] to 
generate the gate netlist and convert any logic function to 
equivalent expressions using NOR/NOT gates. 

2) Graph mapping: Based on the ABC output netlist, the 
next stage creates the weighted directed graph whose vertices 
have the information that allows mapping to the crossbar: 

ï Level: the level of a particular vertex in the graph. 

 
Fig. 4 Parts composing the developed synthesis flow, using the ABC tool and the Z3 solver [12]. The inset shows a graphical representation of the post- 
processed information given by the synthesis tool for the circuit in Fig. 3(b). The execution occupied a 2×2 crossbar. The layout shows spatio-temporal 
information for the data stored in all moments in the four cross-points. Level 0 is used to indicate the location of initial input values. 
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ï Input vertices: vertices whose output value is input to 
a particular vertex. 

ï Destination vertices: vertices in subsequent levels to 
which the output of a particular vertex acts as input. 

ï Edge weights: weight applied to the output of a vertex 
for each destination vertex to which it acts as input. 

ï Max. Level: the maximum level with a vertex to which 
the output of a particular vertex acts as an input. 

3) Mapping to crossbar array: The last stage consists in 
the mapping of the graph to the array cross-points, in every 
level. Essentially, we seek the position of every logic gate in 
the crossbar. To this end, we use the Z3 Theorem Prover [12] 
to satisfy the constraints associated with the memory 
topology and with the used logic style. Z3 finds the gate 
locations using the level-wise mapping of the graph vertices, 
so that all vertices belonging to the same level can be 
computed in parallel. Unlike other approaches in the 
literature, the proposed algorithm realizes the mapping in an 
iterative manner individually for every level to minimize the 
exploration space. The aforementioned constraints include: 

ï All memristors acting as inputs for a particular logic 
gate, should be aligned in the same crossbar column. 

ï Vertices should be mapped in valid array positions. 

ï For the parallel computation of vertices whose outputs 
act as inputs to the same gate in the next level, they 
both have to be mapped to the same column. 

ï Vertices acting as inputs to different gates should be 
mapped to different columns, but always in the same 
rows (wordlines) to be activated for logic operations. 

Processing of the information delivered by Z3 results in a 
layout (see Fig. 4) for the position where the gate output 
values will be stored in every step. The outcome of the 
synthesis consists in spatio-temporal information for every 
graph vertex. We compute the logic value to be mapped in 
different levels of computation. When no requirement is 
placed to keep the input data, their cells can be overwritten to 
minimize to total cross-points used. We evaluated the 
performance of the synthesis flow using a subset of 
combinational benchmarks from LGynth93 suite [13]. Table I 
presents the number of inputs and outputs for every 
benchmark, the number of gate levels in the weighted directed 
graph (excluding Level 0), the minimum crossbar dimensions 
for which a solution was found by Z3, and the total time 
required for the synthesis in a PC with Intel Core i7-4510U 
CPU @ 2.00GHz and 16GB of RAM while Z3 was configured 
to find a potentially sub-optimal solution that satisfied the 
given area requirements. We compared our preliminary 
results with results from the Simple MAGIC (SM) synthesis 
flow, for the same input netlists given by the ABC tool. SM 
was used as configured in [7] for an exhaustive space- 
exploration to minimize latency. Footnote of Table I 
comments on time required by SM for some benchmarks. 
Performance on synthesis time and area requirement leave a 
positive impression for the potential impact of our work in this 

 
TABLE I. SYNTHESIS RESULTS 

 
 
Benchmark Number of 

Inputs 
Number of 

Outputs 
Gate 

Levels 
Crossbar 

Dimensions 
Sintesis 
time (s) 

Used cros s-points 

This work Simple 
MAGIC 

C17 5 2 3 2×4 0,841515 8 - 
Parity 16 1 8 2×16 1,308009 32 240 
x2 10 7 5 2×23 1,238206 46 168 
misex1 8 7 5 2×21 1,319345 42 294 
majority 5 1 4 2×6 0,7549 12 - 
clip 8 5 9 2×129 27,274695 258 444 
5xp1 7 10 7 2×59 3,280317 118 315 
newtag 8 1 5 2×7 0,847877 14 - 
CLPL 11 5 10 2×10 0,893361 20 - 
t 5 2 3 2×4 0,811575 8 - 
cm162a 14 5 8 2×18 1,18506 36 186 
cm150a 21 1 9 2×31 1,277649 62 189 

* Simple MAGIC synthesis took 2,3s for C17, 74,8s for majority, and 76,9s for CLPL. 

 
in this field, whereas logic latency comparison requires further 
analysis of architectural aspects, not yet fully explored, as well 
as case-specific details. 

IV. CONCLUSIONS & FUTURE WORK 

Preliminary results for a first prototype of the proposed 
toolchain, demonstrate how parallel gate execution and level- 
wise mapping optimizations can lead to fast execution, and to 
more time-efficient multi-level function implementations, not 
considered elsewhere so far. Time-efficiency of the synthesis 
execution showed promising results owing to level-wise 
optimizations; a major advantage for its practical utilization. 
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