1,073 research outputs found

    Scheduling for next generation WLANs: filling the gap between offered and observed data rates

    Get PDF
    In wireless networks, opportunistic scheduling is used to increase system throughput by exploiting multi-user diversity. Although recent advances have increased physical layer data rates supported in wireless local area networks (WLANs), actual throughput realized are significantly lower due to overhead. Accordingly, the frame aggregation concept is used in next generation WLANs to improve efficiency. However, with frame aggregation, traditional opportunistic schemes are no longer optimal. In this paper, we propose schedulers that take queue and channel conditions into account jointly, to maximize throughput observed at the users for next generation WLANs. We also extend this work to design two schedulers that perform block scheduling for maximizing network throughput over multiple transmission sequences. For these schedulers, which make decisions over long time durations, we model the system using queueing theory and determine users' temporal access proportions according to this model. Through detailed simulations, we show that all our proposed algorithms offer significant throughput improvement, better fairness, and much lower delay compared with traditional opportunistic schedulers, facilitating the practical use of the evolving standard for next generation wireless networks

    Cognitive radio-enabled Internet of Vehicles (IoVs): a cooperative spectrum sensing and allocation for vehicular communication

    Get PDF
    Internet of Things (IoTs) era is expected to empower all aspects of Intelligent Transportation System (ITS) to improve transport safety and reduce road accidents. US Federal Communication Commission (FCC) officially allocated 75MHz spectrum in the 5.9GHz band to support vehicular communication which many studies have found insufficient. In this paper, we studied the application of Cognitive Radio (CR) technology to IoVs in order to increase the spectrum resource opportunities available for vehicular communication, especially when the officially allocated 75MHz spectrum in 5.9GHz band is not enough due to high demands as a result of increasing number of connected vehicles as already foreseen in the near era of IoTs. We proposed a novel CR Assisted Vehicular NETwork (CRAVNET) framework which empowers CR enabled vehicles to make opportunistic usage of licensed spectrum bands on the highways. We also developed a novel co-operative three-state spectrum sensing and allocation model which makes CR vehicular secondary units (SUs) aware of additional spectrum resources opportunities on their current and future positions and applies optimal sensing node allocation algorithm to guarantee timely acquisition of the available channels within a limited sensing time. The results of the theoretical analyses and simulation experiments have demonstrated that the proposed model can significantly improve the performance of a cooperative spectrum sensing and provide vehicles with additional spectrum opportunities without harmful interference against the Primary Users (PUs) activities

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843

    Security Improvements for the S-MIM Asynchronous Return Link

    Get PDF
    S-MIM is a hybrid terrestrial and satellite system that enables efficient and high-performance communication in the return link. For communication to be possible between a device and the satellite, a preamble has to be established. Some parameters to generate the preamble are broadcasted by the satellite without protection. It is very important to protect the preamble, because if an attacker knows the preamble he could avoid the communication. This project presents a method without the necessity of establishing the preamble in a way that ensures the communication. However, to achieve this security the trade-off is degradation of throughput and a delay in communication

    Radio resource management and metric estimation for multicarrier CDMA systems

    Get PDF

    Improved algorithms for TCP congestion control

    Get PDF
    Reliable and efficient data transfer on the Internet is an important issue. Since late 70’s the protocol responsible for that has been the de facto standard TCP, which has proven to be successful through out the years, its self-managed congestion control algorithms have retained the stability of the Internet for decades. However, the variety of existing new technologies such as high-speed networks (e.g. fibre optics) with high-speed long-delay set-up (e.g. cross-Atlantic links) and wireless technologies have posed lots of challenges to TCP congestion control algorithms. The congestion control research community proposed solutions to most of these challenges. This dissertation adds to the existing work by: firstly tackling the highspeed long-delay problem of TCP, we propose enhancements to one of the existing TCP variants (part of Linux kernel stack). We then propose our own variant: TCP-Gentle. Secondly, tackling the challenge of differentiating the wireless loss from congestive loss in a passive way and we propose a novel loss differentiation algorithm which quantifies the noise in packet inter arrival times and use this information together with the span (ratio of maximum to minimum packet inter arrival times) to adapt the multiplicative decrease factor according to a predefined logical formula. Finally, extending the well-known drift model of TCP to account for wireless loss and some hypothetical cases (e.g. variable multiplicative decrease), we have undertaken stability analysis for the new version of the model

    Multicast communication support over satellite networks

    Get PDF
    In this dissertation, we focus on providing multicast communication support over satellite networks. We investigate the possible performance enhancements in terms of the throughput, capacity, and scalability of a Ka-band, multiple spot-beam satellite communication system that supports unicast and multicast services. The role satellite systems play in today's communication infrastructure is changing rapidly, fueled by the technological advance in the design of new satellite systems, and by the new multimedia service applications, such as on-demand multimedia content delivery, distance learning, and distributed software updates that would benefit from the wide-area coverage, direct and ubiquitous access capability of the satellite systems. These applications require concurrent transmission of the same content to multiple users. In order for multicasting-based services to grow over satellite networks, there must be an incentive to deploy them. We address the problem of user heterogeneity that occurs when multicast users that are located across several different spot-beam locations experience different channel conditions. We propose a novel power allocation scheme for smoothing out the heterogeneity experienced by the multicast groups, while making sure that unicast users get a fair share of system resources as well. Our power allocation scheme would benefit from user feedback in determining the channel conditions. However, collecting feedback from a large set of users is a challenging task in satellite systems, since access to the uplink bandwidth is to be shared between several users, and the resources are usually limited. We introduce a novel algorithm that reduces the volume of feedback information that is to be transmitted over the satellite segment of the network, while maintaining that the relevant information is collected in a timely manner. Finally, we focus our attention to the potential benefits of integrating packet level forward error correction coding to packet delivery for reliable multicast services over satellite networks. Forward error protection helps recover corrupted data, and minimizes the need for retransmissions over the satellite channel. We investigate the use of a special form of forward error correcting (FEC) code and couple it with an adaptive control mechanism to dynamically adjust the number of encoding packets forwarded to the users
    corecore