1,657 research outputs found

    Algebraic Connectivity for Vertex-Deleted Subgraphs, and a Notion of Vertex Centrality

    Get PDF
    Let G be a connected graph, suppose that v is a vertex of G, and denote the subgraph formed from G by deleting vertex v by G\v. Denote the algebraic connectivities of G and G\v by α(G) and (G\v), respectively. In this paper, we consider the functions ∅(v) = α(G)− α(G\v) and k(v) = α(G\v)/α(G), provide attainable upper and lower bounds on both functions, and characterise the equality cases in those bounds. The function yields a measure of vertex centrality, and we apply that measure to analyse certain graphs arising from food webs

    Small Cuts and Connectivity Certificates: A Fault Tolerant Approach

    Get PDF
    We revisit classical connectivity problems in the {CONGEST} model of distributed computing. By using techniques from fault tolerant network design, we show improved constructions, some of which are even "local" (i.e., with O~(1) rounds) for problems that are closely related to hard global problems (i.e., with a lower bound of Omega(Diam+sqrt{n}) rounds). Distributed Minimum Cut: Nanongkai and Su presented a randomized algorithm for computing a (1+epsilon)-approximation of the minimum cut using O~(D +sqrt{n}) rounds where D is the diameter of the graph. For a sufficiently large minimum cut lambda=Omega(sqrt{n}), this is tight due to Das Sarma et al. [FOCS \u2711], Ghaffari and Kuhn [DISC \u2713]. - Small Cuts: A special setting that remains open is where the graph connectivity lambda is small (i.e., constant). The only lower bound for this case is Omega(D), with a matching bound known only for lambda <= 2 due to Pritchard and Thurimella [TALG \u2711]. Recently, Daga, Henzinger, Nanongkai and Saranurak [STOC \u2719] raised the open problem of computing the minimum cut in poly(D) rounds for any lambda=O(1). In this paper, we resolve this problem by presenting a surprisingly simple algorithm, that takes a completely different approach than the existing algorithms. Our algorithm has also the benefit that it computes all minimum cuts in the graph, and naturally extends to vertex cuts as well. At the heart of the algorithm is a graph sampling approach usually used in the context of fault tolerant (FT) design. - Deterministic Algorithms: While the existing distributed minimum cut algorithms are randomized, our algorithm can be made deterministic within the same round complexity. To obtain this, we introduce a novel definition of universal sets along with their efficient computation. This allows us to derandomize the FT graph sampling technique, which might be of independent interest. - Computation of all Edge Connectivities: We also consider the more general task of computing the edge connectivity of all the edges in the graph. In the output format, it is required that the endpoints u,v of every edge (u,v) learn the cardinality of the u-v cut in the graph. We provide the first sublinear algorithm for this problem for the case of constant connectivity values. Specifically, by using the recent notion of low-congestion cycle cover, combined with the sampling technique, we compute all edge connectivities in poly(D) * 2^{O(sqrt{log n log log n})} rounds. Sparse Certificates: For an n-vertex graph G and an integer lambda, a lambda-sparse certificate H is a subgraph H subseteq G with O(lambda n) edges which is lambda-connected iff G is lambda-connected. For D-diameter graphs, constructions of sparse certificates for lambda in {2,3} have been provided by Thurimella [J. Alg. \u2797] and Dori [PODC \u2718] respectively using O~(D) number of rounds. The problem of devising such certificates with o(D+sqrt{n}) rounds was left open by Dori [PODC \u2718] for any lambda >= 4. Using connections to fault tolerant spanners, we considerably improve the round complexity for any lambda in [1,n] and epsilon in (0,1), by showing a construction of (1-epsilon)lambda-sparse certificates with O(lambda n) edges using only O(1/epsilon^2 * log^{2+o(1)} n) rounds

    Minimal vertex covers on finite-connectivity random graphs - a hard-sphere lattice-gas picture

    Full text link
    The minimal vertex-cover (or maximal independent-set) problem is studied on random graphs of finite connectivity. Analytical results are obtained by a mapping to a lattice gas of hard spheres of (chemical) radius one, and they are found to be in excellent agreement with numerical simulations. We give a detailed description of the replica-symmetric phase, including the size and the entropy of the minimal vertex covers, and the structure of the unfrozen component which is found to percolate at connectivity c≃1.43c\simeq 1.43. The replica-symmetric solution breaks down at c=e≃2.72c=e\simeq 2.72. We give a simple one-step replica symmetry broken solution, and discuss the problems in interpretation and generalization of this solution.Comment: 32 pages, 9 eps figures, to app. in PRE (01 May 2001

    Random-Cluster Dynamics in Z2\mathbb{Z}^2

    Full text link
    The random-cluster model has been widely studied as a unifying framework for random graphs, spin systems and electrical networks, but its dynamics have so far largely resisted analysis. In this paper we analyze the Glauber dynamics of the random-cluster model in the canonical case where the underlying graph is an n×nn \times n box in the Cartesian lattice Z2\mathbb{Z}^2. Our main result is a O(n2log⁥n)O(n^2\log n) upper bound for the mixing time at all values of the model parameter pp except the critical point p=pc(q)p=p_c(q), and for all values of the second model parameter q≄1q\ge 1. We also provide a matching lower bound proving that our result is tight. Our analysis takes as its starting point the recent breakthrough by Beffara and Duminil-Copin on the location of the random-cluster phase transition in Z2\mathbb{Z}^2. It is reminiscent of similar results for spin systems such as the Ising and Potts models, but requires the reworking of several standard tools in the context of the random-cluster model, which is not a spin system in the usual sense

    On connectivity-dependent resource requirements for digital quantum simulation of dd-level particles

    Full text link
    A primary objective of quantum computation is to efficiently simulate quantum physics. Scientifically and technologically important quantum Hamiltonians include those with spin-ss, vibrational, photonic, and other bosonic degrees of freedom, i.e. problems composed of or approximated by dd-level particles (qudits). Recently, several methods for encoding these systems into a set of qubits have been introduced, where each encoding's efficiency was studied in terms of qubit and gate counts. Here, we build on previous results by including effects of hardware connectivity. To study the number of SWAP gates required to Trotterize commonly used quantum operators, we use both analytical arguments and automatic tools that optimize the schedule in multiple stages. We study the unary (or one-hot), Gray, standard binary, and block unary encodings, with three connectivities: linear array, ladder array, and square grid. Among other trends, we find that while the ladder array leads to substantial efficiencies over the linear array, the advantage of the square over the ladder array is less pronounced. These results are applicable in hardware co-design and in choosing efficient qudit encodings for a given set of near-term quantum hardware. Additionally, this work may be relevant to the scheduling of other quantum algorithms for which matrix exponentiation is a subroutine.Comment: Accepted to QCE20 (IEEE Quantum Week). Corrected erroneous circuits in Figure

    Phase transition for cutting-plane approach to vertex-cover problem

    Full text link
    We study the vertex-cover problem which is an NP-hard optimization problem and a prototypical model exhibiting phase transitions on random graphs, e.g., Erdoes-Renyi (ER) random graphs. These phase transitions coincide with changes of the solution space structure, e.g, for the ER ensemble at connectivity c=e=2.7183 from replica symmetric to replica-symmetry broken. For the vertex-cover problem, also the typical complexity of exact branch-and-bound algorithms, which proceed by exploring the landscape of feasible configurations, change close to this phase transition from "easy" to "hard". In this work, we consider an algorithm which has a completely different strategy: The problem is mapped onto a linear programming problem augmented by a cutting-plane approach, hence the algorithm operates in a space OUTSIDE the space of feasible configurations until the final step, where a solution is found. Here we show that this type of algorithm also exhibits an "easy-hard" transition around c=e, which strongly indicates that the typical hardness of a problem is fundamental to the problem and not due to a specific representation of the problem.Comment: 4 pages, 3 figure

    Statistical mechanics of the vertex-cover problem

    Full text link
    We review recent progress in the study of the vertex-cover problem (VC). VC belongs to the class of NP-complete graph theoretical problems, which plays a central role in theoretical computer science. On ensembles of random graphs, VC exhibits an coverable-uncoverable phase transition. Very close to this transition, depending on the solution algorithm, easy-hard transitions in the typical running time of the algorithms occur. We explain a statistical mechanics approach, which works by mapping VC to a hard-core lattice gas, and then applying techniques like the replica trick or the cavity approach. Using these methods, the phase diagram of VC could be obtained exactly for connectivities c<ec<e, where VC is replica symmetric. Recently, this result could be confirmed using traditional mathematical techniques. For c>ec>e, the solution of VC exhibits full replica symmetry breaking. The statistical mechanics approach can also be used to study analytically the typical running time of simple complete and incomplete algorithms for VC. Finally, we describe recent results for VC when studied on other ensembles of finite- and infinite-dimensional graphs.Comment: review article, 26 pages, 9 figures, to appear in J. Phys. A: Math. Ge

    The Phase Diagram of 1-in-3 Satisfiability Problem

    Get PDF
    We study the typical case properties of the 1-in-3 satisfiability problem, the boolean satisfaction problem where a clause is satisfied by exactly one literal, in an enlarged random ensemble parametrized by average connectivity and probability of negation of a variable in a clause. Random 1-in-3 Satisfiability and Exact 3-Cover are special cases of this ensemble. We interpolate between these cases from a region where satisfiability can be typically decided for all connectivities in polynomial time to a region where deciding satisfiability is hard, in some interval of connectivities. We derive several rigorous results in the first region, and develop the one-step--replica-symmetry-breaking cavity analysis in the second one. We discuss the prediction for the transition between the almost surely satisfiable and the almost surely unsatisfiable phase, and other structural properties of the phase diagram, in light of cavity method results.Comment: 30 pages, 12 figure
    • 

    corecore