9 research outputs found

    Distributed PCP Theorems for Hardness of Approximation in P

    Get PDF
    We present a new distributed model of probabilistically checkable proofs (PCP). A satisfying assignment x{0,1}nx \in \{0,1\}^n to a CNF formula φ\varphi is shared between two parties, where Alice knows x1,,xn/2x_1, \dots, x_{n/2}, Bob knows xn/2+1,,xnx_{n/2+1},\dots,x_n, and both parties know φ\varphi. The goal is to have Alice and Bob jointly write a PCP that xx satisfies φ\varphi, while exchanging little or no information. Unfortunately, this model as-is does not allow for nontrivial query complexity. Instead, we focus on a non-deterministic variant, where the players are helped by Merlin, a third party who knows all of xx. Using our framework, we obtain, for the first time, PCP-like reductions from the Strong Exponential Time Hypothesis (SETH) to approximation problems in P. In particular, under SETH we show that there are no truly-subquadratic approximation algorithms for Bichromatic Maximum Inner Product over {0,1}-vectors, Bichromatic LCS Closest Pair over permutations, Approximate Regular Expression Matching, and Diameter in Product Metric. All our inapproximability factors are nearly-tight. In particular, for the first two problems we obtain nearly-polynomial factors of 2(logn)1o(1)2^{(\log n)^{1-o(1)}}; only (1+o(1))(1+o(1))-factor lower bounds (under SETH) were known before

    Hardness of Approximate Nearest Neighbor Search

    Full text link
    We prove conditional near-quadratic running time lower bounds for approximate Bichromatic Closest Pair with Euclidean, Manhattan, Hamming, or edit distance. Specifically, unless the Strong Exponential Time Hypothesis (SETH) is false, for every δ>0\delta>0 there exists a constant ϵ>0\epsilon>0 such that computing a (1+ϵ)(1+\epsilon)-approximation to the Bichromatic Closest Pair requires n2δn^{2-\delta} time. In particular, this implies a near-linear query time for Approximate Nearest Neighbor search with polynomial preprocessing time. Our reduction uses the Distributed PCP framework of [ARW'17], but obtains improved efficiency using Algebraic Geometry (AG) codes. Efficient PCPs from AG codes have been constructed in other settings before [BKKMS'16, BCGRS'17], but our construction is the first to yield new hardness results

    Maintaining secrecy when information leakage is unavoidable

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 109-115).(cont.) We apply the framework to get new results, creating (a) encryption schemes with very short keys, and (b) hash functions that leak no information about their input, yet-paradoxically-allow testing if a candidate vector is close to the input. One of the technical contributions of this research is to provide new, cryptographic uses of mathematical tools from complexity theory known as randomness extractors.Sharing and maintaining long, random keys is one of the central problems in cryptography. This thesis provides about ensuring the security of a cryptographic key when partial information about it has been, or must be, leaked to an adversary. We consider two basic approaches: 1. Extracting a new, shorter, secret key from one that has been partially compromised. Specifically, we study the use of noisy data, such as biometrics and personal information, as cryptographic keys. Such data can vary drastically from one measurement to the next. We would like to store enough information to handle these variations, without having to rely on any secure storage-in particular, without storing the key itself in the clear. We solve the problem by casting it in terms of key extraction. We give a precise definition of what "security" should mean in this setting, and design practical, general solutions with rigorous analyses. Prior to this work, no solutions were known with satisfactory provable security guarantees. 2. Ensuring that whatever is revealed is not actually useful. This is most relevant when the key itself is sensitive-for example when it is based on a person's iris scan or Social Security Number. This second approach requires the user to have some control over exactly what information is revealed, but this is often the case: for example, if the user must reveal enough information to allow another user to correct errors in a corrupted key. How can the user ensure that whatever information the adversary learns is not useful to her? We answer by developing a theoretical framework for separating leaked information from useful information. Our definition strengthens the notion of entropic security, considered before in a few different contexts.by Adam Davison Smith.Ph.D
    corecore