7,269 research outputs found

    Lower Bounds on Balancing Sets and Depth-2 Threshold Circuits

    Get PDF

    Secret Sharing, Slice Formulas, and Monotone Real Circuits

    Get PDF

    Sublinear-Time Distributed Algorithms for Detecting Small Cliques and Even Cycles

    Get PDF
    In this paper we give sublinear-time distributed algorithms in the CONGEST model for subgraph detection for two classes of graphs: cliques and even-length cycles. We show for the first time that all copies of 4-cliques and 5-cliques in the network graph can be listed in sublinear time, O(n^{5/6+o(1)}) rounds and O(n^{21/22+o(1)}) rounds, respectively. Prior to our work, it was not known whether it was possible to even check if the network contains a 4-clique or a 5-clique in sublinear time. For even-length cycles, C_{2k}, we give an improved sublinear-time algorithm, which exploits a new connection to extremal combinatorics. For example, for 6-cycles we improve the running time from O~(n^{5/6}) to O~(n^{3/4}) rounds. We also show two obstacles on proving lower bounds for C_{2k}-freeness: First, we use the new connection to extremal combinatorics to show that the current lower bound of Omega~(sqrt{n}) rounds for 6-cycle freeness cannot be improved using partition-based reductions from 2-party communication complexity, the technique by which all known lower bounds on subgraph detection have been proven to date. Second, we show that there is some fixed constant delta in (0,1/2) such that for any k, a Omega(n^{1/2+delta}) lower bound on C_{2k}-freeness implies new lower bounds in circuit complexity. For general subgraphs, it was shown in [Orr Fischer et al., 2018] that for any fixed k, there exists a subgraph H of size k such that H-freeness requires Omega~(n^{2-Theta(1/k)}) rounds. It was left as an open problem whether this is tight, or whether some constant-sized subgraph requires truly quadratic time to detect. We show that in fact, for any subgraph H of constant size k, the H-freeness problem can be solved in O(n^{2 - Theta(1/k)}) rounds, nearly matching the lower bound of [Orr Fischer et al., 2018]

    Timing Closure in Chip Design

    Get PDF
    Achieving timing closure is a major challenge to the physical design of a computer chip. Its task is to find a physical realization fulfilling the speed specifications. In this thesis, we propose new algorithms for the key tasks of performance optimization, namely repeater tree construction; circuit sizing; clock skew scheduling; threshold voltage optimization and plane assignment. Furthermore, a new program flow for timing closure is developed that integrates these algorithms with placement and clocktree construction. For repeater tree construction a new algorithm for computing topologies, which are later filled with repeaters, is presented. To this end, we propose a new delay model for topologies that not only accounts for the path lengths, as existing approaches do, but also for the number of bifurcations on a path, which introduce extra capacitance and thereby delay. In the extreme cases of pure power optimization and pure delay optimization the optimum topologies regarding our delay model are minimum Steiner trees and alphabetic code trees with the shortest possible path lengths. We presented a new, extremely fast algorithm that scales seamlessly between the two opposite objectives. For special cases, we prove the optimality of our algorithm. The efficiency and effectiveness in practice is demonstrated by comprehensive experimental results. The task of circuit sizing is to assign millions of small elementary logic circuits to elements from a discrete set of logically equivalent, predefined physical layouts such that power consumption is minimized and all signal paths are sufficiently fast. In this thesis we develop a fast heuristic approach for global circuit sizing, followed by a local search into a local optimum. Our algorithms use, in contrast to existing approaches, the available discrete layout choices and accurate delay models with slew propagation. The global approach iteratively assigns slew targets to all source pins of the chip and chooses a discrete layout of minimum size preserving the slew targets. In comprehensive experiments on real instances, we demonstrate that the worst path delay is within 7% of its lower bound on average after a few iterations. The subsequent local search reduces this gap to 2% on average. Combining global and local sizing we are able to size more than 5.7 million circuits within 3 hours. For the clock skew scheduling problem we develop the first algorithm with a strongly polynomial running time for the cycle time minimization in the presence of different cycle times and multi-cycle paths. In practice, an iterative local search method is much more efficient. We prove that this iterative method maximizes the worst slack, even when restricting the feasible schedule to certain time intervals. Furthermore, we enhance the iterative local approach to determine a lexicographically optimum slack distribution. The clock skew scheduling problem is then generalized to allow for simultaneous data path optimization. In fact, this is a time-cost tradeoff problem. We developed the first combinatorial algorithm for computing time-cost tradeoff curves in graphs that may contain cycles. Starting from the lowest-cost solution, the algorithm iteratively computes a descent direction by a minimum cost flow computation. The maximum feasible step length is then determined by a minimum ratio cycle computation. This approach can be used in chip design for several optimization tasks, e.g. threshold voltage optimization or plane assignment. Finally, the optimization routines are combined into a timing closure flow. Here, the global placement is alternated with global performance optimization. Netweights are used to penalize the length of critical nets during placement. After the global phase, the performance is improved further by applying more comprehensive optimization routines on the most critical paths. In the end, the clock schedule is optimized and clocktrees are inserted. Computational results of the design flow are obtained on real-world computer chips

    Constant-Depth Sorting Networks

    Get PDF
    In this paper, we address sorting networks that are constructed from comparators of arity k > 2. I.e., in our setting the arity of the comparators - or, in other words, the number of inputs that can be sorted at the unit cost - is a parameter. We study its relationship with two other parameters - n, the number of inputs, and d, the depth. This model received considerable attention. Partly, its motivation is to better understand the structure of sorting networks. In particular, sorting networks with large arity are related to recursive constructions of ordinary sorting networks. Additionally, studies of this model have natural correspondence with a recent line of work on constructing circuits for majority functions from majority gates of lower fan-in. Motivated by these questions, we initiate the studies of lower bounds for constant-depth sorting networks. More precisely, we consider sorting networks of constant depth d and estimate the minimal k for which there is such a network with comparators of arity k. We prove tight lower bounds for d ? 4. More precisely, for depths d = 1,2 we observe that k = n. For d = 3 we show that k = ?n/2?. As our main result, we show that for d = 4 the minimal arity becomes sublinear: k = ?(n^{2/3}). This contrasts with the case of majority circuits, in which k = O(n^{2/3}) is achievable already for depth d = 3. To prove these results, we develop a new combinatorial technique based on the notion of access to cells of a sorting network

    Algebraic Methods in Computational Complexity

    Get PDF
    Computational Complexity is concerned with the resources that are required for algorithms to detect properties of combinatorial objects and structures. It has often proven true that the best way to argue about these combinatorial objects is by establishing a connection (perhaps approximate) to a more well-behaved algebraic setting. Indeed, many of the deepest and most powerful results in Computational Complexity rely on algebraic proof techniques. The Razborov-Smolensky polynomial-approximation method for proving constant-depth circuit lower bounds, the PCP characterization of NP, and the Agrawal-Kayal-Saxena polynomial-time primality test are some of the most prominent examples. In some of the most exciting recent progress in Computational Complexity the algebraic theme still plays a central role. There have been significant recent advances in algebraic circuit lower bounds, and the so-called chasm at depth 4 suggests that the restricted models now being considered are not so far from ones that would lead to a general result. There have been similar successes concerning the related problems of polynomial identity testing and circuit reconstruction in the algebraic model (and these are tied to central questions regarding the power of randomness in computation). Also the areas of derandomization and coding theory have experimented important advances. The seminar aimed to capitalize on recent progress and bring together researchers who are using a diverse array of algebraic methods in a variety of settings. Researchers in these areas are relying on ever more sophisticated and specialized mathematics and the goal of the seminar was to play an important role in educating a diverse community about the latest new techniques

    An Almost Cubic Lower Bound for Depth Three Arithmetic Circuits

    Get PDF
    We show an almost cubic lower bound on the size of any depth three arithmetic circuit computing an explicit multilinear polynomial in n variables over any field. This improves upon the previously known quadratic lower bound by Shpilka and Wigderson [CCC, 1999]

    A Super-Quadratic Lower Bound for Depth Four Arithmetic Circuits

    Get PDF
    • …
    corecore