3,985 research outputs found

    Functional lower bounds for arithmetic circuits and connections to boolean circuit complexity

    Get PDF
    We say that a circuit CC over a field FF functionally computes an nn-variate polynomial PP if for every x{0,1}nx \in \{0,1\}^n we have that C(x)=P(x)C(x) = P(x). This is in contrast to syntactically computing PP, when CPC \equiv P as formal polynomials. In this paper, we study the question of proving lower bounds for homogeneous depth-33 and depth-44 arithmetic circuits for functional computation. We prove the following results : 1. Exponential lower bounds homogeneous depth-33 arithmetic circuits for a polynomial in VNPVNP. 2. Exponential lower bounds for homogeneous depth-44 arithmetic circuits with bounded individual degree for a polynomial in VNPVNP. Our main motivation for this line of research comes from our observation that strong enough functional lower bounds for even very special depth-44 arithmetic circuits for the Permanent imply a separation between #P{\#}P and ACCACC. Thus, improving the second result to get rid of the bounded individual degree condition could lead to substantial progress in boolean circuit complexity. Besides, it is known from a recent result of Kumar and Saptharishi [KS15] that over constant sized finite fields, strong enough average case functional lower bounds for homogeneous depth-44 circuits imply superpolynomial lower bounds for homogeneous depth-55 circuits. Our proofs are based on a family of new complexity measures called shifted evaluation dimension, and might be of independent interest

    Superpolynomial lower bounds for general homogeneous depth 4 arithmetic circuits

    Full text link
    In this paper, we prove superpolynomial lower bounds for the class of homogeneous depth 4 arithmetic circuits. We give an explicit polynomial in VNP of degree nn in n2n^2 variables such that any homogeneous depth 4 arithmetic circuit computing it must have size nΩ(loglogn)n^{\Omega(\log \log n)}. Our results extend the works of Nisan-Wigderson [NW95] (which showed superpolynomial lower bounds for homogeneous depth 3 circuits), Gupta-Kamath-Kayal-Saptharishi and Kayal-Saha-Saptharishi [GKKS13, KSS13] (which showed superpolynomial lower bounds for homogeneous depth 4 circuits with bounded bottom fan-in), Kumar-Saraf [KS13a] (which showed superpolynomial lower bounds for homogeneous depth 4 circuits with bounded top fan-in) and Raz-Yehudayoff and Fournier-Limaye-Malod-Srinivasan [RY08, FLMS13] (which showed superpolynomial lower bounds for multilinear depth 4 circuits). Several of these results in fact showed exponential lower bounds. The main ingredient in our proof is a new complexity measure of {\it bounded support} shifted partial derivatives. This measure allows us to prove exponential lower bounds for homogeneous depth 4 circuits where all the monomials computed at the bottom layer have {\it bounded support} (but possibly unbounded degree/fan-in), strengthening the results of Gupta et al and Kayal et al [GKKS13, KSS13]. This new lower bound combined with a careful "random restriction" procedure (that transforms general depth 4 homogeneous circuits to depth 4 circuits with bounded support) gives us our final result

    Arithmetic Circuit Lower Bounds via MaxRank

    Full text link
    We introduce the polynomial coefficient matrix and identify maximum rank of this matrix under variable substitution as a complexity measure for multivariate polynomials. We use our techniques to prove super-polynomial lower bounds against several classes of non-multilinear arithmetic circuits. In particular, we obtain the following results : As our main result, we prove that any homogeneous depth-3 circuit for computing the product of dd matrices of dimension n×nn \times n requires Ω(nd1/2d)\Omega(n^{d-1}/2^d) size. This improves the lower bounds by Nisan and Wigderson(1995) when d=ω(1)d=\omega(1). There is an explicit polynomial on nn variables and degree at most n2\frac{n}{2} for which any depth-3 circuit CC of product dimension at most n10\frac{n}{10} (dimension of the space of affine forms feeding into each product gate) requires size 2Ω(n)2^{\Omega(n)}. This generalizes the lower bounds against diagonal circuits proved by Saxena(2007). Diagonal circuits are of product dimension 1. We prove a nΩ(logn)n^{\Omega(\log n)} lower bound on the size of product-sparse formulas. By definition, any multilinear formula is a product-sparse formula. Thus, our result extends the known super-polynomial lower bounds on the size of multilinear formulas by Raz(2006). We prove a 2Ω(n)2^{\Omega(n)} lower bound on the size of partitioned arithmetic branching programs. This result extends the known exponential lower bound on the size of ordered arithmetic branching programs given by Jansen(2008).Comment: 22 page

    On the Limits of Depth Reduction at Depth 3 Over Small Finite Fields

    Full text link
    Recently, Gupta et.al. [GKKS2013] proved that over Q any nO(1)n^{O(1)}-variate and nn-degree polynomial in VP can also be computed by a depth three ΣΠΣ\Sigma\Pi\Sigma circuit of size 2O(nlog3/2n)2^{O(\sqrt{n}\log^{3/2}n)}. Over fixed-size finite fields, Grigoriev and Karpinski proved that any ΣΠΣ\Sigma\Pi\Sigma circuit that computes DetnDet_n (or PermnPerm_n) must be of size 2Ω(n)2^{\Omega(n)} [GK1998]. In this paper, we prove that over fixed-size finite fields, any ΣΠΣ\Sigma\Pi\Sigma circuit for computing the iterated matrix multiplication polynomial of nn generic matrices of size n×nn\times n, must be of size 2Ω(nlogn)2^{\Omega(n\log n)}. The importance of this result is that over fixed-size fields there is no depth reduction technique that can be used to compute all the nO(1)n^{O(1)}-variate and nn-degree polynomials in VP by depth 3 circuits of size 2o(nlogn)2^{o(n\log n)}. The result [GK1998] can only rule out such a possibility for depth 3 circuits of size 2o(n)2^{o(n)}. We also give an example of an explicit polynomial (NWn,ϵ(X)NW_{n,\epsilon}(X)) in VNP (not known to be in VP), for which any ΣΠΣ\Sigma\Pi\Sigma circuit computing it (over fixed-size fields) must be of size 2Ω(nlogn)2^{\Omega(n\log n)}. The polynomial we consider is constructed from the combinatorial design. An interesting feature of this result is that we get the first examples of two polynomials (one in VP and one in VNP) such that they have provably stronger circuit size lower bounds than Permanent in a reasonably strong model of computation. Next, we prove that any depth 4 ΣΠ[O(n)]ΣΠ[n]\Sigma\Pi^{[O(\sqrt{n})]}\Sigma\Pi^{[\sqrt{n}]} circuit computing NWn,ϵ(X)NW_{n,\epsilon}(X) (over any field) must be of size 2Ω(nlogn)2^{\Omega(\sqrt{n}\log n)}. To the best of our knowledge, the polynomial NWn,ϵ(X)NW_{n,\epsilon}(X) is the first example of an explicit polynomial in VNP such that it requires 2Ω(nlogn)2^{\Omega(\sqrt{n}\log n)} size depth four circuits, but no known matching upper bound

    Sums of products of polynomials in few variables : lower bounds and polynomial identity testing

    Get PDF
    We study the complexity of representing polynomials as a sum of products of polynomials in few variables. More precisely, we study representations of the form P=i=1Tj=1dQijP = \sum_{i = 1}^T \prod_{j = 1}^d Q_{ij} such that each QijQ_{ij} is an arbitrary polynomial that depends on at most ss variables. We prove the following results. 1. Over fields of characteristic zero, for every constant μ\mu such that 0μ<10 \leq \mu < 1, we give an explicit family of polynomials {PN}\{P_{N}\}, where PNP_{N} is of degree nn in N=nO(1)N = n^{O(1)} variables, such that any representation of the above type for PNP_{N} with s=Nμs = N^{\mu} requires TdnΩ(n)Td \geq n^{\Omega(\sqrt{n})}. This strengthens a recent result of Kayal and Saha [KS14a] which showed similar lower bounds for the model of sums of products of linear forms in few variables. It is known that any asymptotic improvement in the exponent of the lower bounds (even for s=ns = \sqrt{n}) would separate VP and VNP[KS14a]. 2. We obtain a deterministic subexponential time blackbox polynomial identity testing (PIT) algorithm for circuits computed by the above model when TT and the individual degree of each variable in PP are at most logO(1)N\log^{O(1)} N and sNμs \leq N^{\mu} for any constant μ<1/2\mu < 1/2. We get quasipolynomial running time when s<logO(1)Ns < \log^{O(1)} N. The PIT algorithm is obtained by combining our lower bounds with the hardness-randomness tradeoffs developed in [DSY09, KI04]. To the best of our knowledge, this is the first nontrivial PIT algorithm for this model (even for the case s=2s=2), and the first nontrivial PIT algorithm obtained from lower bounds for small depth circuits

    On Computing Multilinear Polynomials Using Multi-r-ic Depth Four Circuits

    Get PDF
    International audienceIn this paper, we are interested in understanding the complexity of computing multilinear polynomials using depth four circuits in which polynomial computed at every node has a bound on the individual degree of r (referred to as multi-r-ic circuits). The goal of this study is to make progress towards proving superpolynomial lower bounds for general depth four circuits computing multilinear polynomials, by proving better and better bounds as the value of r increases. Recently, Kayal, Saha and Tavenas (Theory of Computing, 2018) showed that any depth four arithmetic circuit of bounded individual degree r computing a multilinear polynomial on n^O(1) variables and degree d = o(n), must have size at least (n/r^1.1)^{\sqrt{d/r}} when r is o(d) and is strictly less than n^1/1.1. This bound however deteriorates with increasing r. It is a natural question to ask if we can prove a bound that does not deteriorate with increasing r or a bound that holds for a larger regime of r. We here prove a lower bound which does not deteriorate with r , however for a specific instance of d = d (n) but for a wider range of r. Formally, we show that there exists an explicit polynomial on n^{O(1)} variables and degree Θ(log^2(n)) such that any depth four circuit of bounded individual degree r < n^0.2 must have size at least exp(Ω (log^2 n)). This improvement is obtained by suitably adapting the complexity measure of Kayal et al. (Theory of Computing, 2018). This adaptation of the measure is inspired by the complexity measure used by Kayal et al. (SIAM J. Computing, 2017)

    On the complexity of partial derivatives

    Full text link
    The method of partial derivatives is one of the most successful lower bound methods for arithmetic circuits. It uses as a complexity measure the dimension of the span of the partial derivatives of a polynomial. In this paper, we consider this complexity measure as a computational problem: for an input polynomial given as the sum of its nonzero monomials, what is the complexity of computing the dimension of its space of partial derivatives? We show that this problem is #P-hard and we ask whether it belongs to #P. We analyze the "trace method", recently used in combinatorics and in algebraic complexity to lower bound the rank of certain matrices. We show that this method provides a polynomial-time computable lower bound on the dimension of the span of partial derivatives, and from this method we derive closed-form lower bounds. We leave as an open problem the existence of an approximation algorithm with reasonable performance guarantees.A slightly shorter version of this paper was presented at STACS'17. In this new version we have corrected a typo in Section 4.1, and added a reference to Shitov's work on tensor rank
    corecore