953 research outputs found

    Embeddings and Ramsey numbers of sparse k-uniform hypergraphs

    Full text link
    Chvatal, Roedl, Szemeredi and Trotter proved that the Ramsey numbers of graphs of bounded maximum degree are linear in their order. In previous work, we proved the same result for 3-uniform hypergraphs. Here we extend this result to k-uniform hypergraphs, for any integer k > 3. As in the 3-uniform case, the main new tool which we prove and use is an embedding lemma for k-uniform hypergraphs of bounded maximum degree into suitable k-uniform `quasi-random' hypergraphs.Comment: 24 pages, 2 figures. To appear in Combinatoric

    On the minimum degree of minimal Ramsey graphs for multiple colours

    Full text link
    A graph G is r-Ramsey for a graph H, denoted by G\rightarrow (H)_r, if every r-colouring of the edges of G contains a monochromatic copy of H. The graph G is called r-Ramsey-minimal for H if it is r-Ramsey for H but no proper subgraph of G possesses this property. Let s_r(H) denote the smallest minimum degree of G over all graphs G that are r-Ramsey-minimal for H. The study of the parameter s_2 was initiated by Burr, Erd\H{o}s, and Lov\'{a}sz in 1976 when they showed that for the clique s_2(K_k)=(k-1)^2. In this paper, we study the dependency of s_r(K_k) on r and show that, under the condition that k is constant, s_r(K_k) = r^2 polylog r. We also give an upper bound on s_r(K_k) which is polynomial in both r and k, and we determine s_r(K_3) up to a factor of log r

    Ramsey numbers of Berge-hypergraphs and related structures

    Get PDF
    For a graph G=(V,E)G=(V,E), a hypergraph H\mathcal{H} is called a Berge-GG, denoted by BGBG, if there exists a bijection f:E(G)E(H)f: E(G) \to E(\mathcal{H}) such that for every eE(G)e \in E(G), ef(e)e \subseteq f(e). Let the Ramsey number Rr(BG,BG)R^r(BG,BG) be the smallest integer nn such that for any 22-edge-coloring of a complete rr-uniform hypergraph on nn vertices, there is a monochromatic Berge-GG subhypergraph. In this paper, we show that the 2-color Ramsey number of Berge cliques is linear. In particular, we show that R3(BKs,BKt)=s+t3R^3(BK_s, BK_t) = s+t-3 for s,t4s,t \geq 4 and max(s,t)5\max(s,t) \geq 5 where BKnBK_n is a Berge-KnK_n hypergraph. For higher uniformity, we show that R4(BKt,BKt)=t+1R^4(BK_t, BK_t) = t+1 for t6t\geq 6 and Rk(BKt,BKt)=tR^k(BK_t, BK_t)=t for k5k \geq 5 and tt sufficiently large. We also investigate the Ramsey number of trace hypergraphs, suspension hypergraphs and expansion hypergraphs.Comment: Updated to include suggestions of the refere

    Hypergraph Ramsey numbers

    Get PDF
    The Ramsey number r_k(s,n) is the minimum N such that every red-blue coloring of the k-tuples of an N-element set contains either a red set of size s or a blue set of size n, where a set is called red (blue) if all k-tuples from this set are red (blue). In this paper we obtain new estimates for several basic hypergraph Ramsey problems. We give a new upper bound for r_k(s,n) for k \geq 3 and s fixed. In particular, we show that r_3(s,n) \leq 2^{n^{s-2}\log n}, which improves by a factor of n^{s-2}/ polylog n the exponent of the previous upper bound of Erdos and Rado from 1952. We also obtain a new lower bound for these numbers, showing that there are constants c_1,c_2>0 such that r_3(s,n) \geq 2^{c_1 sn \log (n/s)} for all 4 \leq s \leq c_2n. When s is a constant, it gives the first superexponential lower bound for r_3(s,n), answering an open question posed by Erdos and Hajnal in 1972. Next, we consider the 3-color Ramsey number r_3(n,n,n), which is the minimum N such that every 3-coloring of the triples of an N-element set contains a monochromatic set of size n. Improving another old result of Erdos and Hajnal, we show that r_3(n,n,n) \geq 2^{n^{c \log n}}. Finally, we make some progress on related hypergraph Ramsey-type problems

    Ramsey numbers of ordered graphs

    Full text link
    An ordered graph is a pair G=(G,)\mathcal{G}=(G,\prec) where GG is a graph and \prec is a total ordering of its vertices. The ordered Ramsey number R(G)\overline{R}(\mathcal{G}) is the minimum number NN such that every ordered complete graph with NN vertices and with edges colored by two colors contains a monochromatic copy of G\mathcal{G}. In contrast with the case of unordered graphs, we show that there are arbitrarily large ordered matchings Mn\mathcal{M}_n on nn vertices for which R(Mn)\overline{R}(\mathcal{M}_n) is superpolynomial in nn. This implies that ordered Ramsey numbers of the same graph can grow superpolynomially in the size of the graph in one ordering and remain linear in another ordering. We also prove that the ordered Ramsey number R(G)\overline{R}(\mathcal{G}) is polynomial in the number of vertices of G\mathcal{G} if the bandwidth of G\mathcal{G} is constant or if G\mathcal{G} is an ordered graph of constant degeneracy and constant interval chromatic number. The first result gives a positive answer to a question of Conlon, Fox, Lee, and Sudakov. For a few special classes of ordered paths, stars or matchings, we give asymptotically tight bounds on their ordered Ramsey numbers. For so-called monotone cycles we compute their ordered Ramsey numbers exactly. This result implies exact formulas for geometric Ramsey numbers of cycles introduced by K\'arolyi, Pach, T\'oth, and Valtr.Comment: 29 pages, 13 figures, to appear in Electronic Journal of Combinatoric
    corecore