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Hypergraph Ramsey numbers

David Conlon∗ Jacob Fox† Benny Sudakov‡

Abstract

The Ramsey number rk(s, n) is the minimum N such that every red-blue coloring of the k-tuples
of an N -element set contains either a red set of size s or a blue set of size n, where a set is called

red (blue) if all k-tuples from this set are red (blue). In this paper we obtain new estimates for

several basic hypergraph Ramsey problems. We give a new upper bound for rk(s, n) for k ≥ 3 and
s fixed. In particular, we show that

r3(s, n) ≤ 2n
s−2 logn,

which improves by a factor of ns−2/polylogn the exponent of the previous upper bound of Erdős

and Rado from 1952. We also obtain a new lower bound for these numbers, showing that there are

constants c1, c2 > 0 such that
r3(s, n) ≥ 2c1 sn log(n/s)

for all 4 ≤ s ≤ c2n. When s is a constant, it gives the first superexponential lower bound for
r3(s, n), answering an open question posed by Erdős and Hajnal in 1972. Next, we consider the 3-

color Ramsey number r3(n, n, n), which is the minimum N such that every 3-coloring of the triples
of an N -element set contains a monochromatic set of size n. Improving another old result of Erdős

and Hajnal, we show that

r3(n, n, n) ≥ 2n
c log n

.

Finally, we make some progress on related hypergraph Ramsey-type problems.

1 Introduction

Ramsey theory refers to a large body of deep results in mathematics whose underlying philosophy

is captured succinctly by the statement that “Every large system, contains a large well organized

subsystem.” This is an area in which a great variety of techniques from many branches of mathematics

are used and whose results are important not only to combinatorics but also to logic, analysis, number

theory, and geometry. Since the publication of the seminal paper of Ramsey in 1930, this subject

experienced tremendous growth, and is currently among the most active areas in combinatorics.

The Ramsey number r(s, n) is the least integer N such that every red-blue coloring of the edges

of the complete graph KN on N vertices contains either a red Ks (i.e., a complete subgraph all of
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whose edges are colored red) or a blue Kn. Ramsey’s theorem states that r(s, n) exists for all s

and n. Determining or estimating Ramsey numbers is one of the central problem in combinatorics,

see the book Ramsey theory [19] for details. A classical result of Erdős and Szekeres [16], which is

a quantitative version of Ramsey’s theorem, implies that r(n, n) ≤ 22n for every positive integer n.

Erdős [7] showed using probabilistic arguments that r(n, n) > 2n/2 for n > 2. Over the last sixty

years, there have been several improvements on these bounds (see, e.g., [5]). However, despite efforts

by various researchers, the constant factors in the above exponents remain the same.

Off-diagonal Ramsey numbers, i.e. r(s, n) with s 6= n, have also been intensely studied. For

example, after several successive improvements, it is known (see [1], [20], [27]) that there are constants

c1, . . . , c4 such that

c1
n2

log n
≤ r(3, n) ≤ c2

n2

log n
,

and for fixed s > 3,

c3

(

n

log n

)(s+1)/2

≤ r(s, n) ≤ c4
ns−1

logs−2 n
, (1)

(For s = 4, Bohman [3] recently improved the lower bound by a factor of log1/2 n.) All logarithms in

this paper are base e unless otherwise stated.

Although already for graph Ramsey numbers there are significant gaps between lower and upper

bounds, our knowledge of hypergraph Ramsey numbers is even weaker. The Ramsey number rk(s, n)

is the minimum N such that every red-blue coloring of the unordered k-tuples of an N -element set

contains either a red set of size s or a blue set of size n, where a set is called red (blue) if all k-tuples

from this set are red (blue). Erdős, Hajnal, and Rado [14] showed that there are positive constants c

and c′ such that

2cn
2
< r3(n, n) < 22

c′n
.

They also conjectured that r3(n, n) > 22
cn

for some constant c > 0 and Erdős offered a $500 reward

for a proof. Similarly, for k ≥ 4, there is a difference of one exponential between known upper and

lower bounds for rk(n, n), i.e.,

tk−1(cn
2) ≤ rk(n, n) ≤ tk(c

′n),

where the tower function tk(x) is defined by t1(x) = x and ti+1(x) = 2ti(x).

The study of 3-uniform hypergraphs is particularly important for our understanding of hypergraph

Ramsey numbers. This is because of an ingenious construction called the stepping-up lemma due to

Erdős and Hajnal (see, e.g., Chapter 4.7 in [19]). Their method allows one to construct lower bound

colorings for uniformity k+1 from colorings for uniformity k, effectively gaining an extra exponential

each time it is applied. Unfortunately, the smallest k for which it works is k = 3. Therefore, proving

that r3(n, n) has doubly exponential growth will allow one to close the gap between the upper and

lower bounds for rk(n, n) for all uniformities k. There is some evidence that the growth rate of r3(n, n)

is closer to the upper bound, namely, that with four colors instead of two this is known to be true.

Erdős and Hajnal (see, e.g., [19]) constructed a 4-coloring of the triples of a set of size 22
cn

which does

not contain a monochromatic subset of size n. This result shows that the number of colors matters a

lot in this problem and leads to the question of what happens in the intermediate case when we use

three colors. The 3-color Ramsey number r3(n, n, n) is the minimum N such that every 3-coloring of

the triples of an N -element set contains a monochromatic set of size n. Naturally, for r3(n, n, n), one

should expect at least some improvement on the 2cn
2
lower bound. Indeed, Erdős and Hajnal provided
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such a result (see [13] and [4]), showing that r3(n, n, n) ≥ 2cn
2 log2 n. Here, we substantially improve

this bound, extending the above mentioned stepping-up lemma of these two authors to show

Theorem 1.1 There exists a constant c such that

r3(n, n, n) ≥ 2n
c log n

. (2)

For off-diagonal Ramsey numbers, a classical argument of Erdős and Rado [15] from 1952 demon-

strates that

rk(s, n) ≤ 2(
rk−1(s−1,n−1)

k−1
). (3)

Together with the upper bound in (1) it gives for fixed s that r3(s, n) ≤ 2(
r2(s−1,n−1)

2 ) ≤ 2
c n2s−4

log2s−6 n . Our

next result improves the exponent of this upper bound by a factor of ns−2/polylogn.

Theorem 1.2 For fixed s ≥ 4 and sufficiently large n,

log r3(s, n) ≤
( (s− 3)

(s− 2)!
+ o(1)

)

ns−2 log n. (4)

Clearly, a similar improvement for off-diagonal Ramsey numbers of higher uniformity follows from this

result together with (3).

Erdős and Hajnal [12] showed that log r3(4, n) > cn using the following simple construction. They

consider a random tournament on [N ] = {1, . . . , N} and color the triples from [N ] red if they form a

cyclic triangle and blue otherwise. Since it is well known and easy to show that every tournament on

four vertices contains at most two cyclic triangles and a random tournament on N vertices with high

probability does not contain a transitive subtournament of size c′ logN , the resulting coloring neither

has a red set of size 4 nor a blue set of size c′ logN . In the same paper from 1972, they suggested that

probably log r3(4,n)
n → ∞. Here we prove the following new lower bound which implies this conjecture.

Theorem 1.3 There are constants c1, c2 > 0 such that

log r3(s, n) ≥ c1 sn log(n/s)

for all 4 ≤ s ≤ c2n.

Combining this result together with the stepping-up lemma of Erdős and Hajnal (see [19]), one can

also obtain analogous improvements of lower bounds for off-diagonal Ramsey numbers for complete

k-uniform hypergraphs with k ≥ 4.

In view of our unsatisfactory knowledge of the growth rate of hypergraph Ramsey numbers, Erdős

and Hajnal [12] started the investigation of the following more general problem. Fix positive integers

k, s, and t. What is the smallest N such that every red-blue coloring of the k-tuples of an N -element

set has either a red set of size n or has a set of size s which contains at least t blue k-tuples? Note

that when t =
(s
k

)

the answer to this question is simply rk(n, s).

Let
(X
k

)

denote the collection of all k-element subsets of the set X. Define fk(N, s, t) to be the

largest n for which every red-blue coloring of
([N ]

k

)

has a red n-element set or a set of size s which

contains at least t blue k-tuples. Erdős and Hajnal [12] in 1972 conjectured that as t increases from

1 to
(s
k

)

, fk(N, s, t) grows first like a power of N , then at a well-defined value t = h
(k)
1 (s), fk(N, s, t)
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grows like a power of logN , i.e., fk(N, s, h
(k)
1 (s)−1) > N c1 but fk(N, s, h

(k)
1 (s)) < (logN)c2 . Then, as

t increases further, at h
(k)
2 (s) the function fk(N, s, t) grows like a power of log logN etc. and finally

fk (N, s, t) grows like a power of log(k−2)N for h
(k)
k−2(s) ≤ t ≤

(s
k

)

. Here log(i)N is the i-fold iterated

logarithm of N , which is defined by log(1)N = logN and log(j+1)N = log(log(j)N).

This problem of Erdős and Hajnal is still widely open. In [12] they started a careful investigation

of h
(3)
1 (s) and made several conjectures which would determine this function. We make progress on

their conjectures, computing h
(3)
1 (s) for infinitely many values of s. We also approximate h

(3)
1 (s) for

all s.

In the next section, we prove Theorem 1.2 which gives a new upper bound on off-diagonal hyper-

graph Ramsey numbers. Our lower bound on r3(s, n) appears in Section 3. In Section 4, we study

the 3-color hypergraph Ramsey numbers and prove the lower bound for r3(n, n, n). In Section 5,

confirming a conjecture of Erdős and Hajnal, we determine the function h
(3)
1 (s) for infinitely many

values of s. Finally, in the last section of the paper, we make several additional remarks on related

hypergraph Ramsey problems. Throughout the paper, we systematically omit floor and ceiling signs

whenever they are not crucial for the sake of clarity of presentation. We also do not make any serious

attempt to optimize absolute constants in our statements and proofs.

2 An Upper Bound for r3(s, n)

In this section we prove the upper bound (4) on off-diagonal hypergraph Ramsey numbers.

First we briefly discuss a classical approach to this problem by Erdős-Rado and indicate where it

can be improved. To prove log2 r3(s, n) ≤
(

r(s−1,n−1)
2

)

, given a red-blue coloring χ of the triples from

[N ], Erdős and Rado greedily construct a set of vertices {v1, . . . , vr(s−1,n−1)+1} such that for any given

pair 1 ≤ i < j ≤ r(s − 1, n − 1), all triples {vi, vj , vk} with k > j are of the same color, which we

denote by χ′(vi, vj). By definition of the Ramsey number, there is either a red clique of size s− 1 or

a blue clique of size n− 1 in coloring χ′, and this clique together with vr(s−1,n−1)+1 forms a red set of

size s or a blue set of size n in coloring χ. The greedy construction of the set {v1, . . . , vr(s−1,n−1)+1}

is as follows. First, pick an arbitrary vertex v1 and set S1 = S \ {v1}. After having picked {v1, . . . , vi}

we also have a subset Si such that for any pair a, b with 1 ≤ a < b ≤ i, all triples {va, vb, w} with

w ∈ Si are the same color. Let vi+1 be an arbitrary vertex in Si and set Si,0 = Si \ {vi+1}. Suppose

we already constructed Si,j ⊂ Si,0 such that, for every h ≤ j and w ∈ Si,j, all triples {vh, vi+1, w} have

the same color. If the number of edges (vj+1, vi+1, w) with w ∈ Si,j that are red is at least |Si,0|/2,

then we let

Si,j+1 = {w : (vj+1, vi+1, w) is red and w ∈ Si,j}

and set χ′(i+ 1, j + 1) = red, otherwise we let

Si,j+1 = {w : (vj+1, vi+1, w) is blue and w ∈ Si,j}

and set χ′(i + 1, j + 1) = blue. Finally, we let Si+1 = Si,i. Notice that {v1, . . . , vi+1} and Si+1 have

the desired properties to continue the greedy algorithm. Also, for each edge (vi+1, vj+1) that we color

by χ′, the set Si,j is at most halved. So we lose a factor of at most two for each of the
(

r(s−1,n−1)
2

)

edges colored by χ′.1

1We also lose one element from Si when we pick vi+1, but this loss is rather insubstantial.

4



There are two ways we are able to improve on the Erdős-Rado approach. Our first improvement

comes from utilizing the fact that we do not need to ensure that for every pair i < j, all edges

{vi, vj , vk} with k > j are of the same color. That is, the coloring χ′ will not necessarily color every

pair. Furthermore, the number of edges we color by χ′ will be much smaller than the best known

estimate for
(r(s−1,n−1)

2

)

, and this is how we will be able to get a smaller upper bound on r3(s, n). This

idea is nicely captured using the vertex on-line Ramsey number which we next define. Consider the

following game, played by two players, builder and painter: at step i+1 a new vertex vi+1 is revealed;

then, for every existing vertex vj, j = 1, · · · , i, builder decides, in order, whether to draw the edge

vjvi+1; if he does expose such an edge, painter has to color it either red or blue immediately. The

vertex on-line Ramsey number r̃(k, l) is then defined as the minimum number of edges that builder

has to draw in order to force painter to create either a red Kk or a blue Kl. In Lemma 2.2, we provide

an upper bound on r̃(s−1, n−1) which is much smaller than the best known estimate on
(r(s−1,n−1)

2

)

.

Since we are losing a factor of at most two for every exposed edge, this immediately improves on the

Erdős-Rado bound for r3(s, n).

A further improvement can be made by using the observation that there will not be many pairs

i < j for which all triples {vi, vj , vk} with k > j are red. That is, we will be able to show that there are

not many red edges in the coloring χ′ we construct. Let 0 < α ≪ 1/2. Suppose we have {v1, . . . , vi}

and a set S and, for a given j < i, we want to find a subset S′ ⊂ S such that all triples {vj , vi, w}

with w ∈ S′ are the same color. We pick S′ = {w : {vj , vi, w} is red and w ∈ S} if the number of

triples {vj , vi, w} with w ∈ S is at least α|S| and blue otherwise. While the size of S decreases now by

a much larger factor for each red edge in χ′, there are not many red edges in χ′, on the other hand,

we lose very little, specifically a factor (1 − α), for each blue edge in χ′. By picking α appropriately,

we gain significantly over taking α = 1/2 for our upper bound on off-diagonal hypergraph Ramsey

numbers.

Before we proceed with the proof of our upper bound on r3(s, n), we want to discuss some other

Ramsey-type numbers related to our vertex on-line Ramsey game. One variant of Ramsey numbers

which was extensively studied in the literature ([17]) is the size Ramsey number r̂(G1, G2), which is the

minimum number of edges of a graph whose every red-blue edge-coloring contains either a red G1 or a

blue G2. Clearly, r̃(k, ℓ) ≤ r̂(Kk,Kl) since builder can choose to pick the edges of a graph which gives

the size Ramsey number for (Kk,Kl). Unfortunately, it is not difficult to show that r̂(Kk,Kl) =
(r(k,l)

2

)

and therefore we cannot obtain any improvement using these numbers. Another on-line Ramsey game

which is quite close to ours, was studied in [23]. In this game, there are two players, builder and

painter, who move on the originally empty graph with an unbounded number of vertices. At each

step, builder draws a new edge and painter has to color it either red or blue immediately. The edge

on-line Ramsey number r̄(k, l) is then defined as the minimum number of edges that builder has to

draw in order to force painter to create either a red Kk or a blue Kl. A randomized version of the edge

on-line Ramsey game was studied in [18]. The authors of [23] proved an upper bound for r̄(k, l) which is

similar to our Lemma 2.2. A careful reading of their paper shows that builder first exposes edges from

the first vertex to all future vertices, and so on. Thus, this builder strategy cannot be implemented

when proving upper bounds for hypergraph Ramsey numbers. Moreover, it is not clear how to use

the edge on-line Ramsey game to get an improvement on hypergraph Ramsey numbers. Lemma 2.2

is therefore essential for our proof giving new upper bounds for hypergraph Ramsey numbers.

Using the ideas discussed above, we next prove an upper bound on r3(s, n) which involves some

parameters of the vertex on-line Ramsey game.
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Theorem 2.1 Suppose in the vertex on-line Ramsey game that builder has a strategy which ensures

a red Ks−1 or a blue Kn−1 using at most v vertices, r red edges, and in total m edges. Then, for any

0 < α ≤ 1/2, the Ramsey number r3(s, n) satisfies

r3(s, n) ≤ (v + 1)α−r(1− α)r−m. (5)

Proof. Let N = (v + 1)α−r(1 − α)r−m and consider a red-blue coloring χ of the triples of the set

[N ]. We wish to show that the coloring χ must contain a red set of size s or a blue set of size n.

We greedily construct a set of vertices {v1, · · · , vh} and a graph Γ on these vertices with at most v

vertices, at most r red edges, and at most m total edges across them such that for any edge e = vivj ,

i < j in Γ, the color of any 3-edge {vi, vj , vk} with k > j is the same, say χ′(e). Moreover, this graph

will contain either a red Ks−1 or a blue Kn−1, which one can easily see will define a red set of size s

or a blue set of size n..

We begin the construction of this set of vertices by arbitrarily first choosing vertices v1 ∈ [N ] and

setting S1 = [N ] \ {v1}. Given a set of vertices {v1, · · · , va}, we have a set Sa such that for each edge

e = vivj of Γ with i, j ≤ a, the color of the 3-edge {vi, vj , w} is the same for every w in Sa.

Now let va+1 be a vertex in Sa. We play the vertex on-line Ramsey game, so that builder chooses

the edges to be drawn according to his strategy. Painter then colors these edges. For the first edge

e1 chosen, painter looks at all triples containing this edge and a vertex from Sa \ {va+1}. The 2-edge

is colored red in χ′ if it there are more than α(|Sa| − 1) such triples that are red and blue otherwise.

This defines a new subset Sa,1, which are all vertices in Sa \ {va+1} such that together with edge e1
form a triple of color χ′(e1). For the next drawn edge e2 we color it red if there more than α|Sa,1| red

triples containing it and a vertex from Sa,1 and blue otherwise. This will define an Sa,2 and so forth.

After we have added all edges from va+1, the remaining set will be Sa+1. Let ma be the number of

edges e = viva with i < a in Γ and ra be the number of such edges that are red.

We now show by induction that

|Sa| ≥ (v + 1− a)α−r+
Pa

i=1 ri(1− α)r−m+
Pa

i=1 mi−ri .

For the base case a = 1, we have

|S1| = N − 1 = (v + 1)α−r(1− α)r−m − 1 ≥ vα−r(1− α)r−m.

Suppose we have proved the desired inequality for a. When we draw a vertex va+1, the size of our set

Sa decreases by 1. Each time we draw an edge from va+1 we have the size of our set S goes down by

a factor α or 1− α. Therefore,

|Sa+1| ≥ αri(1− α)mi−ri(|Sa| − 1) ≥ αri(1− α)mi−ri |Sa| − 1

≥ (v + 1− a)α−r+
Pa+1

i=1 ri(1− α)r−m+
Pa+1

i=1 mi−ri − 1

≥ ((v + 1)− (a+ 1))α−r+
Pa+1

i=1 ri(1− α)r−m+
Pa+1

i=1 mi−ri .

By our assumption on the vertex on-line Ramsey game, by the time we will construct graph Γ

containing either a read Ks−1 or a blue Kn−1, this graph will have a ≤ v vertices, at most r red edges,

and at most m total edges. Therefore at this time we have

|Sa| ≥ (v + 1− a)α−r+
Pa

i=1 ri(1− α)r−m+
Pa

i=1 mi−ri ≥ 1,
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i.e., Sa is not empty. Thus a vertex from Sa together with the red Ks−1 or blue Kn−1 in edge-coloring

χ′ of Γ make either a red set of size s or a blue set of size n in coloring χ, completing the proof. ✷

Lemma 2.2 In the vertex on-line Ramsey game builder has a strategy which ensures a red Ks or a

blue Kn using at most
(s+n−2

s−1

)

vertices, (s− 2)
(s+n−2

s−1

)

+1 red edges, and (s+n− 4)
(s+n−2

s−1

)

+1 total

edges. In particular,

r̃(s, n) ≤ (s + n− 4)

(

s+ n− 2

s− 1

)

+ 1.

Proof. We are going to define a set of vertices labeled by strings and the associated set of edges to be

drawn during the game as follows. The first vertex exposed, will be labeled as w∅. Every other vertex

which we expose during the game will be connected by edge to w∅. Recall that immediately after the

edge is exposed it is colored by painter. The first vertex which is connected to w∅ by red (blue) edge

is labeled wR (wB). Successively, we connect vertex v to wR or wB if and only if this vertex is already

connected to w∅ by a red or respectively blue edge.

More generally, if we have defined wa1a2···ap with each ai = R or B and v is the first exposed vertex

which is connected to wa1···aj in color aj+1 for each j = 0, · · · , p, we label v as wa1···ap+1 . (When j = 0,

wa1···aj = w∅.) The only successively chosen vertices which we join to wa1···ap+1 by an edge will be

those edges v which are also joined to wa1···aj in color aj+1 for each j = 0, · · · , p.

Suppose now that we have exposed
(s+n−2

s−1

)

=
(s+n−3

s−2

)

+
(s+n−3

s−1

)

vertices in total. Since w∅ is

connected to all vertices, its degree is
(

s+n−2
s−1

)

− 1. Thus w∅ is connected either to
(

s+n−3
s−2

)

vertices in

red or
(s+n−3

s−1

)

vertices in blue. If the former holds we look at the neighbors of wR, which is all vertices

which labeled by string with first letter R. Otherwise we look at neighbors of wB . Suppose now that

we are looking at the neighbors of wa1···ap , where r of the ai are red and b of them are blue. Then, by

our construction, wa1···ap will have been joined to
(

s+n−r−b−2
s−r−1

)

−1 vertices. Now, either wa1···ap is joined

to
(

s+n−r−b−3
s−r−2

)

vertices in red or
(

s+n−r−b−3
s−r−1

)

vertices in blue. In the first case we look at wa1···apR and

its neighbors and in the second case at wa1···apB and its neighbors. By the time we reach a string of

length s+n− 3, we will have either s− 1 reds or n− 1 blues. If s− 1 of the ai, say aj1+1, · · · , ajs−1+1,

are R, then we know that the collection of vertices wa1···aj1
, · · · , wa1···ajs−1

, wa1···ajs−1+1 forms a red

clique of size s. Similarly, were n− 1 of the ai blue, we would have a blue clique of size n.

All that remains to do is to estimate how many edges builder draws. Look on the vertices in the

order they were exposed. Clearly, for every vertex we can only look on the edges connecting it to

preceeding vertices. Notice that a vertex wa1···ap is adjacent to precisely p vertices which were exposed

before it. Moreover the number of red edges connecting wa1···ap to vertices before it is precisely the

number of ai which are R. Since all but the last vertex are labeled by strings of length at most s+n−4,

we have at most (s + n − 4)
(s+n−2

s−1

)

+ 1 total edges. Similarly, all but the last vertex have at most

s− 2 symbols R in their string, which shows that the number of edges colored red during the game is

at most (s− 2)
(s+n−2

s−1

)

+ 1. ✷

The following result implies (4).

Corollary 2.3 The Ramsey number r3(s, n) with 4 ≤ s ≤ n satisfies

r3(s, n) ≤ 2
(s−3)
(s−2)!

(s+n)s−2 log2(64n/s). (6)
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Proof. By Lemma 2.2, in the vertex on-line Ramsey game builder has a strategy which ensures a

red Ks−1 or a blue Kn−1 using at most v =
(s+n−4

s−2

)

vertices, r = (s − 3)
(s+n−4

s−2

)

+ 1 red edges, and

m = (s + n − 6)
(

s+n−4
s−2

)

+ 1 total edges. To minimize the function α−r(1 − α)r−m, one should take

α = r
m . Note that m/r ≤ (s + n− 6)/(s − 3) ≤ 4n/s, v < r ≤ m/2 and r ≤ (s−3)

(s−2)!(s + n)s−2. Hence,

the Ramsey number r3(s, n) satisfies

r3(s, n) ≤ (v + 1)(m/r)r(1− r/m)r−m ≤ (v + 1)(4n/s)r(1− r/m)−m

≤ r(4n/s)r
(

1 + 2r/m
)m

≤ r(4e2n/s)r < (64n/s)r

≤ 2
(s−3)
(s−2)!

(s+n)s−2 log2(64n/s). ✷

Also, taking α = 1/2 in Theorem 2.1, it is worth noting that in the diagonal case our results easily

imply the following theorem, which improves upon the bound r3(k, k) ≤ 22
4k

due to Erdős and Rado.

Theorem 2.4

log2 log2 r3(k, k) ≤ (2 + o(1))k.

Our methods can also be used to study Ramsey numbers of non-complete hypergraphs. To illustrate

this, we will obtain a lower bound on f3(N, 4, 3), slightly improving a result of Erdős and Hajnal. Let

K
(3)
t denote the complete 3-uniform hypergraph with t vertices, and K

(3)
t \ e denote the 3-uniform

hypergraph with t vertices formed by removing one triple. For k-uniform hypergraphs H and G, the

Ramsey number r(H,G) is the minimum N such that every red-blue coloring of
([N ]

k

)

contains either

a red copy of H or a blue copy of G. Note that an upper bound on f3(N, 4, 3) is equivalent to a lower

bound on the Ramsey number r
(

K
(3)
4 \e,K

(3)
n

)

because they are inverse functions of each other. Erdős

and Hajnal [12] proved the following bounds:

1

2

log2 N

log2 log2 N
≤ f3(N, 4, 3) ≤ (2 log2N) + 1.

The upper bound follows from the same coloring (discussed in the introduction) based on tournaments

which gives a lower bound on r3(4, n). We will use our approach to improve the lower bound by an

asymptotic factor of 2.

Proposition 2.5 We have r
(

K
(3)
4 \ e,K

(3)
n

)

≤ (2en)n.

Sketch of proof. We apply the exact same proof technique as we did for Theorem 2.1 except that

we will expose all edges. We have a coloring of the complete 3-uniform hypergraph with N vertices

which neither contains a red K
(3)
4 \ e nor a blue set of size n. Note that the coloring χ′ of the edges of

the complete graph with vertex set V = {v1, . . . , vh−1} we get in the proof does not contain a pair of

monochromatic red edges (vj , vi) and (vj , vk) with 1 ≤ j < i < k < h or 1 ≤ i < j < k < h, otherwise

vi, vj , vk, vh are the vertices of a red K
(3)
4 \ e. Therefore, the red graph in the coloring χ′ is just a

disjoint union of stars. Let m be the number of edges in the red graph. Note that disjoint union of

stars with m edges has an independent set of size m and forms a bipartite graph. Therefore the red

graph has an independent set of size at least max{m, (h − 1)/2}. Such an independent set in the red

graph is a clique in the blue graph in the coloring χ′, and together with vh make a blue complete
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3-uniform hypergraph in the coloring χ. This, gives us inequalities m+ 1 < n and (h− 1)/2 + 1 < n.

With hindsight, we pick α = 1/(2n). By Theorem 2.1, this implies that

r(K
(3)
4 \ e, n) ≤ (1 + h)α−m(1− α)m−(h−1

2 ) ≤ (2n− 1)
(

2n
)n−2

(

1−
1

2n

)−h2/2

≤ (2en)n,

where we use that 3 ≤ h ≤ 2n− 2,m ≤ n− 2 and that (1− 1/x)1−x ≤ e for x > 1. ✷

Theorem 1.3 shows that log r3(4, n) > cn log n for an absolute constant c. It would be also nice

to give a similar lower bound (if it is true) for r
(

K
(3)
4 \ e,K

(3)
n

)

since then we would know that

log r
(

K
(3)
4 \ e,K

(3)
n

)

has order of n log n.

3 A lower bound construction

The purpose of this section is to prove Theorem 1.3 which gives a new lower bound on r3(s, n). To

do this, we need to recall an estimate for graph Ramsey numbers. As we already mentioned in (1),

for sufficiently large n and fixed s, r(s, n) > c (n/ log n)(s+1)/2 > n3/2. Also, for all 4 ≤ s ≤ n and

n sufficiently large, one can easily show that r(s, n) > (n+s
s )s/3. (This is actually not the best lower

bound for r(s, n) but it is enough for our purposes.) Indeed, if s = 3, this bound is trivial. For

s ≥ 4, consider a random red-blue edge-coloring of the complete graph on N = (n+s
s )s/3 vertices in

which each edge is red with probability p =
(

s
n+s

)0.9
. It is easy to check that the expected number of

monochromatic red s-cliques and blue n-cliques in this coloring is
(N
s

)

p(
s
2) +

(N
n

)

(1− p)(
n
2) < 1. These

estimates together with the next theorem clearly imply Theorem 1.3.

Theorem 3.1 For all sufficiently large n and 4 ≤ s ≤ n,

r3(s, n) >
(

r(s− 1, n/4) − 1
)n/24

.

Proof. Let ℓ = n/4, r = r(s − 1, ℓ) − 1, N = rn/24, and c1 :
([r]
2

)

→ {red, blue} be a red-blue

edge-coloring of the complete graph on [r] with no red clique of size s− 1 and no blue clique of size ℓ.

Consider a coloring c2 :
([N ]

2

)

→ [r] picked uniformly at random from all r-colorings of
([N ]

2

)

, i.e., each

edge has probability 1
r of being a particular color independent of all other edges. Using the auxiliary

colorings c1 and c2, we define the red-blue coloring c :
([N ]

3

)

→ {red, blue} where the color of a triple

{a, b, c} with a < b < c is c1
(

c2(a, b), c2(a, c)
)

if c2(a, b) 6= c2(a, c) and is blue if c2(a, b) = c2(a, c). We

next show that in coloring c there is no red set of size s and with positive probability no blue set of

size n, which implies the theorem.

First, suppose that the coloring c contains a red set {u1, . . . , us} of size s with u1 < . . . < us.

Then all the colors c2(u1, uj) with 2 ≤ j ≤ s are distinct and form a red clique of size s − 1 in c1, a

contradiction.

Next, we estimate the expected number of blue cliques of size n in coloring c. Let {v1, . . . , vn} with

v1 < . . . < vn be a set of n vertices. Fix for now 1 ≤ i ≤ n. If all triples {vi, vj , vk} with i < j < k

are blue, then the distinct colors among the colors c2(vi, vj) for i < j ≤ n must form a blue clique in

coloring c1. Therefore the number of distinct colors c2(vi, vj) with i < j ≤ n is less than ℓ. Every such

subset of distinct colors is contained in at least one of the
( r
ℓ−1

)

subsets of [r] of size ℓ− 1. If we fix a
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set of ℓ− 1 colors, the probability that each of the colors c2(vi, vj) with i < j ≤ n is one of these ℓ− 1

colors is
(

ℓ−1
r

)n−i
. Therefore the expected number of blue cliques of size n in coloring c is at most

(

N

n

) n
∏

i=1

(

r

ℓ− 1

)(

ℓ− 1

r

)n−i

≤ Nn

(

r

ℓ− 1

)n(ℓ− 1

r

)(n2)
≤ Nn

(

er

ℓ− 1

)(ℓ−1)n (ℓ− 1

r

)(n2)

=

(

Neℓ−1

(

ℓ− 1

r

)
n−1
2

−(ℓ−1)
)n

<

(

Neℓ−1
(

r−1/3
)

n−1
2

−(ℓ−1)
)n

<

(

N2
(

r−1/3
)n/4

)n

= 1,

where we use that ℓ− 1 < r2/3, ℓ = n/4, and N = rn/24 = rℓ/6 > eℓ. Hence, there is a coloring c with

no red set of size s and no blue set of size n. ✷

An additional feature of our new lower bound on r3(s, n) is that it increases continuously with

growth of s and for s = n coincides with the bound r3(n, n) ≥ 2cn
2
, which was given by Erdős, Hajnal,

and Rado [14]. For example, for n1/2 ≪ s ≪ n, the previously best known bound for r3(s, n) was

essentially r3(s, n) ≥ r3(s, s) ≥ 2cs
2
.

4 Bounding r3(n, n, n)

We now prove the lower bound, r3(n, n, n) ≥ 2n
c log n

, mentioned in the introduction. Though our

method follows the stepping-up tradition of Erdős and Hajnal, it is curious to note that their own

best lower bound on the problem, r3(n, n, n) ≥ 2cn
2 log2 n, is not proven in this manner. In Erdős and

Hajnal’s proof that the r3(n, n, n, n) > 22
cn
, they use the stepping up lemma starting from a 2-coloring

of a complete graph with r(n − 1, n − 1) − 1 vertices not containing a monochromatic clique of size

n− 1 to obtain a 4-coloring of the triples of a set of size 2r(n−1,n−1)−1 without a monochromatic set of

size n. Our proof that r3(n, n, n) > 2n
c log n

is also based on the stepping-up lemma, using essentially

the following idea. We start with a 2-coloring of the complete graph on r(log2 n, n − 1) − 1 vertices

which contains neither a monochromatic red clique of size log2 n nor a monochromatic blue clique of

size n − 1. Then we obtain a 4-coloring of the triples of a set of size 2r(log2 n,n−1)−1 ≥ 2n
c log n

as in

the Erdős-Hajnal proof. Next we combine two of the four color classes to obtain a 3-coloring of the

triples. Finally, we carefully analyze this 3-coloring to show that it does not contain a monochromatic

set of size n.

Theorem 4.1

r3(n, n, n) > 2r(log2 n,n−1)−1.

Proof. Let G be a graph on m = r(log2 n, n− 1) − 1 vertices which contains neither a clique of size

n−1 nor an independent set of size log2 n and let Ḡ be the complement of G. We are going to consider

the complete 3-uniform hypergraph H on the set

T = {(γ1, · · · , γm) : γi = 0 or 1}.
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If ǫ = (γ1, · · · , γm), ǫ′ = (γ′1, · · · , γ
′
m) and ǫ 6= ǫ′, define

δ(ǫ, ǫ′) = max{i : γi 6= γ′i},

that is, δ(ǫ, ǫ′) is the largest coordinate at which they differ. Given this, we can define an ordering on

T , saying that

ǫ < ǫ′ if γi = 0, γ′i = 1,

ǫ′ < ǫ if γi = 1, γ′i = 0.

Equivalently, associate to any ǫ the number b(ǫ) =
∑m

i=1 γi2
i−1. The ordering then says simply that

ǫ < ǫ′ iff b(ǫ) < b(ǫ′).

We will further need the following two properties of the function δ which one can easily prove.

(a) If ǫ1 < ǫ2 < ǫ3, then δ(ǫ1, ǫ2) 6= δ(ǫ2, ǫ3) and

(b) if ǫ1 < ǫ2 < · · · < ǫp, then δ(ǫ1, ǫp) = max1≤i≤p−1 δ(ǫi, ǫi+1).

In particular, these properties imply that there is a unique index i which achieves maximum of

δ(ǫi, ǫi+1). Indeed suppose that there are indices i < i′ such that

ℓ = δ(ǫi, ǫi+1) = δ(ǫi′ , ǫi′+1) = max
1≤j≤p−1

δ(ǫj , ǫj+1).

Then, by property (b) we also have that ℓ = δ(ǫi, ǫi′) = δ(ǫi′ , ǫi′+1). This contradicts property (a)

since ǫi < ǫi′ < ǫi′+1.

We are now ready to color the complete 3-uniform hypergraph H on the set T . If ǫ1 < ǫ2 < ǫ3, let

δ1 = δ(ǫ1, ǫ2) and δ2 = δ(ǫ2, ǫ3). Note that, by property (a) above, δ1 and δ2 are not equal. Color the

edge {ǫ1, ǫ2, ǫ3} as follows:

C1, if (δ1, δ2) ∈ e(G) and δ1 < δ2;

C2, if (δ1, δ2) ∈ e(G) and δ1 > δ2;

C3, if (δ1, δ2) 6∈ e(G), i.e., it is an edge in Ḡ.

Suppose that C1 contains a clique {ǫ1, · · · , ǫn}< of size n. For 1 ≤ i ≤ n − 1, let δi = δ(ǫi, ǫi+1).

Note that the δi form a monotonically increasing sequence, that is δ1 < δ2 < · · · < δn−1. Also, note

that since, for any 1 ≤ i < j ≤ n − 1, {ǫi, ǫi+1, ǫj+1} ∈ C1, we have, by property (b) above, that

δ(ǫi+1, ǫj+1) = δj , and thus {δi, δj} ∈ e(G). Therefore, the set {δ1, · · · , δn−1} must form a clique of

size n− 1 in G. But we have chosen G so as not to contain such a clique, so we have a contradiction.

A similar argument shows that C2 also cannot contain a clique of size n.

For C3, assume again that we have a monochromatic clique {ǫ1, · · · , ǫn}< of size n, and, for

1 ≤ i ≤ n− 1, let δi = δ(ǫi, ǫi+1). Not only can we no longer guarantee that these δi form a monotonic

sequence, but we can no longer guarantee that they are distinct. Suppose that there are d distinct

values of δ, given by {∆1, · · · ,∆d}, where ∆1 > · · · > ∆d. We will consider the subgraph of Ḡ induced

by this vertices. Note that, by definition of the coloring C3, the vertices ∆i and ∆j are adjacent in Ḡ

if there exists ǫr < ǫs < ǫt with ∆i = δ(ǫr, ǫs) and ∆j = δ(ǫs, ǫt). We show that this set necessarily

has a complete subgraph on log2 n vertices, contradicting our assumptions on Ḡ.

Since ∆1 is the largest of the ∆j, there is a unique index i1 such that ∆1 = δi1 . Note that ∆1 is

adjacent in Ḡ to all ∆j, j > 1. Indeed, every such ∆j = δ(ǫi′ , ǫi′+1) for some index i′ 6= i1 and suppose
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i1 < i′ (the other case is similar). Then ǫi1 < ǫi′ < ǫi′+1. Also, by property (b) and maximality of

∆1, we have that ∆1 = δ(ǫi1 , ǫi1+1) = δ(ǫi1 , ǫi′), and therefore it is connected to ∆j in Ḡ. Now either

there are (n− 2)/2 = n/2− 1 values of j greater than i1 or less than i1. Let V1 be the larger of these

two intervals.

Suppose, inductively, that one has been given an interval Vj−1 in [n− 1]. Look at the set {δa|a ∈

Vj−1}. One of these δ, say δij , will be the largest and as we explain above, will be connected to

every other δa with a ∈ Vj−1. There are at least (|Vj−1| − 1)/2 indices in either {a ∈ Vj−1|a < ij} or

{a ∈ Vj−1|a > ij}. Let Vj be the larger of these two intervals, so in particular |Vj| ≥ (|Vj−1| − 1)/2.

By induction, it is easy to show that |Vj | ≥
n
2j

− 1. Therefore, for j ≤ log2 n − 1, |Vj| ≥ 1 and,

hence, the set δi1 , · · · , δilog2 n
forms a clique in Ḡ, as required. This contradicts the fact that G has no

independent set of this size and completes the proof. ✷

As discussed in the beginning of Section 3, the probabilistic method demonstrates that, for s ≤ n,

r(s, n) ≥
(

n+s
s

)c′s
. Substituting this bound with s = log2 n into Theorem 4.1 implies the desired result

r3(n, n, n) ≥ 2n
c logn

.

5 A hypergraph problem of Erdős and Hajnal

In this section we determine the function h
(3)
1 (s) for infinitely many values of s and find a small interval

containing h
(3)
1 (s) for all values of s. Recall that f3(N, s, t) is the largest integer n for which every

red-blue coloring of
(

[N ]
3

)

has a red n-element set or a set of size s with at least t blue triples. Also

recall that h
(3)
1 (s) is the least t for which f3(N, s, t) stops growing like a power of N and starts growing

like a power of logN , i.e., f3(N, s, h
(3)
1 (s)− 1) > N c1 but f3(N, s, h

(3)
1 (s)) < (logN)c2 .

Consider the minimal family F of 3-uniform hypergraphs defined as follows. The empty hyper-

graphs on 1 and 2 vertices and an edge are elements of F . If H,G ∈ F and v is a vertex of H, then the

following 3-uniform hypergraphH(G, v) is in F as well. The vertex set ofH(G, v) is (V (H)\{v})∪V (G)

and its edges consist of the edges of G, the edges of H not containing v, and all triples {a, b, c} with

a, b ∈ H and c ∈ G for which {a, b, v} is an edge of H. Erdős and Hajnal showed that for every

hypergraph H ∈ F on s vertices, every red-blue coloring of the triples of a set of size N has either a

red copy of H or a blue set of size N ǫs . This can be shown by induction on s using the following claim

which can be proved using a simple counting argument. If H,G ∈ F , then any red-blue coloring of

the triples of a set of size N without a blue set of size N ǫ1 has N δ copies of H all sharing the same

copy of H \ v. In these N δ vertices, we either get a red copy of G which together with the copy of

H \ v make a copy of H(G, v) or a blue set of size (N δ)ǫ2 . By choosing ǫ = min(ǫ1, δǫ2), we get the

desired result.

Let g
(3)
1 (s) be the maximum number of edges in a hypergraph in F with s vertices. One can

check that every hypergraph H ∈ F on s vertices has the following structure. Its vertex set can be

partitioned into three parts A,B,C (one of which might be empty) such that all triples intersecting

A, B, and C are edges of H and subhypergraphs induced by sets A, B, and C are also members of

F . This implies that the function g
(3)
1 (s) can also be defined recursively. Put g

(3)
1 (1) = g

(3)
1 (2) = 0.

Assume that g
(3)
1 (m) has already been defined for all m < s. Then

g
(3)
1 (s) = max

a+b+c=s
g
(3)
1 (a) + g

(3)
1 (b) + g

(3)
1 (c) + abc.
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It is not difficult to see that the maximum is obtained when a, b, and c are as nearly equal as possible.

It follows from the definition of h
(3)
1 and the result in the previous paragraph that h

(3)
1 (s) > g

(3)
1 (s).

Erdős and Hajnal further conjectured that this bound is tight.

Conjecture 5.1 For all positive integers s, h
(3)
1 (s) = g

(3)
1 (s) + 1.

Consider an edge-coloring c of the complete graph on [N ] with colors I, II, III picked uniformly at

random. From this coloring, we get a red-blue coloring C of the triples from [N ] as follows: if a < b < c

has (a, b) color I, (b, c) color II, and (a, c) color III, then color {a, b, c} red, otherwise color the triple

blue. Since every complete graph of order q contains Θ(q2) edge-disjoint triangles, the probability

that a given set of size q contains only blue triples is at most 2−Θ(q2). Thus, it is straightforward

to check that with high probability, in the coloring C the largest blue set has size O(logN). Over

all edge-colorings of the complete graph on [s] with colors I, II, III, let F1(s) denote the maximum

number of triples (a, b, c) with 1 ≤ a < b < c ≤ s such that (a, b) is color I, (b, c) is color II, and

(a, c) is color III. Note that in the coloring C we constructed above whose largest blue set has size

O(logN), every set of size s has at most F1(s) red triples. Therefore, by definition, h
(3)
1 ≤ F1(s) + 1.

Since also h
(3)
1 (s) > g

(3)
1 (s), it implies that F1(s) ≥ g

(3)
1 (s). Erdős and Hajnal conjectured that these

two functions are actually equal, which would imply h
(3)
1 (s) = F1(s) + 1 = g

(3)
1 (s) + 1 and hence

Conjecture 5.1.

Conjecture 5.2 For all positive integers s, F1(s) = g
(3)
1 (s).

Erdős and Hajnal verified Conjectures 5.1 and 5.2 for s ≤ 9.

To attack these conjectures, we use a new function which was not considered in [12]. Let T (s)

be the maximum number of directed triangles in all tournaments on s vertices. It is an exercise

(see, e.g., [24]) to check that every tournament with n vertices of outdegrees d1, . . . , dn has exactly
(n
3

)

−
∑n

i=1

(di
2

)

cyclic triangles. This number is maximized when all the di are as equal as possible,

that is, if n is odd, di =
n−1
2 for all i and, if n is even, half of the di are

n−2
2 and the other half are n

2 .

It is easy to see that there is a tournament with such outdegrees, and therefore we have the following

formula for T (s):

T (s) =

{

(s+1)s(s−1)
24 if s is odd

(s+2)s(s−2)
24 if s is even.

(7)

It appears that T (s) and F1(s) are closely related. Indeed, given an edge-coloring of the complete

graph on [s] with colors I, II, III, construct the following tournament on [s]. If (a, b) with a < b is

color I or II, then direct the edge from a to b and otherwise direct the edge from b to a. Note that

any triple (a, b, c) with a < b < c and (a, b) color I, (b, c) color II, and (a, c) color III makes a cyclic

triangle in our tournament. We therefore have F1(s) ≤ T (s). Let us summarize the inequalities we

have seen so far:

g
(3)
1 (s) ≤ h

(3)
1 (s)− 1 ≤ F1(s) ≤ T (s). (8)

Let d(s) = g
(3)
1 (s)− T (s). We have d(s) = 0 if and only if all the inequalities in (8) are equalities.

We call such a number s nice. Note that Conjectures 5.1 and 5.2 necessarily hold in the case s is nice.

Using this fact, we next find infinitely many values of s for which Conjectures 5.1 and 5.2 hold.
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Proposition 5.3 If s is a power of 3, then

g
(3)
1 (s) = h

(3)
1 (s)− 1 = F1(s) = T (s) =

1

4

(

s+ 1

3

)

.

Proof. We easily see that s = 1 is nice. By induction, the proposition follows from checking that if

s is odd and nice, then so is 3s. Since, by definition, g
(3)
1 (3s) = s3 + 3g

(3)
1 (s), we indeed have

d(3s) = T (3s)− g
(3)
1 (3s) =

1

4

(

3s+ 1

3

)

− 3g
(3)
1 (s)− s3 =

3

4

(

s+ 1

3

)

− 3g
(3)
1 (s) = 3d(s). ✷

The computation in the proof of the proposition above shows that if s = 6x+3 with x a nonnegative

integer, then d(s) = 3d(2x + 1). One can check the other cases of s (mod 6) rather easily.

Lemma 5.4 If x is a positive integer, then

d(6x− 2) = 2d(2x− 1) + d(2x),

d(6x− 1) = d(2x− 1) + 2d(2x) + x,

d(6x) = 3d(2x),

d(6x+ 1) = 2d(2x) + d(2x+ 1) + x,

d(6x+ 2) = d(2x) + 2d(2x + 1),

d(6x+ 3) = 3d(2x+ 1).

Note that from this lemma, we can easily determine which values of s are nice. In particular, the nice

positive integers up to 100 are

1, 2, 3, 4, 6, 8, 9, 10, 12, 18, 24, 26, 27, 28, 30, 36, 54, 72, 78, 80, 81, 82, 84, 90.

Also, from Lemma 5.4, we can easily prove an upper bound on d(s).

Proposition 5.5 For all positive integers s, d(s) = O(s log s).

Proof. Let D(s) = d(s) − cs log s with c a sufficiently large constant. Using induction on s and

the recursive formula for d(s) depending on s (mod 6) in Lemma 5.4, we get that D(s) is negative

for s > 1. Indeed, assuming s = 6x + 1 with x a positive integer (the other five cases are handled

similarly), we get

D(s) = d(6x + 1)− c(6x+ 1) log(6x+ 1) = 2d(2x) + d(2x+ 1) + x− c(6x+ 1) log(6x+ 1)

< 2d(2x) + d(2x + 1)− c(6x+ 1) log(2x+ 1) < 2D(2x) +D(2x+ 1) < 0.

✷

The above proposition demonstrates that T (s) and g
(3)
1 (s), which are cubic in s, are always fairly

close together. Therefore, using (7), we have that h
(3)
1 (s) always lies in an interval of length O(s log s)

around s3/24.

In their attempt to determine h
(3)
1 (s), Erdős and Hajnal consider yet another function. Consider a

coloring of the edges of the complete graph on s vertices labeled 1, . . . , s by two colors I and II which
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maximizes the number of triangles (a, b, c) with 1 ≤ a < b < c ≤ s such that (a, b) and (b, c) has color

I, and (a, c) has color II. Denote this maximum by F2(s). Trivially, F2(s) ≥ F1(s). Erdős and Hajnal

thought that “perhaps F2(s) = F1(s)”. As we will show, this is indeed the case for some values of s,

but is not true in general. For example, it is false already for s = 5 and s = 7. Moreover, we precisely

determine the F2(s) for all values of s.

Lemma 5.6 For all positive integers s, F2(s) = T (s).

Proof. We first show that T (s) ≥ F2(s). Indeed, from a two coloring with colors I and II of the edges

of the complete graph with vertices 1, . . . , s we get a tournament on s vertices as follows: if (a, b) with

a < b is color I, then orient the edge from a to b, otherwise (a, b) is color II and orient the edge from

b to a. Any triangle (a, b, c) with a < b < c with (a, b) and (b, c) color I and (a, c) color II is a cyclic

triangle in the tournament, and the inequality T (s) ≥ F2(s) follows.

We next show that actually T (s) = F2(s). Consider the two coloring of the edges of the complete

graph on s vertices where (a, b) is color II if and only if b − a is even. A simple calculation shows

that the number of triangles (a, b, c) with a < b < c with (a, b) and (b, c) color I and (a, c) color II in

this coloring is precisely the formula (7) for T (s). Assume s is even (the case s is odd can be treated

similarly). For fixed a and c with c − a even, the number of such triangles containing edge (a, c) is

⌊ c−a
2 ⌋. Letting c = a+ 2i, we thus have

F2(s) ≥

s
∑

a=1

∑

1≤i≤⌊ s−a
2

⌋

i =

s
∑

a=1

(

⌊s−a
2 ⌋+ 1

2

)

=

s/2
∑

j=1

2

(

j

2

)

= 2

( s
2 + 1

3

)

= T (s),

and hence F2(s) = T (s). ✷

6 Odds and ends

6.1 Polynomial versus Exponential Ramsey numbers

As we discussed in Section 2, the Ramsey number of K
(3)
4 \ e versus K

(3)
n is at least exponential in

n. The hypergraph K
(3)
4 \ e is a special case of the following construction. Given an arbitrary graph

G, let HG be the 3-uniform hypergraph whose vertices are the vertices of G plus an auxiliary vertex

v. The edges of HG are all triples obtained by taking the union of an edge of G with vertex v. For

example, by taking G to be the triangle, we obtain K
(3)
4 \ e. It appears that the Ramsey numbers

r
(

HG,K
(3)
n

)

have a very different behavior depending on the bipartiteness of G.

Proposition 6.1 If G is a bipartite graph, then there is a constant c = c(G) such that r(HG,K
(3)
n ) ≤

nc. On the other hand, for non-bipartite G, r(HG,K
(3)
n ) ≥ 2c

′n for an absolute constant c′ > 0.

Proof. Let G be a bipartite graph with t vertices. The classical result of Kövari, Sós, and Turán [22]

states that a graph with N vertices and at least N2−1/t edges contains the complete bipartite graph

Kt,t with two parts of size t. Therefore, any 3-uniform hypergraph of order N which contains a vertex

of degree at least N2−1/t contains also a copy of HKt,t and hence also HG. Consider a red-blue edge-

coloring C of the complete 3-uniform hypergraph on N = (3n)2t vertices, and let m denote the number

15



of red edges in C. If m ≥ N3−1/t, then there is a vertex whose red degree is at least 3m/N ≥ N2−1/t,

which by the above remark gives a red copy of HG. Otherwise, m < N3−1/t and we can use a well

known Turán-type bound to find a large blue set in coloring C. Indeed, it is well known (see, e.g.,

Chapter 3, Exercise 3 in [2]) that a 3-uniform hypergraph with N vertices and m ≥ N edges has an

independent set (i.e., set with no edges) of size at least N3/2

3m1/2 . Thus, the hypergraph of red edges has

an independent set of size at least

N3/2

3m1/2
>

N3/2

3(N3−1/t)1/2
=

1

3
N1/(2t) = n,

which clearly is a blue set.

To prove the second part of this proposition, we use a construction of Erdős and Hajnal men-

tioned in the introduction. Suppose that G is not bipartite, so it contains an odd cycle with vertices

{v1, . . . , v2i+1} and edges {vj , vj+1} for 1 ≤ j ≤ 2i+1, where v2i+2 := v1. We start with a tournament

T on [N ] with N = 2c
′n which contains no transitive tournament of order n. As we already mentioned,

for sufficiently small c′, a random tournament has this property with high probability. Color the triples

from [N ] red if they form a cyclic triangle in T and blue otherwise. Clearly, this coloring does not

contain a blue set of size n. Suppose it contains a red copy of HG. This implies that T contains 2i+2

vertices v, u1, . . . , u2i+1 such that all the triples (v, uj , uj+1) form a cyclic triangle. Then, the edges

(v, uj) and (v, uj+1) have opposite orientation (one edge oriented towards v and the other oriented

from v). Coloring the vertices uj by 0 or 1 depending on the direction of edge (v, uj) gives a proper

2-coloring of an odd cycle, contradiction. ✷

6.2 Discrepancy in hypergraphs

Despite the fact that Erdős [11] (see also the book [4]) believed r3(n, n) is closer to 22
cn
, together with

Hajnal [13] they discovered the following interesting fact about hypergraphs which maybe indicates

the opposite. They proved that there are c, ǫ > 0 such that every 2-coloring of the triples of an N -set

contains a set of size s > c(logN)1/2 which contains at least (1/2 + ǫ)
(s
3

)

3-sets in one color. That is,

the set of size s deviates from having density 1/2 in each color by at least some fixed positive constant.

Erdős further remarks that he would begin to doubt that r3(n, n) is double-exponential in n if one can

prove that in any 2-coloring of the triples of the N -set, contains some set of size s = c(η)(logN)ǫ for

which at least (1−η)
(

s
3

)

triples have the same color. We prove the following result, which demonstrates

this if we allow ǫ to decrease with η.

Theorem 6.2 For η > 0 and all positive integers r and k, there is a constant β = β(r, k, η) > 0

such that every r-coloring of the k-tuples of an N -element set has a subset of size s > (logN)β which

contains more than (1− η)
(s
k

)

k-sets in one color.

These results can be conveniently restated in terms of another function introduced by Erdős in [11].

Denote by F (k)(N,α) the largest integer for which it is possible to split the k-tuples of a N -element

set S into two classes so that for every X ⊂ S with |X| ≥ F (k)(N,α), each class contains more than

α
(|X|

k

)

k-tuples of X. Note that F (k)(N, 0) is essentially the inverse function of the usual Ramsey

function rk(n, n). It is easy to show that for 0 ≤ α < 1/2,

c(α) logN < F (2)(N,α) < c′(α) logN.
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As Erdős points out, for k ≥ 3 the function F (k)(N,α) is not well understood. If α = 1/2 − ǫ for

sufficiently small ǫ > 0, then the result of Erdős and Hajnal from the previous paragraph (for general

k) demonstrates

ck(ǫ) (logN)1/(k−1) < F (k)(N,α) < c′k(ǫ) (logN)1/(k−1).

On the other hand, since F (k)(N, 0) is the inverse function of rk(n, n), then the old conjecture of Erdős,

Hajnal, and Rado would imply that

c1 log(k−1)N < F (k)(N, 0) < c2 log(k−1)N,

where we recall that log(t) N denotes the t times iterated logarithm function. Assuming the conjecture,

as α increases from 0 to 1/2, F (k)(N,α) increases from log(k−1) n to (logN)(1/(k−1). Erdős [4] asked

(and offered a $500 cash reward) if the change in F (k)(N,α) occurs continuously, or there are jumps?

He suspected the only jump occurs at α = 0. If α is bounded away from 0, Theorem 6.2 demonstrates

that F (k)(N,α) already grows as some power of logN . That is, for each α > 0 and k there are c, ǫ > 0

such that F (k)(N,α) > c(logN)ǫ.

We will deduce Theorem 6.2 from a result about the r-color Ramsey number of a certain k-uniform

hypergraph with n vertices and edge density almost one. The Ramsey number r(H; r) of a k-uniform

hypergraph H is the minimum N such that every r-edge-coloring of the k-tuples of a N -element set

contains a monochromatic copy of H. The blow-up K
(k)
ℓ (n) is the k-uniform hypergraph whose vertex

set consists of ℓ parts of size n and whose edges are all k-tuples that have their vertices in some k

different parts. Note that K
(k)
ℓ (n) has ℓn vertices and

(ℓ
k

)

nk ≥
(

1−
(k
2

)

/ℓ
)

(ln
k

)

edges. In particular,

as ℓ grows with k fixed, the edge density of K
(k)
ℓ (n) goes to 1. Therefore, Theorem 6.2 is a corollary

of the following result.

Theorem 6.3 For all positive integers r, k, ℓ, there is a constant c = c(r, k, ℓ) such that

r
(

K
(k)
ℓ (n); r

)

≤ ecn
ℓ
.

Proof. Consider an r-coloring of
([N ]

k

)

with N = ecn
ℓ−1

and c =
(

2r ·
(t
ℓ

))ℓ−1
, where t is the r-

color Ramsey number r(K
(k)
ℓ ; r). The proof uses a simple trick which appears in [10] and (see also

[21]). By definition, every vertex subset of size t contains a monochromatic set of size ℓ. Since each

monochromatic set of size ℓ is contained in
(N−ℓ
t−ℓ

)

subsets of size t, the number of monochromatic sets

of size ℓ is at least
(

N

t

)

/

(

N − ℓ

t− ℓ

)

=

(

t

ℓ

)−1(N

ℓ

)

.

By the pigeonhole principle, there is a color 1 ≤ i ≤ r for which there are at least 1
r

(t
ℓ

)−1(N
ℓ

)

monochro-

matic sets of size ℓ in color i. Define the ℓ-uniform hypergraphG with vertex set [N ] whose edges consist

of the monochromatic sets of size ℓ in color i in our r-coloring. We have just shown that hypergraph

G with N vertices has at least 1
r

(t
ℓ

)−1(N
ℓ

)

≥ ǫN
ℓ

ℓ! edges with ǫ = 1
2r

(t
ℓ

)−1
. A standard extremal lemma

for hypergraphs (see, e.g., [8], [25]) demonstrates that any ℓ-uniform hypergraph with N vertices and

at least ǫN
ℓ

ℓ! edges with (lnN)−1/(ℓ−1) ≤ ǫ ≤ ℓ−3 contains a complete ℓ-uniform ℓ-partite hypergraph

with parts of size ⌊ǫ(lnN)1/(ℓ−1)⌋. (An l-uniform hypergraph is l-partite if there is a partition of the

vertex set into l parts such that each edge has exactly one vertex in each part.) In particular, G

contains a complete ℓ-uniform ℓ-partite hypergraph with parts of size ⌊ǫ(lnN)1/(ℓ−1)⌋ = n, where we
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use that ǫ = c−1/(ℓ−1). The vertices of this complete ℓ-uniform ℓ-partite hypergraph with n vertices in

each part in G are the vertices of a monochromatic K
(k)
ℓ (n) in color i, completing the proof. ✷

Finally we want to mention another problem of Erdős related to the growth of Ramsey numbers

of complete 3-uniform hypergraphs. Erdős [9] (see also [11] and [4]) asked the following problem.

Question 6.4 Suppose |S| = N and the triples from S are split into two classes. Does there exist a

pair of subsets A,B ⊂ S with |A| = |B| ≥ c(logN)1/2 such that all triples from A ∪B that hit both A

and B are in the same class?

Erdős showed that the answer is yes under the weaker assumption that only the triples with two

vertices in A and one vertex in B must be monochromatic. Although this question is still open we

would like to mention that the answer to it is no if the triples of S are split into four classes instead

of two. Indeed, in [6], we found a 3-uniform hypergraph Cn on n vertices which is much sparser than

the complete hypergraph K
(3)
n and whose four-color Ramsey number satisfies r(Cn; 4) > 22

c1n . Let

V = {v1, · · · , vn} be a set of vertices and let Cn be the 3-uniform hypergraph on V whose edge set is

given by {vi, vi+1, vj} for all 1 ≤ i, j ≤ n. (Note that when i = n, we consider i + 1 to be equal to

1.) When n is even, the vertices of Cn can be partitioned into two subsets A and B (with vi ∈ A if

and only if i is even) of size n/2 such that all edges of Cn hit both A and B. Thus, a four-coloring of

the triples of [N ] with N = 22
c1n and with no monochromatic copy of Cn also does not contain a pair

A,B ⊂ [N ] with |A| = |B| = 1
2c1

log logN such that all triples that hit both A and B are in the same

class.
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[9] P. Erdős, Topics in combinatorial analysis, Proceedings of the Second Louisiana Conference on

Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, 1971) , pp.

2–20, Louisiana State University, Baton Rouge, LA, 1971.
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[11] P. Erdős, Problems and results on graphs and hypergraphs: similarities and differences, in Math-

ematics of Ramsey theory, Algorithms Combin., Vol. 5 (J. Nešetr̆il and V. Rödl, eds.) 12–28. Berlin:
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