2,278 research outputs found

    A micromachined flow shear-stress sensor based on thermal transfer principles

    Get PDF
    Microhot-film shear-stress sensors have been developed by using surface micromachining techniques. The sensor consists of a suspended silicon-nitride diaphragm located on top of a vacuum-sealed cavity. A heating and heat-sensing element, made of polycrystalline silicon material, resides on top of the diaphragm. The underlying vacuum cavity greatly reduces conductive heat loss to the substrate and therefore increases the sensitivity of the sensor. Testing of the sensor has been conducted in a wind tunnel under three operation modes-constant current, constant voltage, and constant temperature. Under the constant-temperature mode, a typical shear-stress sensor exhibits a time constant of 72 ÎŒs

    Overview of sensors suitable for active flow control methods

    Get PDF
    HlavnĂœm cieÄŸom tejto bakalĂĄrskej prĂĄce bolo vytvorenie prehÄŸadu vyvĂ­janĂœch a uĆŸ aplikovanĂœch senzorov pre Ășčely aktĂ­vneho riadenia prĂșdov. Senzory musia splƈovaĆ„ niektorĂ© podmienky, preto vĂœber senzorov bol naviazanĂœ na reĂĄlnych vĂœsledkoch testovacĂ­ch programov, popis ktorĂœch tvorĂ­ prvĂș časĆ„ tejto bakalĂĄrskej prĂĄce. Opis technolĂłgie a princĂ­p fungovania senzorov je popĂ­sanĂœ v druhej časti tejto prĂĄce.The main purpose of this bachelor thesis was to create the overview of the sensors developed for the future active flow control applications and overview the sensors already used in the active flow control applications. The sensors have to fulfil several requirements, so selection for the overview was based on the real flight test programs results, which were described in the first part of the thesis. The sensors technology description and operation principles were included in the second part of the thesis

    Towards new hermeticity test methods for MEMS

    Get PDF
    Hermeticity is a measure of how well a package can maintain its intended ambient cavity environment over the device lifetime. Since many Micro-Electro-Mechanical Systems (MEMS) sensors, actuators and microelectronic devices require a known cavity environment for optimum operational performance, it is important to know the leak rate of the package for lifetime prediction purposes. In this field, limitations in the traditional leak detection methods and standards used originally for integrated circuits and semiconductors have been blindly and often incorrectly applied to MEMS and microelectronic packages. The aim of this project is to define accurately the limitations of the existing hermeticity test methods and standards when applied to low cavity volume MEMS and microelectronic packages and to demonstrate novel test methods, which are applicable to such packages. For the first time, the use of the Lambert-W function has been demonstrated to provide a closed form expression of the maximum true leak rate achievable for the most commonly used existing hermeticity test method, the helium fine leak test. This expression along with the minimum detectable leak rate expression is shown to provide practical guidelines for the accurate testing of hermeticity for ultra-low volume packages. The three leak types which MEMS and microelectronic packages are subject to: molecular leaks, permeation and outgassing, are explained in detail and it is found that the helium leak test is capable of quantifying only molecular leak in packages with cavity volumes exceeding 2.6 mm3. With many MEMS and microelectronic package containing cavities with lower volumes, new hermeticity test methods are required to fill this gap and to measure the increasingly lower leak rates which adversely affect such packages. Fourier Transform Infra-Red (FTIR) spectroscopy and Raman spectroscopy are investigated as methods of detecting gas pressure within MEMS and microelectronics packages. Measured over time, FTIR can be used to determine the molecular and permeation leak rates of packages containing infra-red transparent cap materials. Future work is required to achieve an adequate signal to noise ratio to enable Raman spectroscopy to be a quantitative method to determine molecular leaks, permeation leaks and potentially outgassing. The design, fabrication and calibration procedure for three in-situ test structures intended to monitor the hermeticity of packages electrically are also presented. The calibration results of a piezoresistive cap deflection test structure show the structure can be used to detect leak ii rates of any type down to 6.94×10-12 atm.cm3.s-1. A portfolio of hermeticity test methods is also presented outlining the limitations and advantages of each method. This portfolio is intended to be a living document and should be updated as new research is undertaken and new test methods developed

    Application of adhesives in MEMS and MOEMS assembly: a review

    Get PDF
    This paper presents a review of the recent literature on the use of adhesives in MEMS packaging applications. The aim of this review has been to establish the current applications of adhesives in MEMS and MOEMS assembly and to investigate the limitations and future requirements of these materials. The review has shown that while there is a wealth of information available on the packaging of MEMS devices, there is very limited detail available within the public domain regarding the specific uses of adhesives and in particular exactly which products are in use. The paper begins with an overview of the uses of adhesives in MEMS packaging, subdivided into sections on structural adhesives, adhesives for optical applications and other applications. The paper then describes methods for adhesive dispensing and issues with adhesive use which affect the reliability of the package. The reliability of MEMS devices assembled using adhesives is a challenging issue, being more than a simple combination of electrical, mechanical and material reliability. Many failure modes in MEMS devices can be attributed to the adhesives used in the assembly; for example, thermal expansion mismatches can cause stress in the die attach, while outgassing from epoxies can cause failure of sealed devices and contamination of optical surfaces

    Fabrication and Performance of MEMS-Based Pressure Sensor Packages Using Patterned Ultra-Thick Photoresists

    Get PDF
    A novel plastic packaging of a piezoresistive pressure sensor using a patterned ultra-thick photoresist is experimentally and theoretically investigated. Two pressure sensor packages of the sacrifice-replacement and dam-ring type were used in this study. The characteristics of the packaged pressure sensors were investigated by using a finite-element (FE) model and experimental measurements. The results show that the thermal signal drift of the packaged pressure sensor with a small sensing-channel opening or with a thin silicon membrane for the dam-ring approach had a high packaging induced thermal stress, leading to a high temperature coefficient of span (TCO) response of −0.19% span/°C. The results also show that the thermal signal drift of the packaged pressure sensors with a large sensing-channel opening for sacrifice-replacement approach significantly reduced packaging induced thermal stress, and hence a low TCO response of −0.065% span/°C. However, the packaged pressure sensors of both the sacrifice-replacement and dam-ring type still met the specification −0.2% span/°C of the unpackaged pressure sensor. In addition, the size of proposed packages was 4 × 4 × 1.5 mm3 which was about seven times less than the commercialized packages. With the same packaging requirement, the proposed packaging approaches may provide an adequate solution for use in other open-cavity sensors, such as gas sensors, image sensors, and humidity sensors

    Polyimide/SU-8 catheter-tip MEMS gauge pressure sensor.

    Get PDF
    This paper describes the development of a polyimide/SU-8 catheter-tip MEMS gauge pressure sensor. Finite element analysis was used to investigate critical parameters, impacting on the device design and sensing characteristics. The sensing element of the device was fabricated by polyimide-based micromachining on a flexible membrane, using embedded thin-film metallic wires as piezoresistive elements. A chamber containing this flexible membrane was sealed using an adapted SU-8 bonding technique. The device was evaluated experimentally and its overall performance compared with a commercial silicon-based pressure sensor. Furthermore, the device use was demonstrated by measuring blood pressure and heart rate in vivo

    Laser-based packaging of micro-devices

    Get PDF
    In this PhD thesis the development of laser-based processes for packaging applications in microsystems technologies is investigated. Packaging is one of the major challenges in the fabrication of micro-electro-mechanical systems (MEMS) and other micro-devices. A range of bonding processes have become established in industry, however, in many or even most cases heating of the entire package to the bonding temperature is required to effect efficient and reliable bonding. The high process temperatures of up to 1100°C involved severely limit the application areas of these techniques for packaging of temperature sensitive materials. As an alternative production method, two localised heating processes using a laser were developed where also the heat is restricted to the joining area only by active cooling. Silicon to glass joining with a Benzocyclobutene adhesive layer was demonstrated which is a typical MEMS application. In this laser-based process the temperature in the centre of the device was kept at least 120°C lower than in the bonding area. For chip-level packaging shear forces as high as 290 N were achieved which is comparable and some cases even higher than results obtained using conventional bonding techniques. Furthermore, a considerable reduction of the bonding time from typically 20 minutes down to 8 s was achieved. A further development of this process to wafer-level packaging was demonstrated. For a simplified pattern of 5 samples the same quality of the seal could be achieved as for chip-level packaging. Packaging of a more densely packed pattern of 9 was also investigated. Successful sealing of all nine samples on the same wafer was demonstrated proving the feasibility of wafer-level packaging using this localised heating bonding process. The development of full hermetic glass frit packaging processes of Leadless Chip Carrier (LCC) devices in both air and vacuum is presented. In these laser-based processes the temperature in the centre of the device was kept at least 230°C below the temperature in the joining region (375°C to 440°C). Testing according to MIL-STD-883G showed that hermetic seals were achieved in high yield processes (>90%) and the packages did withstand shear forces in excess of 1 kN. Residual gas analysis has shown that a moderate vacuum of around 5 mbar was achieved inside the vacuum packaged LCC devices. A localised heating glass frit packaging process was developed without any negative effect of the thermal management on the quality of the seal

    Polyimide/SU-8 catheter-tip MEMS gauge pressure sensor

    Get PDF
    This paper describes the development of a polyimide/SU-8 catheter-tip MEMS gauge pressure sensor. Finite element analysis was used to investigate critical parameters, impacting on the device design and sensing characteristics. The sensing element of the device was fabricated by polyimide-based micromachining on a flexible membrane, using embedded thin-film metallic wires as piezoresistive elements. A chamber containing this flexible membrane was sealed using an adapted SU-8 bonding technique. The device was evaluated experimentally and its overall performance compared with a commercial silicon-based pressure sensor. Furthermore, the device use was demonstrated by measuring blood pressure and heart rate in viv

    Sealing of micromachined cavities using chemical vapor deposition methods: characterization and optimization

    Get PDF
    This paper presents results of a systematic investigation to characterize the sealing of micromachined cavities using chemical vapor deposition (CVD) methods. We have designed and fabricated a large number and variety of surface-micromachined test structures with different etch-channel dimensions. Each cavity is then subjected to a number of sequential CVD deposition steps with incremental thickness until the cavity is successfully sealed. At etch deposition interval, the sealing status of every test structure is experimentally obtained and the percentage of structures that are sealed is recorded. Four CVD sealing materials have been incorporated in our studies: LPCVD silicon nitride, LPCVD polycrystalline silicon (polysilicon), LPCVD phosphosilicate glass (PSG), and PECVD silicon nitride. The minimum CVD deposition thickness that is required to successfully seal a microstructure is obtained for the first time. For a typical Type-1 test structure that has eight etch channels-each 10 ÎŒm long, 4 ÎŒm wide, and 0.42 ÎŒm tall-the minimum required thickness (normalized with respect to the height of etch channels) is 0.67 for LPCVD silicon nitride, 0.62 for LPCVD polysilicon, 4.5 for LPCVD PSG, and 5.2 for PECVD nitride. LPCVD silicon nitride and polysilicon are the most efficient sealing materials. Sealing results with respect to etch-channel dimensions (length and width) are evaluated (within the range of current design). When LPCVD silicon nitride is used as the sealing material, test structures with the longest (38 ÎŒm) and widest (16 ÎŒm) etch channels exhibit the highest probability of sealing. Cavities with a reduced number of etch channels seal more easily. For LPCVD PSG sealing, on the other hand, the sealing performance improves with decreasing width but is not affected by length of etch channels
    • 

    corecore