157 research outputs found

    High frequency of low noise amplifier architecture for WiMAX application: A review

    Get PDF
    The low noise amplifier (LNA) circuit is exceptionally imperative as it promotes and initializes general execution performance and quality of the mobile communication system. LNA's design in radio frequency (R.F.) circuit requires the trade-off numerous imperative features' including gain, noise figure (N.F.), bandwidth, stability, sensitivity, power consumption, and complexity. Improvements to the LNA's overall performance should be made to fulfil the worldwide interoperability for microwave access (WiMAX) specifications' prerequisites. The development of front-end receiver, particularly the LNA, is genuinely pivotal for long-distance communications up to 50 km for a particular system with particular requirements. The LNA architecture has recently been designed to concentrate on a single transistor, cascode, or cascade constrained in gain, bandwidth, and noise figure

    HIGH LINEARITY UNIVERSAL LNA DESIGNS FOR NEXT GENERATION WIRELESS APPLICATIONS

    Get PDF
    Design of the next generation (4G) systems is one of the most active and important area of research and development in wireless communications. The 2G and 3G technologies will still co-exist with the 4G for a certain period of time. Other applications such as wireless LAN (Local Area Network) and RFID are also widely used. As a result, there emerges a trend towards integrating multiple wireless functionalities into a single mobile device. Low noise amplifier (LNA), the most critical component of the receiver front-end, determines the sensitivity and noise figure of the receiver and is indispensable for the complete system. To satisfy the need for higher performance and diversity of wireless communication systems, three LNAs with different structures and techniques are proposed in the thesis based on the 4G applications. The first LNA is designed and optimized specifically for LTE applications, which could be easily added to the existing system to support different standards. In this cascode LNA, the nonlinearity coming from the common source (CS) and common gate (CG) stages are analyzed in detail, and a novel linear structure is proposed to enhance the linearity in a relatively wide bandwidth. The LNA has a bandwidth of 900MHz with the linearity of greater than 7.5dBm at the central frequency of 1.2GHz. Testing results show that the proposed structure effectively increases and maintains linearity of the LNA in a wide bandwidth. However, a broadband LNA that covers multiple frequency ranges appears more attractive due to system simplicity and low cost. The second design, a wideband LNA, is proposed to cover multiple wireless standards, such as LTE, RFID, GSM, and CDMA. A novel input-matching network is proposed to relax the tradeoff among noise figure and bandwidth. A high gain (>10dB) in a wide frequency range (1-3GHz) and a minimum NF of 2.5dB are achieved. The LNA consumes only 7mW on a 1.2V supply. The first and second LNAs are designed mainly for the LTE standard because it is the most widely used standard in the 4G communication systems. However, WiMAX, another 4G standard, is also being widely used in many applications. The third design targets on covering both the LTE and the WiMAX. An improved noise cancelling technique with gain enhancing structure is proposed in this design and the bandwidth is enlarged to 8GHz. In this frequency range, a maximum power gain of 14.5dB and a NF of 2.6-4.3dB are achieved. The core area of this LNA is 0.46x0.67mm2 and it consumes 17mW from a 1.2V supply. The three designs in the thesis work are proposed for the multi-standard applications based on the realization of the 4G technologies. The performance tradeoff among noise, linearity, and broadband impedance matching are explored and three new techniques are proposed for the tradeoff relaxation. The measurement results indicate the techniques effectively extend the bandwidth and suppress the increase of the NF and nonlinearity at high frequencies. The three proposed structures can be easily applied to the wideband and multi-standard LNA design

    RF techniques for IEEE 802.15.4: circuit design and device modelling

    Get PDF
    The RF circuitry in the physical layer of any wireless communication node is arguably its most important part. The front-end radio is the hardware that enables communication by transmitting and receiving information. Without a robust and high performance front-end, all other higher layers of signal processing and data handling in a wireless network are irrelevant. This thesis investigates the radio circuitry of wireless-networked nodes, and introduces several proposals for improvement. As an emerging market, analysis starts by examining available and ratified network standards suitable for low power applications. After identifying the IEEE 802.15.4 standard (commercially known as ZigBee) as the one of choice, and analysing several front-end architectures on which its transceiver circuitry can be based, an application, the Tyre Pressure Monitoring System (TPMS) is selected to examine the capabilities of the standard and its most suitable architecture in satisfying the application’s requirements. From this compatibility analysis, the most significant shortcomings are identified as interference and power consumption. The work presented in this thesis focuses on the power consumption issues. A comparison of available high frequency transistor technologies concludes Silicon CMOS to be the most appropriate solution for the implementation of low cost and low power ZigBee transceivers. Since the output power requirement of ZigBee is relatively modest, it is possible to consider the design of a single amplifier block which can act as both a Low Noise Amplifier (LNA) in the receiver chain and a Power Amplifier (PA) on the transmitter side. This work shows that by employing a suitable design methodology, a single dual-function amplifier can be realised which meets the required performance specification. In this way, power consumption and chip area can both be reduced, leading to cost savings so vital to the widespread utilisation of the ZigBee standard. Given the importance of device nonlinearity in such a design, a new transistor model based on independent representation of each of the transistor’s nonlinear elements is developed with the aim of quantifying the individual contribution of each of the transistors nonlinear elements, to the total distortion. The methodology to the design of the dual functionality (LNA/PA) amplifier starts by considering various low noise amplifier architectures and comparing them in terms of the trade-off between noise (required for LNA operation) and linearity (important for PA operation), and then examining the behaviour of the selected architecture (the common-source common-gate cascode) at higher than usual input powers. Due to the need to meet the far apart performance requirements of both the LNA and PA, a unique amplifier design methodology is developed The design methodology is based on simultaneous graphical visualisation of the relationship between all relevant performance parameters and corresponding design parameters. A design example is then presented to demonstrate the effectiveness of the methodology and the quality of trade-offs it allows the designer to make. The simulated performance of the final amplifier satisfies both the requirements of ZigBee’s low noise and power amplification. At 2.4GHz, the amplifier is predicted to have 1.6dB Noise Figure (NF), 6dBm Input-referred 3rd-order Intercept Point (IIP3), and 1dB compression point of -3.5dBm. In low power operation, it is predicted to have 10dB gain, consuming only 8mW. At the higher input power of 0dBm, it is predicted to achieve 24% Power-Added Efficiency (PAE) with 8dB gain and 22mW power consumption. Finally, this thesis presents a set of future research proposals based on problems identified throughout its development

    Design of a low noise amplier for a X-band phased array radar system in SiGe BiCMOS technology

    Get PDF
    A LNA is the first active stage of a radio frequency receiver module, with the prevalent goal of minimizing the noise figure of the whole system. This work presents the design of two narrow-band LNA and a wide-band LNA for phased array radar applications. Silicon-germanium (SiGe) technology is discussed, evaluating its physical characteristics and its potential. The analysis of the low noise ampliers is examined, and the full-custom layout of each discussed circuit is also presentedopenEmbargo per motivi di segretezza e/o di proprietà dei risultati e informazioni di enti esterni o aziende private che hanno partecipato alla realizzazione del lavoro di ricerca relativo alla tes

    High performance building blocks for wireless receiver: multi-stage amplifiers and low noise amplifiers

    Get PDF
    Different wireless communication systems utilizing different standards and for multiple applications have penetrated the normal people's life, such as Cell phone, Wireless LAN, Bluetooth, Ultra wideband (UWB) and WiMAX systems. The wireless receiver normally serves as the primary part of the system, which heavily influences the system performance. This research concentrates on the designs of several important blocks of the receiver; multi-stage amplifier and low noise amplifier. Two novel multi-stage amplifier typologies are proposed to improve the bandwidth and reduce the silicon area for the application where a large capacitive load exists. They were designed using AMI 0.5 m µ CMOS technology. The simulation and measurement results show they have the best Figure-of-Merits (FOMs) in terms of small signal and large signal performances, with 4.6MHz and 9MHz bandwidth while consuming 0.38mW and 0.4mW power from a 2V power supply. Two Low Noise Amplifiers (LNAs) are proposed, with one designed for narrowband application and the other for UWB application. A noise reduction technique is proposed for the differential cascode Common Source LNA (CS-LNA), which reduces the LNA Noise Figure (NF), increases the LNA gain, and improves the LNA linearity. At the same time, a novel Common Gate LNA (CG-LNA) is proposed for UWB application, which has better linearity, lower power consumption, and reasonable noise performance. Finally a novel practical current injection built-in-test (BIT) technique is proposed for the RF Front-end circuits. If the off-chip component Lg and Rs values are well controlled, the proposed technique can estimate the voltage gain of the LNA with less than 1dB (8%) error

    Development Of Inductively-Degenerated LNA For W-CDMA Application Utilizing 0.18 Um RFCMOS Technology

    Get PDF
    Satu metodologi terperinci dan bersistematik untuk merekabentuk penguat hingar rendah (LNA) induktif ternyahjana kaskod, juga dikenali sebagai topologi Padanan Masukan dan Hingar Serentak (SNIM), A detailed and systematic methodology on the design of the inductivelydegenerated cascode LNA, also known as the Simultaneously Noise and Input Matching (SNIM) LNA

    High Performance RF and Basdband Analog-to-Digital Interface for Multi-standard/Wideband Applications

    Get PDF
    The prevalence of wireless standards and the introduction of dynamic standards/applications, such as software-defined radio, necessitate the next generation wireless devices that integrate multiple standards in a single chip-set to support a variety of services. To reduce the cost and area of such multi-standard handheld devices, reconfigurability is desirable, and the hardware should be shared/reused as much as possible. This research proposes several novel circuit topologies that can meet various specifications with minimum cost, which are suited for multi-standard applications. This doctoral study has two separate contributions: 1. The low noise amplifier (LNA) for the RF front-end; and 2. The analog-to-digital converter (ADC). The first part of this dissertation focuses on LNA noise reduction and linearization techniques where two novel LNAs are designed, taped out, and measured. The first LNA, implemented in TSMC (Taiwan Semiconductor Manufacturing Company) 0.35Cm CMOS (Complementary metal-oxide-semiconductor) process, strategically combined an inductor connected at the gate of the cascode transistor and the capacitive cross-coupling to reduce the noise and nonlinearity contributions of the cascode transistors. The proposed technique reduces LNA NF by 0.35 dB at 2.2 GHz and increases its IIP3 and voltage gain by 2.35 dBm and 2dB respectively, without a compromise on power consumption. The second LNA, implemented in UMC (United Microelectronics Corporation) 0.13Cm CMOS process, features a practical linearization technique for high-frequency wideband applications using an active nonlinear resistor, which obtains a robust linearity improvement over process and temperature variations. The proposed linearization method is experimentally demonstrated to improve the IIP3 by 3.5 to 9 dB over a 2.5–10 GHz frequency range. A comparison of measurement results with the prior published state-of-art Ultra-Wideband (UWB) LNAs shows that the proposed linearized UWB LNA achieves excellent linearity with much less power than previously published works. The second part of this dissertation developed a reconfigurable ADC for multistandard receiver and video processors. Typical ADCs are power optimized for only one operating speed, while a reconfigurable ADC can scale its power at different speeds, enabling minimal power consumption over a broad range of sampling rates. A novel ADC architecture is proposed for programming the sampling rate with constant biasing current and single clock. The ADC was designed and fabricated using UMC 90nm CMOS process and featured good power scalability and simplified system design. The programmable speed range covers all the video formats and most of the wireless communication standards, while achieving comparable Figure-of-Merit with customized ADCs at each performance node. Since bias current is kept constant, the reconfigurable ADC is more robust and reliable than the previous published works

    Highly linear low noise amplifier

    Get PDF
    The CDMA standard operating over the wireless environment along with various other wireless standards places stringent specifications on the RF Front end. Due to possible large interference signal tones at the receiver end along with the carrier, the Low Noise Amplifier (LNA) is expected to provide high linearity, thus preventing the intermodulation tones created by the interference signal from corrupting the carrier signal. The research focuses on designing a novel LNA which achieves high linearity without sacrificing any of its specifications of gain and Noise Figure (NF). The novel LNA proposed achieves high linearity by canceling the IM3 tones in the main transistor in both magnitude and phase using the IM3 tones generated by an auxiliary transistor. Extensive Volterra series analysis using the harmonic input method has been performed to prove the concept of third harmonic cancellation and a design methodology has been proposed. The LNA has been designed to operate at 900MHz in TSMC 0.35um CMOS technology. The LNA has been experimentally verified for its functionality. Linearity is usually measured in terms of IIP3 and the LNA has an IIP3 of +21dBm, with a gain of 11 dB, NF of 3.1 dB and power consumption of 22.5 mW
    corecore