14,698 research outputs found

    Low-power hybrid structure of digital matched filters for direct sequence spread spectrum systems

    Get PDF
    ABSTRACT 1 This paper presents a low-power structure of digital matched filters (DMFs), which is proposed for direct sequence spread spectrum systems. Traditionally, low-power approaches for DMFs are based on either the transposedform structure or the direct-form one. A new hybrid structure that employs the direct-form structure for local addition and the transposed-form structure for global addition is used to take advantages of both structures. For a 128-tap DMF, the proposed DMF that processes 32 addends a cycle consumes 46 % less power at the expense of 6 % area overhead as compared to the state-of-the-art low-power DM

    Design of surface acoustic wave filters and applications in future communication systems

    Get PDF

    Design and performance of CDMA codes for multiuser communications

    Get PDF
    Walsh and Gold sequences are fixed power codes and are widely used in multiuser CDMA communications. Their popularity is due to the ease of implementation. Availability of these code sets is limited because of their generating kernels. Emerging radio applications like sensor networks or multiple service types in mobile and peer-to-peer communications networks might benefit from flexibilities in code lengths and possible allocation methodologies provided by large set of code libraries. Walsh codes are linear phase and zero mean with unique number of zero crossings for each sequence within the set. DC sequence is part of the Walsh code set. Although these features are quite beneficial for source coding applications, they are not essential for spread spectrum communications. By relaxing these unnecessary constraints, new sets of orthogonal binary user codes (Walsh-like) for different lengths are obtained with comparable BER performance to standard code sets in all channel conditions. Although fixed power codes are easier to implement, mathematically speaking, varying power codes offer lower inter- and intra-code correlations. With recent advances in RF power amplifier design, it might be possible to implement multiple level orthogonal spread spectrum codes for an efficient direct sequence CDMA system. A number of multiple level integer codes have been generated by brute force search method for different lengths to highlight possible BER performance improvement over binary codes. An analytical design method has been developed for multiple level (variable power) spread spectrum codes using Karhunen-Loeve Transform (KLT) technique. Eigen decomposition technique is used to generate spread spectrum basis functions that are jointly spread in time and frequency domains for a given covariance matrix or power spectral density function. Since this is a closed form solution for orthogonal code set design, many options are possible for different code lengths. Design examples and performance simulations showed that spread spectrum KLT codes outperform or closely match with the standard codes employed in present CDMA systems. Hybrid (Kronecker) codes are generated by taking Kronecker product of two spreading code families in a two-stage orthogonal transmultiplexer structure and are judiciously allocated to users such that their inter-code correlations are minimized. It is shown that, BER performance of hybrid codes with a code selection and allocation algorithm is better than the performance of standard Walsh or Gold code sets for asynchronous CDMA communications. A redundant spreading code technique is proposed utilizing multiple stage orthogonal transmultiplexer structure where each user has its own pre-multiplexer. Each data bit is redundantly spread in the pre-multiplexer stage of a user with odd number of redundancy, and at the receiver, majority logic decision is employed on the detected redundant bits to obtain overall performance improvement. Simulation results showed that redundant spreading method improves BER performance significantly at low SNR channel conditions

    Effective denoising and adaptive equalization of indoor optical wireless channel with artificial light using the discrete wavelet transform and artificial neural network

    Get PDF
    Indoor diffuse optical wireless (OW) communication systems performance is limited due to a number of effects; interference from natural and artificial light sources and multipath induced intersymbol interference (ISI). Artificial light interference (ALI) is a periodic signal with a spectrum profile extending up to the MHz range. It is the dominant source of performance degradation at low data rates, which can be removed using a high-pass filter (HPF). On the other hand, ISI is more severe at high data rates and an equalizing filter is incorporated at the receiver to compensate for the ISI. This paper provides the simulation results for a discrete wavelet transform (DWT)—artificial neural network (ANN)-based receiver architecture for on-and-off keying (OOK) non-return-to-zero (NRZ) scheme for a diffuse indoor OW link in the presence of ALI and ISI. ANN is adopted for classification acting as an efficient equalizer compared to the traditional equalizers. The ALI is effectively reduced by proper selection of the DWT coefficients resulting in improved receiver performance compared to the digital HPF. The simulated bit error rate (BER) performance of proposed DWT-ANN receiver structure for a diffuse indoor OW link operating at a data range of 10-200 Mbps is presented and discussed. The results are compared with performance of a diffuse link with an HPF-equalizer, ALI with/without filtering, and a line-of-sight (LOS) without filtering. We show that the DWT-ANN display a lower power requirement when compared to the receiver with an HPF-equalizer over a full range of delay spread in presence of ALI. However, as expected compared to the ideal LOS link the power penalty is higher reaching to 6 dB at 200 Mbps data rate

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Study of spread spectrum multiple access systems for satellite communications with overlay on current services

    Get PDF
    The feasibility of using spread spectrum techniques to provide a low-cost multiple access system for a very large number of low data terminals was investigated. Two applications of spread spectrum technology to very small aperture terminal (VSAT) satellite communication networks are presented. Two spread spectrum multiple access systems which use a form of noncoherent M-ary FSK (MFSK) as the primary modulation are described and the throughput analyzed. The analysis considers such factors as satellite power constraints and adjacent satellite interference. Also considered is the effect of on-board processing on the multiple access efficiency and the feasibility of overlaying low data rate spread spectrum signals on existing satellite traffic as a form of frequency reuse is investigated. The use of chirp is examined for spread spectrum communications. In a chirp communication system, each data bit is converted into one or more up or down sweeps of frequency, which spread the RF energy across a broad range of frequencies. Several different forms of chirp communication systems are considered, and a multiple-chirp coded system is proposed for overlay service. The mutual interference problem is examined in detail and a performance analysis undertaken for the case of a chirp data channel overlaid on a video channel
    corecore