51,283 research outputs found

    Low-level Grouping of Straight Line Segments

    Full text link

    Text Line Segmentation of Historical Documents: a Survey

    Full text link
    There is a huge amount of historical documents in libraries and in various National Archives that have not been exploited electronically. Although automatic reading of complete pages remains, in most cases, a long-term objective, tasks such as word spotting, text/image alignment, authentication and extraction of specific fields are in use today. For all these tasks, a major step is document segmentation into text lines. Because of the low quality and the complexity of these documents (background noise, artifacts due to aging, interfering lines),automatic text line segmentation remains an open research field. The objective of this paper is to present a survey of existing methods, developed during the last decade, and dedicated to documents of historical interest.Comment: 25 pages, submitted version, To appear in International Journal on Document Analysis and Recognition, On line version available at http://www.springerlink.com/content/k2813176280456k3

    Real-Time Salient Closed Boundary Tracking via Line Segments Perceptual Grouping

    Full text link
    This paper presents a novel real-time method for tracking salient closed boundaries from video image sequences. This method operates on a set of straight line segments that are produced by line detection. The tracking scheme is coherently integrated into a perceptual grouping framework in which the visual tracking problem is tackled by identifying a subset of these line segments and connecting them sequentially to form a closed boundary with the largest saliency and a certain similarity to the previous one. Specifically, we define a new tracking criterion which combines a grouping cost and an area similarity constraint. The proposed criterion makes the resulting boundary tracking more robust to local minima. To achieve real-time tracking performance, we use Delaunay Triangulation to build a graph model with the detected line segments and then reduce the tracking problem to finding the optimal cycle in this graph. This is solved by our newly proposed closed boundary candidates searching algorithm called "Bidirectional Shortest Path (BDSP)". The efficiency and robustness of the proposed method are tested on real video sequences as well as during a robot arm pouring experiment.Comment: 7 pages, 8 figures, The 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017) submission ID 103

    Interpretation of overtracing freehand sketching for geometric shapes

    Get PDF
    This paper presents a novel method for interpreting overtracing freehand sketch. The overtracing strokes are interpreted as sketch content and are used to generate 2D geometric primitives. The approach consists of four stages: stroke classification, strokes grouping and fitting, 2D tidy-up with endpoint clustering and parallelism correction, and in-context interpretation. Strokes are first classified into lines and curves by a linearity test. It is followed by an innovative strokes grouping process that handles lines and curves separately. The grouped strokes are fitted with 2D geometry and further tidied-up with endpoint clustering and parallelism correction. Finally, the in-context interpretation is applied to detect incorrect stroke interpretation based on geometry constraints and to suggest a most plausible correction based on the overall sketch context. The interpretation ensures sketched strokes to be interpreted into meaningful output. The interface overcomes the limitation where only a single line drawing can be sketched out as in most existing sketching programs, meanwhile is more intuitive to the user

    Detecting the presence of large buildings in natural images

    Get PDF
    This paper addresses the issue of classification of lowlevel features into high-level semantic concepts for the purpose of semantic annotation of consumer photographs. We adopt a multi-scale approach that relies on edge detection to extract an edge orientation-based feature description of the image, and apply an SVM learning technique to infer the presence of a dominant building object in a general purpose collection of digital photographs. The approach exploits prior knowledge on the image context through an assumption that all input images are �outdoor�, i.e. indoor/outdoor classification (the context determination stage) has been performed. The proposed approach is validated on a diverse dataset of 1720 images and its performance compared with that of the MPEG-7 edge histogram descriptor
    corecore