40 research outputs found

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Towards Low-Latency High-Bandwidth Control of Quadrotors using Event Cameras

    Full text link
    Event cameras are a promising candidate to enable high speed vision-based control due to their low sensor latency and high temporal resolution. However, purely event-based feedback has yet to be used in the control of drones. In this work, a first step towards implementing low-latency high-bandwidth control of quadrotors using event cameras is taken. In particular, this paper addresses the problem of one-dimensional attitude tracking using a dualcopter platform equipped with an event camera. The event-based state estimation consists of a modified Hough transform algorithm combined with a Kalman filter that outputs the roll angle and angular velocity of the dualcopter relative to a horizon marked by a black-and-white disk. The estimated state is processed by a proportional-derivative attitude control law that computes the rotor thrusts required to track the desired attitude. The proposed attitude tracking scheme shows promising results of event-camera-driven closed loop control: the state estimator performs with an update rate of 1 kHz and a latency determined to be 12 ms, enabling attitude tracking at speeds of over 1600 deg/s

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Accelerated neuromorphic cybernetics

    Get PDF
    Accelerated mixed-signal neuromorphic hardware refers to electronic systems that emulate electrophysiological aspects of biological nervous systems in analog voltages and currents in an accelerated manner. While the functional spectrum of these systems already includes many observed neuronal capabilities, such as learning or classification, some areas remain largely unexplored. In particular, this concerns cybernetic scenarios in which nervous systems engage in closed interaction with their bodies and environments. Since the control of behavior and movement in animals is both the purpose and the cause of the development of nervous systems, such processes are, however, of essential importance in nature. Besides the design of neuromorphic circuit- and system components, the main focus of this work is therefore the construction and analysis of accelerated neuromorphic agents that are integrated into cybernetic chains of action. These agents are, on the one hand, an accelerated mechanical robot, on the other hand, an accelerated virtual insect. In both cases, the sensory organs and actuators of their artificial bodies are derived from the neurophysiology of the biological prototypes and are reproduced as faithfully as possible. In addition, each of the two biomimetic organisms is subjected to evolutionary optimization, which illustrates the advantages of accelerated neuromorphic nervous systems through significant time savings

    Event-Based Motion Segmentation by Motion Compensation

    Full text link
    In contrast to traditional cameras, whose pixels have a common exposure time, event-based cameras are novel bio-inspired sensors whose pixels work independently and asynchronously output intensity changes (called "events"), with microsecond resolution. Since events are caused by the apparent motion of objects, event-based cameras sample visual information based on the scene dynamics and are, therefore, a more natural fit than traditional cameras to acquire motion, especially at high speeds, where traditional cameras suffer from motion blur. However, distinguishing between events caused by different moving objects and by the camera's ego-motion is a challenging task. We present the first per-event segmentation method for splitting a scene into independently moving objects. Our method jointly estimates the event-object associations (i.e., segmentation) and the motion parameters of the objects (or the background) by maximization of an objective function, which builds upon recent results on event-based motion-compensation. We provide a thorough evaluation of our method on a public dataset, outperforming the state-of-the-art by as much as 10%. We also show the first quantitative evaluation of a segmentation algorithm for event cameras, yielding around 90% accuracy at 4 pixels relative displacement.Comment: When viewed in Acrobat Reader, several of the figures animate. Video: https://youtu.be/0q6ap_OSBA

    Learning Autonomous Flight Controllers with Spiking Neural Networks

    Full text link
    The ability of a robot to adapt in-mission to achieve an assigned goal is highly desirable. This thesis project places an emphasis on employing learning-based intelligent control methodologies to the development and implementation of an autonomous unmanned aerial vehicle (UAV). Flight control is carried out by evolving spiking neural networks (SNNs) with Hebbian plasticity. The proposed implementation is capable of learning and self-adaptation to model variations and uncertainties when the controller learned in simulation is deployed on a physical platform. Controller development for small multicopters often relies on simulations as an intermediate step, providing cheap, parallelisable, observable and reproducible optimisation with no risk of damage to hardware. Although model-based approaches have been widely utilised in the process of development, loss of performance can be observed on the target platform due to simplification of system dynamics in simulation (e.g., aerodynamics, servo dynamics, sensor uncertainties). Ignorance of these effects in simulation can significantly deteriorate performance when the controller is deployed. Previous approaches often require mathematical or simulation models with a high level of accuracy which can be difficult to obtain. This thesis, on the other hand, attempts to cross the reality gap between a low-fidelity simulation and the real platform. This is done using synaptic plasticity to adapt the SNN controller evolved in simulation to the actual UAV dynamics. The primary contribution of this work is the implementation of a procedural methodology for SNN control that integrates bioinspired learning mechanisms with artificial evolution, with an SNN library package (i.e. eSpinn) developed by the author. Distinct from existing SNN simulators that mainly focus on large-scale neuron interactions and learning mechanisms from a neuroscience perspective, the eSpinn library draws particular attention to embedded implementations on hardware that is applicable for problems in the robotic domain. This C++ software package is not only able to support simulations in the MATLAB and Python environment, allowing rapid prototyping and validation in simulation; but also capable of seamless transition between simulation and deployment on the embedded platforms. This work implements a modified version of the NEAT neuroevolution algorithm and leverages the power of evolutionary computation to discover functional controller compositions and optimise plasticity mechanisms for online adaptation. With the eSpinn software package the development of spiking neurocontrollers for all degrees of freedom of the UAV is demonstrated in simulation. Plastic height control is carried out on a physical hexacopter platform. Through a set of experiments it is shown that the evolved plastic controller can maintain its functionality by self-adapting to model changes and uncertainties that take place after evolutionary training, and consequently exhibit better performance than its non-plastic counterpart

    Bio-Inspired Computer Vision: Towards a Synergistic Approach of Artificial and Biological Vision

    Get PDF
    To appear in CVIUStudies in biological vision have always been a great source of inspiration for design of computer vision algorithms. In the past, several successful methods were designed with varying degrees of correspondence with biological vision studies, ranging from purely functional inspiration to methods that utilise models that were primarily developed for explaining biological observations. Even though it seems well recognised that computational models of biological vision can help in design of computer vision algorithms, it is a non-trivial exercise for a computer vision researcher to mine relevant information from biological vision literature as very few studies in biology are organised at a task level. In this paper we aim to bridge this gap by providing a computer vision task centric presentation of models primarily originating in biological vision studies. Not only do we revisit some of the main features of biological vision and discuss the foundations of existing computational studies modelling biological vision, but also we consider three classical computer vision tasks from a biological perspective: image sensing, segmentation and optical flow. Using this task-centric approach, we discuss well-known biological functional principles and compare them with approaches taken by computer vision. Based on this comparative analysis of computer and biological vision, we present some recent models in biological vision and highlight a few models that we think are promising for future investigations in computer vision. To this extent, this paper provides new insights and a starting point for investigators interested in the design of biology-based computer vision algorithms and pave a way for much needed interaction between the two communities leading to the development of synergistic models of artificial and biological vision

    Learning vision-based agile flight: From simulation to the real world

    Get PDF
    corecore