2,101 research outputs found

    Optical label-controlled transparent metro-access network interface

    Get PDF

    Real Time Testing and Validation of a Novel Short Circuit Current (SCC) Controller for a Photovoltaic Inverter

    Get PDF
    About 45% applications from PV solar farm developers seeking connections to the distribution grids in Ontario were denied in 2011-13 as the short circuit current (SCC) capacity of several distribution substations had already been reached. PV solar system inverters typically contribute 1.2 p.u. to 1.8 p.u. fault current which was not considered acceptable by utility companies due to the need for very expensive protective breaker upgrades. Since then, this cause has become a major impediment in the growth of PV based renewable systems in Ontario. A novel predictive technique has been patented in our research group for management of short circuit current contribution from PV inverters to ensure effective deployment of solar farms. This thesis deals with the real time testing and validation of a short circuit current (SCC) controller based on the above technique. With this SCC controller, the PV inverter can be shut off within 1-2 milliseconds from the initiation of any fault in the grid that can cause the short circuit current to exceed the rated current of the inverter. Therefore, the power system does not see any short circuit current contribution from the PV inverter and no expensive upgrades in protective breakers are required in the system. The performance of the PV solar system with the short circuit current controller is simulated and tested using (i) industry grade electromagnetic transients software PSCAD/EMTDC (ii) real time simulation studies on the Real Time Digital Simulator (RTDS) (iii) physical implementation on dSPACE board to generate firing pulses for the inverter. The validation of controller is done on dSPACE board with actual PV inverter short circuit waveforms obtained from Southern California Edison Short Circuit Testing Lab. This novel technology is planned to be showcased on a physical 10 kW PV solar system in Bluewater Power Distribution Corporation, Sarnia, Ontario. This proposed technology is expected to remove the technical hurdles which caused the denials of connectivity to several PV solar farms, and effectively lead to greater connections of PV solar farms in Ontario and in similar jurisdictions, worldwide

    Unified Power Quality Conditioner: protection and performance enhancement

    Get PDF
    The proliferation of power electronics-based equipment has produced a significant impact on the quality of electric power supply. Nowadays, much of the equipment is based on power electronic devices, often leading to problems of power quality. At the same time this equipment is typically equipped with microprocessor-based controllers which are quite sensitive to deviations from the ideal sinusoidal line voltage. Conventional power quality mitigation equipment is proving to be inadequate for an increasing number of applications, and this fact has attracted the attention of power engineers to develop dynamic and adjustable solutions to power quality problems. One modern and very promising solution that deals with both load current and supply voltage imperfections is the Unified Power Quality Conditioner (UPQC). This thesis investigates the development of UPQC protection scheme and control algorithms for enhanced performance. This work is carried out on a 12 kVA prototype UPQC. In order to protect the series inverter of the UPQC from overvoltage and overcurrent during short circuits on the load side of the UPQC, the secondary of the series transformer has to be short-circuited in a reasonably short time (microseconds). A hardware-based UPQC protection scheme against the load side short circuits is derived and its implementation and effectiveness is investigated. The main protection element is a crowbar connected across the secondary of the series transformer and consisting of a pair of antiparallel connected thyristors, which is governed by a very simple Zener diode based control circuit. Also, the software-based UPQC protection approach is investigated, the implementation of which does not require additional hardware

    Design and Control of a Dynamic Voltage Restorer

    Get PDF
    corecore