117 research outputs found

    Multi-camera cooperative scene interpretation

    Get PDF
    In our society, video processing has become a convenient and widely used tool to assist, protect and simplify the daily life of people in areas such as surveillance and video conferencing. The growing number of cameras, the handling and analysis of these vast amounts of video data enable the development of multi-camera applications that cooperatively use multiple sensors. In many applications, bandwidth constraints, privacy issues, and difficulties in storing and analyzing large amounts of video data make applications costly and technically challenging. In this thesis, we deploy techniques ranging from low-level to high-level approaches, specifically designed for multi-camera networks. As a low-level approach, we designed a novel low-level foreground detection algorithm for real-time tracking applications, concentrating on difficult and changing illumination conditions. The main part of this dissertation focuses on a detailed analysis of two novel state-of-the-art real-time tracking approaches: a multi-camera tracking approach based on occupancy maps and a distributed multi-camera tracking approach with a feedback loop. As a high-level application we propose an approach to understand the dynamics in meetings - so called, smart meetings - using a multi-camera setup, consisting of fixed ambient and portable close-up cameras. For all method, we provided qualitative and quantitative results on several experiments, compared to state-of-the-art methods

    A best view selection in meetings through attention analysis using a multi-camera network

    Get PDF
    Human activity analysis is an essential task in ambient intelligence and computer vision. The main focus lies in the automatic analysis of ongoing activities from a multi-camera network. One possible application is meeting analysis which explores the dynamics in meetings using low-level data and inferring high-level activities. However, the detection of such activities is still very challenging due to the often corrupted or imprecise low-level data. In this paper, we present an approach to understand the dynamics in meetings using a multi-camera network, consisting of fixed ambient and portable close-up cameras. As a particular application we are aiming to find the most informative video stream, for example as a representative view for a remote participant. Our contribution is threefold: at first, we estimate the extrinsic parameters of the portable close-up cameras based on head positions. Secondly, we find common overlapping areas based on the consensus of people’s orientation. And thirdly, the most informative view for a remote participant is estimated using common overlapping areas. We evaluated our proposed approach and compared it to a motion estimation method. Experimental results show that we can reach an accuracy of 74% compared to manually selected views

    OpenCV and TYZX : video surveillance for tracking.

    Full text link

    Human mobility monitoring in very low resolution visual sensor network

    Get PDF
    This paper proposes an automated system for monitoring mobility patterns using a network of very low resolution visual sensors (30 30 pixels). The use of very low resolution sensors reduces privacy concern, cost, computation requirement and power consumption. The core of our proposed system is a robust people tracker that uses low resolution videos provided by the visual sensor network. The distributed processing architecture of our tracking system allows all image processing tasks to be done on the digital signal controller in each visual sensor. In this paper, we experimentally show that reliable tracking of people is possible using very low resolution imagery. We also compare the performance of our tracker against a state-of-the-art tracking method and show that our method outperforms. Moreover, the mobility statistics of tracks such as total distance traveled and average speed derived from trajectories are compared with those derived from ground truth given by Ultra-Wide Band sensors. The results of this comparison show that the trajectories from our system are accurate enough to obtain useful mobility statistics

    Attentive monitoring of multiple video streams driven by a Bayesian foraging strategy

    Full text link
    In this paper we shall consider the problem of deploying attention to subsets of the video streams for collating the most relevant data and information of interest related to a given task. We formalize this monitoring problem as a foraging problem. We propose a probabilistic framework to model observer's attentive behavior as the behavior of a forager. The forager, moment to moment, focuses its attention on the most informative stream/camera, detects interesting objects or activities, or switches to a more profitable stream. The approach proposed here is suitable to be exploited for multi-stream video summarization. Meanwhile, it can serve as a preliminary step for more sophisticated video surveillance, e.g. activity and behavior analysis. Experimental results achieved on the UCR Videoweb Activities Dataset, a publicly available dataset, are presented to illustrate the utility of the proposed technique.Comment: Accepted to IEEE Transactions on Image Processin

    Dynamic behavior analysis via structured rank minimization

    Get PDF
    Human behavior and affect is inherently a dynamic phenomenon involving temporal evolution of patterns manifested through a multiplicity of non-verbal behavioral cues including facial expressions, body postures and gestures, and vocal outbursts. A natural assumption for human behavior modeling is that a continuous-time characterization of behavior is the output of a linear time-invariant system when behavioral cues act as the input (e.g., continuous rather than discrete annotations of dimensional affect). Here we study the learning of such dynamical system under real-world conditions, namely in the presence of noisy behavioral cues descriptors and possibly unreliable annotations by employing structured rank minimization. To this end, a novel structured rank minimization method and its scalable variant are proposed. The generalizability of the proposed framework is demonstrated by conducting experiments on 3 distinct dynamic behavior analysis tasks, namely (i) conflict intensity prediction, (ii) prediction of valence and arousal, and (iii) tracklet matching. The attained results outperform those achieved by other state-of-the-art methods for these tasks and, hence, evidence the robustness and effectiveness of the proposed approach
    • …
    corecore