36 research outputs found

    Performance of turbo multi-user detectors in space-time coded DS-CDMA systems

    Get PDF
    Includes bibliographical references (leaves 118-123).In this thesis we address the problem of improving the uplink capacity and the performance of a DS-CDMA system by combining MUD and turbo decoding. These two are combined following the turbo principle. Depending on the concatenation scheme used, we divide these receivers into the Partitioned Approach (PA) and the Iterative Approach (IA) receivers. To enable the iterative exchange of information, these receivers employ a Parallel Interference Cancellation (PIC) detector as the first receiver stage

    Near far resistant detection for CDMA personal communication systems.

    Get PDF
    The growth of Personal Communications, the keyword of the 90s, has already the signs of a technological revolution. The foundations of this revolution are currently set through the standardization of the Universal Mobile Telecommunication System (UMTS), a communication system with synergistic terrestrial and satellite segments. The main characteristic of the UMTS radio interface, is the provision of ISDN services. Services with higher than voice data rates require more spectrum, thus techniques that utilize spectrum as efficiently as possible are currently at the forefront of the research community interests. Two of the most spectrally efficient multiple access technologies, namely. Code Division Multiple Access (CDMA) and Time Division Multiple Access (TDMA) concentrate the efforts of the European telecommunity.This thesis addresses problems and. proposes solutions for CDMA systems that must comply with the UMTS requirements. Prompted by Viterbi's call for further extending the potential of CDMA through signal processing at the receiving end, we propose new Minimum Mean Square Error receiver architectures. MMSE detection schemes offer significant advantages compared to the conventional correlation based receivers as they are NEar FAr Resistant (NEFAR) over a wide range of interfering power levels. The NEFAR characteristic of these detectors reduces considerably the requirements of the power control loops currently found in commercial CDMA systems. MMSE detectors are also found, to have significant performance gains over other well established interference cancellation techniques like the decorrelating detector, especially in heavily loaded system conditions. The implementation architecture of MMSE receivers can be either Multiple-Input Multiple Output (MIMO) or Single-Input Single-Output. The later offers not only complexity that is comparable to the conventional detector, but also has the inherent advantage of employing adaptive algorithms which can be used to provide both the dispreading and the interference cancellation function, without the knowledge of the codes of interfering users. Furthermore, in multipath fading channels, adaptive MMSE detectors can exploit the multipath diversity acting as RAKE combiners. The later ability is distinctive to MMSE based receivers, and it is achieved in an autonomous fashion, without the knowledge of the multipath intensity profile. The communicator achieves its performance objectives by the synergy of the signal processor and the channel decoder. According to the propositions of this thesis, the form of the signal processor needs to be changed, in order to exploit the horizons of spread spectrum signaling. However, maximum likelihood channel decoding algorithms need not change. It is the way that these algorithms are utilized that needs to be revis ed. In this respect, we identify three major utilization scenarios and an attempt is made to quantify which of the three best matches the requirements of a UMTS oriented CDMA radio interface. Based on our findings, channel coding can be used as a mapping technique from the information bit to a more ''intelligent" chip, matching the ''intelligence" of the signal processor

    Soft detection and decoding in wideband CDMA systems

    Get PDF
    A major shift is taking place in the world of telecommunications towards a communications environment where a range of new data services will be available for mobile users. This shift is already visible in several areas of wireless communications, including cellular systems, wireless LANs, and satellite systems. The provision of flexible high-quality wireless data services requires a new approach on both the radio interface specification and the design and the implementation of the various transceiver algorithms. On the other hand, when the processing power available in the receivers increases, more complex receiver algorithms become feasible. The general problem addressed in this thesis is the application of soft detection and decoding algorithms in the wideband code division multiple access (WCDMA) receivers, both in the base stations and in the mobile terminals, so that good performance is achieved but that the computational complexity remains acceptable. In particular, two applications of soft detection and soft decoding are studied: coded multiuser detection in the CDMA base station and improved RAKE-based reception employing soft detection in the mobile terminal. For coded multiuser detection, we propose a novel receiver structure that utilizes the decoding information for multiuser detection. We analyze the performance and derive lower bounds for the capacity of interference cancellation CDMA receivers when using channel coding to improve the reliability of tentative decisions. For soft decision and decoding techniques in the CDMA downlink, we propose a modified maximal ratio combining (MRC) scheme that is more suitable for RAKE receivers in WCDMA mobile terminals than the conventional MRC scheme. We also introduce an improved soft-output RAKE detector that is especially suitable for low spreading gains and high-order modulation schemes. Finally we analyze the gain obtained through the use of Brennan's MRC scheme and our modified MRC scheme. Throughout this thesis Bayesian networks are utilized to develop algorithms for soft detection and decoding problems. This approach originates from the initial stages of this research, where Bayesian networks and algorithms using such graphical models (e.g. the so-called sum-product algorithm) were used to identify new receiver algorithms. In the end, this viewpoint may not be easily noticeable in the final form of the algorithms, mainly because the practical efficiency considerations forced us to select simplified variants of the algorithms. However, this viewpoint is important to emphasize the underlying connection between the apparently different soft detection and decision algorithms described in this thesis.reviewe

    Interference suppression and diversity for CDMA systems

    Get PDF
    In code-division multiple-access (CDMA) systems, due to non-orthogonality of the spreading codes and multipath channels, the desired signal suffers interference from other users. Signal fading due to multipath propagation is another source of impairment in wireless CDMA systems, often severely impacting performance. In this dissertation, reduced-rank minimum mean square error (MMSE) receiver and reduced-rank minimum variance receiver are investigated to suppress interference; transmit diversity is applied to multicarrier CDMA (MC-CDMA) systems to combat fading; packet combing is studied to provide both interference suppression and diversity for CDMA random access systems. The reduced-rank MMSE receiver that uses a reduced-rank estimated covariance matrix is studied to improve the performance of MMSE receiver in CDMA systems. It is shown that the reduced-rank MMSE receiver has much better performance than the full-rank MMSE receiver when the covariance matrix is estimated by using a finite number of data samples and the desired signal is in a low dimensional subspace. It is also demonstrated that the reduced-rank minimum variance receiver outperforms the full-rank minimum variance receiver. The probability density function of the output SNR of the full-rank and reduced-rank linear MMSE estimators is derived for a general linear signal model under the assumption that the signals and noise are Gaussian distributed. Space-time coding that is originally proposed for narrow band systems is applied to an MC-CDMA system in order to get transmit diversity for such a wideband system. Some techniques to jointly decode the space-time code and suppress interference are developed. The channel estimation using either pilot channels or pilot symbols is studied for MC-CDMA systems with space-time coding. Performance of CDMA random access systems with packet combining in fading channels is analyzed. By combining the current retransmitted packet with all its previous transmitted copies, the receiver obtains a diversity gain plus an increased interference and noise suppression gain. Therefore, the bit error rate dramatically decreases with the number of transmissions increasing, which in turn improves the system throughput and reduces the average delay

    Fractionally sampled decorrelating detectors for time-varying rayleigh fading CDMA channels

    Get PDF
    In this dissertation, we propose novel decorrelating multiuser detectors in DSCDMA time-varying frequency-nonselective and frequency-selective fading channels and analyze their performance. We address the common shortcomings of existing multiuser detectors in a mobile environment, such as detector complexity and the error floor. An analytical approach is employed almost exclusively and Monte Carlo simulation is used to confirm the theoretical results. Practical channel models, such as Jakes\u27 and Markovian, are adopted in the numerical examples. The proposed detectors are of the decorrelating type and utilize fractional sampling to simultaneously achieve two goals: (1) the novel realization of a decorrelator with lower computational complexity and shorter processing latency; and (2) the significant reduction of the probability of error floor associated with time-varying fading. The analysis of the impact of imperfect power control on IS-95 multiple access interference is carried out first and the ineffectiveness of IS-95 power control in a mobile radio environment is demonstrated. Fractionally-spaced bit-by-bit decorrelator structures for the frequency-nonselective and frequency-selective channels are then proposed. The matrix singularity problem associated with decorrelation is also addressed, and its solution is suggested. A decorrelating receiver employing differentially coherent detection for an asynchronous CDMA, frequency-nonselective time-varying Rayleigh fading channel is proposed. A maximum likelihood detection principle is applied at the fractionally spaced decorrelator output, resulting in a significantly reduced error floor. For coherent detection, a novel single-stage and two-stage decision feedback (DF) maximum a posteriori (MAP) channel estimator is proposed. These estimators are applicable to a channel with an arbitrary spaced-time correlation function. The fractionally-spaced decorrelating detector is then modified and extended to a frequency-selective time-varying fading channel, and is shown to be capable of simultaneously eliminating MAI, ISI, and path cross-correlation interference. The implicit equivalent frequency diversity is exploited through multipath combining, and the effective time diversity is achieved by fractional sampling for significant performance improvement. The significance of the outcome of this research is in the design of new lower complexity multiuser detectors that do not exhibit the usual deficiencies and limitations associated with a time-varying fading and multipath CDMA mobile environment

    Soft-decision equalization techniques for frequency selective MIMO channels

    Get PDF
    Multi-input multi-output (MIMO) technology is an emerging solution for high data rate wireless communications. We develop soft-decision based equalization techniques for frequency selective MIMO channels in the quest for low-complexity equalizers with BER performance competitive to that of ML sequence detection. We first propose soft decision equalization (SDE), and demonstrate that decision feedback equalization (DFE) based on soft-decisions, expressed via the posterior probabilities associated with feedback symbols, is able to outperform hard-decision DFE, with a low computational cost that is polynomial in the number of symbols to be recovered, and linear in the signal constellation size. Building upon the probabilistic data association (PDA) multiuser detector, we present two new MIMO equalization solutions to handle the distinctive channel memory. With their low complexity, simple implementations, and impressive near-optimum performance offered by iterative soft-decision processing, the proposed SDE methods are attractive candidates to deliver efficient reception solutions to practical high-capacity MIMO systems. Motivated by the need for low-complexity receiver processing, we further present an alternative low-complexity soft-decision equalization approach for frequency selective MIMO communication systems. With the help of iterative processing, two detection and estimation schemes based on second-order statistics are harmoniously put together to yield a two-part receiver structure: local multiuser detection (MUD) using soft-decision Probabilistic Data Association (PDA) detection, and dynamic noise-interference tracking using Kalman filtering. The proposed Kalman-PDA detector performs local MUD within a sub-block of the received data instead of over the entire data set, to reduce the computational load. At the same time, all the inter-ference affecting the local sub-block, including both multiple access and inter-symbol interference, is properly modeled as the state vector of a linear system, and dynamically tracked by Kalman filtering. Two types of Kalman filters are designed, both of which are able to track an finite impulse response (FIR) MIMO channel of any memory length. The overall algorithms enjoy low complexity that is only polynomial in the number of information-bearing bits to be detected, regardless of the data block size. Furthermore, we introduce two optional performance-enhancing techniques: cross- layer automatic repeat request (ARQ) for uncoded systems and code-aided method for coded systems. We take Kalman-PDA as an example, and show via simulations that both techniques can render error performance that is better than Kalman-PDA alone and competitive to sphere decoding. At last, we consider the case that channel state information (CSI) is not perfectly known to the receiver, and present an iterative channel estimation algorithm. Simulations show that the performance of SDE with channel estimation approaches that of SDE with perfect CSI

    Combined turbo coding and interference rejection for DS-CDMA.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2004.This dissertation presents interference cancellation techniques for both the Forward Error Correction (FEC) coded and the uncoded Direct Sequence Code Division Multiple Access (DS-CDMA) systems. Analytical models are also developed for the adaptive and the non-adaptive Parallel Interference Cancellation (PlC) receivers. Results that are obtained from the computer simulations of the PlC receiver types confirm the accuracy of the analytical models that are developed. Results show that the Least Mean Square (LMS) algorithm based adaptive PlC receivers have bit error rate performances that are better than those of the non-adaptive PlC receivers. In the second part of this dissertation, a novel iterative multiuser detector for the Turbo coded DS-CDMA system is developed. The performance of the proposed receiver in the multirate CDMA system is also investigated. The developed receiver is found to have an error rate performance that is very close to the single user limit after a few numbers of iterations. The receiver is also resilient against the near-far effect. A methodology is also presented on the use of the Gaussian approximation method in the convergence analysis of iterative interference cancellation receivers for turbo coded DS-CDMA systems

    Performance Evaluation of Phase Optimized Spreading Codes in Non Linear DS-CDMA Receiver

    Get PDF
    Spread spectrum (SS) is a modulation technique in which the signal occupies a bandwidth much larger than the minimum necessary to send the information. A synchronized reception with the code at the receiver is used for despreading the information before data recovery. Bandspread is accomplished by means of a code which is independent of the data. Bandspreading code is pseudo-random, thus the spread signal resembles noise. The coded modulation characteristic of SS system uniquely qualifies it for navigation applications. Any signal used in ranging is subject to time/distance relations. A SS signal has advantage that its phase is easily resolvable. Direct-sequence (DS) form of modulation is mostly preferred over Frequency Hopping system (FH) as FH systems do not normally possess high resolution properties. Higher the chip rate, the better the measurement capability. The basic resolution is one code chip. Initially, some existing code families e.g. Gold, Kasami (large and smal..

    Receiver algorithms that enable multi-mode baseband terminals

    Get PDF
    corecore