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ABSTRACT 

A major shift is taking place in the world of telecommunications towards a communications 

environment where a range of new data services will be available for mobile users. This shift is 

already visible in several areas of wireless communications, including cellular systems, wireless 

LANs, and satellite systems. The provision of flexible high-quality wireless data services requires 

a new approach on both the radio interface specification and the design and the implementation 

of the various transceiver algorithms. On the other hand, when the processing power available in 

the receivers increases, more complex receiver algorithms become feasible.  

The general problem addressed in this thesis is the application of soft detection and decoding 

algorithms in the wideband code division multiple access (WCDMA) receivers, both in the base 

stations and in the mobile terminals, so that good performance is achieved but that the 

computational complexity remains acceptable. In particular, two applications of soft detection 

and soft decoding are studied: coded multiuser detection in the CDMA base station and improved 

RAKE-based reception employing soft detection in the mobile terminal.  

For coded multiuser detection, we propose a novel receiver structure that utilizes the decoding 

information for multiuser detection. We analyze the performance and derive lower bounds for the 

capacity of interference cancellation CDMA receivers when using channel coding to improve the 

reliability of tentative decisions.  

For soft decision and decoding techniques in the CDMA downlink, we propose a modified 

maximal ratio combining (MRC) scheme that is more suitable for RAKE receivers in WCDMA 

mobile terminals than the conventional MRC scheme. We also introduce an improved soft-output 

RAKE detector that is especially suitable for low spreading gains and high-order modulation 

schemes. Finally we analyze the gain obtained through the use of Brennan's MRC scheme and 

our modified MRC scheme. 

Throughout this thesis Bayesian networks are utilized to develop algorithms for soft detection 

and decoding problems. This approach originates from the initial stages of this research, where 

Bayesian networks and algorithms using such graphical models (e.g. the so-called sum-product 

algorithm) were used to identify new receiver algorithms. In the end, this viewpoint may not be 
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easily noticeable in the final form of the algorithms, mainly because the practical efficiency 

considerations forced us to select simplified variants of the algorithms. However, this viewpoint 

is important to emphasize the underlying connection between the apparently different soft 

detection and decision algorithms described in this thesis.   

 

Keywords — CDMA, soft detection, soft decoding, coded multiuser detection, RAKE receiver, 

sum-product algorithm, iterative methods 
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1 INTRODUCTION 

A major shift is taking place in the world of telecommunications towards an era of "tetherless" 

communications where a range of new data services is available for mobile users. This shift is 

already visible in several areas of wireless communications, including cellular systems, wireless 

LANs, and satellite systems. 

In the area of cellular mobile systems, the existing 2nd-generation systems are rapidly being 

upgraded for the provision of these new data services. For instance in GSM, the standardization 

of the high-speed circuit switched data services (HSCSD) as well as packet switched data 

services (GPRS) has already been completed. A major step in the introduction of the new data 

services has been the 3rd generation cellular systems such as Universal Mobile 

Telecommunications System (UMTS) specified by 3GPP and a part of the IMT-2000 family 

under development in ITU. There is also an ongoing activity for the evolution of UMTS 

Terrestrial Radio Access Network (UTRAN) beyond the original requirements, the high-speed 

downlink packet access (HSDPA), which is aiming at high peak data rates and low overall delays 

[PDF01]. 

The provision of this kind of high-speed, high-quality wireless data services requires a new 

approach on both the radio interface specification and on the design and the implementation of 

the various transceiver algorithms. There is a need for further development of existing algorithms 

as well as for the creation of completely new solutions. Recognizing this need, the broad 

framework of this research is the development of advanced receiver algorithms to be used in base 

station and mobile terminal receivers for UTRAN Frequency Division Duplex (FDD) mode, 

where the Wideband Code Division Multiple Access (WCDMA) technology is used.  

Looking at possible new directions, the success of iterative decoding for Turbo codes [HeW99] 

suggests that a new way to devise these high-performance algorithms could be found by 

considering a probabilistic approach where soft information presenting the probabilities of 

different alternatives is used in detection and decoding processes. Many detection, decoding and 

estimation problems can be reduced to the estimation of certain probabilities. Detection and 

decoding algorithms that actually produce these probabilities or some continuous-value metrics 
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based on these are called in this thesis soft detection and decoding methods (See Chapter 3 for 

details). There are known algorithms that may be used for the estimation of the probabilities such 

as the sum-product algorithm (also called the generalized forward-backward algorithm). Many 

of these algorithms use some graphical description of the dependencies between the random 

variables in the system, such as Bayesian networks [Fre98]. However, these algorithms may have 

a high computational complexity. Thus the main problem remains how to derive soft detection 

and decoding algorithms for CDMA receivers with good performance while keeping the 

computational complexity acceptable. 

This thesis considers the above problem and studies the application of soft detection and 

decoding methods in two specific cases: coded multiuser detection in the CDMA base station, 

and improved RAKE-based reception employing soft detection in the mobile terminal. The initial 

approach in this research was to describe these soft detection and decoding problems using 

Bayesian networks and then to apply some variant of the sum-product algorithm. However, since 

there is a need to have algorithms with reduced complexity (especially for the mobile terminal), 

the final algorithms are quite specialized variants of the sum-product algorithm that may be hard 

to recognize. To emphasize this initial theme in this research, Bayesian networks are used 

whenever possible to illustrate the addressed soft detection and decoding problems. 

The thesis structure is as follows: in Chapter 2, a short background on wireless systems and 

receivers is given; in Chapter 3, soft detection and decoding is introduced starting from detection 

theory and introducing soft detection by considering reduced complexity methods and in 

particular iterative methods, where the soft detection and decoding play a key role. The chapter is 

concluded by a review of soft detection and decoding in wideband CDMA systems. 

Chapter 4 studies the application of soft detection for coded multiuser detection in CDMA base 

stations. The state-of-the-art research on coded multiuser receivers is reviewed and the emphasis 

is on iterative joint multiuser receivers, the type of receivers considered in publications [P1] and 

[P2]. Finally, some system issues of iterative joint multiuser receivers are considered that are 

related the analysis presented in [P3]. 

In Chapter 5, the application of soft detection for an improved RAKE-based reception in the 

mobile terminal is studied. The approach used to derive the improved RAKE receivers proposed 

in [P4], [P5] and [P6] is presented. In Chapter 6, a summary of the publications is presented and 

in Chapter 7 some concluding remarks are made. Possibilities for future work are discussed in 

Chapter 8.   
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2 BACKGROUND 

The history of wireless communication began in the late 19th century when Hertz, Marconi, Tesla, 

and many other scientists and engineers experimented with the transmission and reception of 

electromagnetic waves, predicted by Maxwell's theory published in 1864 [Max64]. In 1888, 

Hertz experimentally verified the existence of electromagnetic waves [CiW95]. The practical 

significance of this discovery became gradually apparent and in 1896 Marconi applied for a 

patent utilizing the electromagnetic waves for wireless communications [Nig97]. Followed by 

Tesla’s demonstration of a radio remotely controlled boat in 1898 [MaB01], the first wireless 

ship-to-shore telegraph link by Marconi the same year [EAS95] and the first trans-atlantic 

wireless transmission in 1901 [Nig97], these events may be considered as the start of wireless 

communications.  

From the beginning of the 20th century, the progress in radio technology was rapid. But even 

though many key concepts such as the cellular model, spread spectrum techniques and digital 

modulation were known more than 50 years ago, mobile telephone services did not appear in 

useful forms until the early 1960s, and even then only as elaborate adaptations of simple 

dispatching systems [RWO95]. The convenience of these early mobile systems was severely 

limited, and their maximum capacity was tiny by today's standards. The situation changed in the 

early 1980’s, when the first cellular mobile systems went into service in Japan and in the United 

States. These were analog full duplex FM systems, but still they became quickly popular, as did 

other similar systems, such as NMT. The next major step was the introduction of the 2nd 

generation digital cellular systems, like the GSM. Today, the popularity of 2nd generation 

systems has exceeded all expectations and with the emerging new data services and the 

introduction of 3rd generation systems, the future of wireless communications has great potential.  

In the rest of the chapter we give a brief overview of the cellular radio and the fundamentals of 

digital communications, the two concepts that have played a key role in the development of 

mobile communications. Finally we will present a reference receiver model that is used in this 

thesis to derive the soft detection and decoding methods. 
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2.1 CELLULAR SYSTEMS 

 

Figure 1 Cellular network structure 

In early mobile radio systems, a small set of frequencies was used for a huge geographical area. 

The transmitters were so powerful that their operating frequencies could not be reused for 

hundreds of kilometers. This was a major limitation to the capacity of the system; once a channel 

was in use, the channel was not reuseable over the whole coverage area, even though the need for 

a mobile communication channel was confined to a small part of the network's service area. This 

prohibited the mass deployment of mobile communications. 

A new approach was proposed, where the total frequency band was split to several sub-bands. 

These sub-bands were allocated to different geographical cells with a procedure where 

neighborhood cells were allocated different sub-bands e.g. according to Figure 1. In this way 

several cells could coexist spatially and so the cellular structure was born.  

In practice special care needs to be taken in order to limit the interference between cells. This 

may be achieved by a suitable frequency allocation scheme or by utilizing spread spectrum 

techniques. In addition, the frequency range used should be high enough to limit the signal 

propagation. With suitable equipment, roaming and hand-overs can be used to be both reachable 

and have uninterrupted connection established while moving from one cell to another.  
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2.2 FUNDAMENTALS OF DIGITAL COMMUNICATIONS 

2.2.1 Elements of a Digital Communications system  

Information source Source
encoder
Source
encoder

Channel
encoder
Channel
encoder Digital modulatorDigital modulator

Information sink Source
decoder
Source
decoder

Channel
decoder
Channel
decoder

Digital
demodulator

Digital
demodulator

ChannelChannel

Other users

Other users

 

Figure 2 Basic elements of a digital communications system (Adapted from [Pro95]) 

In a cellular system both uplink (terminal-to-base station) and downlink (base station-to-terminal) 

communication is required between the mobile terminals and the base station. With digital 

cellular systems, the communication system for both uplink and downlink are usually arranged 

using the generic digital communication system structure shown in Figure 2. The task of the 

communication system is to relay the information between the information source and the sink. 

For the uplink, the information source is in the mobile terminal, it can for instance be an A/D 

converter that converts the speech signal to digital information. For the downlink, the information 

source is somewhere in the cellular network or in another mobile terminal. 

The aim of the source encoder is to remove the redundancy that is present in every natural 

information source. The output of the source encoder is passed to the channel encoder. The 

purpose of the channel encoder is to introduce, in a very particular manner, some redundancy in 

the input sequence, which can be used for error detection and correction in the receiver. The 

output of the channel encoder is passed to the digital modulator, which serves as an interface to 

the communications channel. In the case of cellular communication, several users typically share 

the channel and some multiple access technique needs to be employed. The different multiple 

access methods are discussed further in Section 2.2.2.  
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In the receiver, each transmitter block has a counterpart that complements the function of the 

transmitter block in question. The digital demodulator processes the waveform received through 

the channel and reduces the waveforms to a sequence of numbers that present the estimates of the 

transmitted data symbols. In this process which is often referred to as detection, the used multiple 

access technique is also taken into account. This sequence of numbers is passed to the channel 

decoder, which attempts to reconstruct the original input of the channel encoder using the 

information of the redundancy structure, that is, the channel coding information. Finally the 

output of the channel decoder is fed to the source decoder, which tries to reconstruct the original 

message. 

The generic digital communications system structure shown in Figure 2 does not describe all the 

details in the system. Thus, depending on the focus, a more detailed description of some parts of 

the system may be needed. In this thesis, the main focus is on the methods used in the wideband 

CDMA receivers for detection and channel decoding. The above receiver structure needs to be 

elaborated for those parts. This is done in Section 2.3 where we describe a more detailed 

reference receiver structure.  

2.2.2 Multiple Access Techniques 

In cellular communications, the total capacity within a cell needs to be divided between the 

existing users. In addition to the duplexing, some multiple access method is required to support 

the simultaneous access to the radio channel by all users. Usually, the basic approach is to 

employ signals that are orthogonal or at least nearly orthogonal. Then, correlators that project the 

received signal into the subspace of the desired signal can be employed to extract it, ideally 

without interference from other transmissions. The orthogonal signal set can be selected in a 

variety of ways. The most commonly used multiple access techniques result when the orthogonal 

signal sets are obtained by selecting signals that are separated either in frequency domain, time 

domain or code domain.  

In the frequency domain signals, which occupy non-overlapping frequency bands, can be 

separated using appropriate bandpass filters. Hence, signals can be transmitted simultaneously 

without significantly interfering with each other. This method of providing multiple access 

capabilities is called frequency-division multiple access (FDMA).  

In the time domain, signals are transmitted in non-overlapping time slots for instance in a round-

robin fashion. The signals occupy the same frequency band but can be separated based on their 
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time of arrival. This method of providing multiple access capabilities is called time-division 

multiple access (TDMA).  

In the code domain, the signals are transmitted simultaneously and even occupy the same 

frequency band. However, the signals are selected to be nearly mutually orthogonal. Thus, 

correlators can extract individual signals from the mixture of signals, although some amount of 

multiple access interference (MAI) will usually be present due to the non-orthogonality. This 

method of providing multiple access capabilities is called code-division multiple access (CDMA). 

2.3 REFERENCE CDMA RECEIVER STRUCTURE 

The basic model for digital communications shown in Figure 2 is presents a high level view of 

the system. In each block there is a hidden structure that needs to be taken into account in more 

specific discussions. This thesis considers soft detection and decoding methods, where a feedback 

from the channel decoder to the detector often plays a key role. These methods are also closely 

related to iterative decoding methods that utilize a particular channel decoder structure with 

constituent decoders and a feedback loop [HeW99]. In order to have a unified framework for the 

purposes of this thesis, we present a reference CDMA receiver structure that is used in the 

subsequent discussions.The reference structure of a CDMA receiver is shown in Figure 3. The 

detector can be for instance some variant of the coded matched filter detector, RAKE based 

detector, multiuser detector or a combination of those. The output of the detector is passed 

(reference point A in the figure) to the channel decoder. The channel decoder may consist of one 

or several constituent decoders. One decoder is used e.g. when convolutional coding is used for 

speech and several constituent decoders are used for concatenated and Turbo codes. The 

information is passed from the “inner” decoder to the “outer” one (reference point B) and in the 

case of iterative decoding there is also a feedback loop (reference point C). There may also be 

some feedback between channel coding output and the detection (reference point D) e.g. for 

iterative joint multiuser detection and decoding. Finally the output of the channel decoder is 

passed (Reference point E) to the source decoder, which produces the final output information. 

DetectorDetector Source decoderSource decoder

Channel decoderChannel decoder

Constituent
decoder

Constituent
decoder

Constituent
decoder

Constituent
decoder

A B

C

E

D

 

Figure 3 Reference CDMA Receiver Structure 
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 The information passed at the reference points may only contain estimates of the bits or symbols. 

Alternatively, it may also contain some measure indicating how reliable the estimate is. In the 

former case we say that hard information is passed while in the latter case we say that soft 

information is passed. In principle, either hard or soft information can be passed at all the 

reference points in Figure 3, although for reference point C, only soft information passing has 

proven beneficial in practice [HeW99].  

We use the term soft detection for the case where soft information is passed at reference point A. 

Alternatively, when only hard information is passed at reference point A, term hard detection is 

used. When soft information is produced in the output of either the channel decoder or a 

constituent decoder (reference points B, C, D and/or E, depending on the case), a term soft 

decoding is used. Since the soft decoding in practice requires also soft input in the decoder, the 

term soft-input-soft-output (SISO) decoder [BeM96] is often used for decoders performing soft 

detection.  

Hard decoding has two variants. When a channel (or constituent) decoder has soft input (in 

reference point A or B), but produces hard information in the output, a term soft decision decoder 

is used. When even the input is hard information, a term hard decision decoder is used. It is clear 

from these definitions that for a soft decision channel decoder, soft detection must be used in the 

detector.  

The CDMA receivers studied in this thesis are an iterative joint multiuser receiver for the base 

stations and an improved RAKE receiver for mobile terminals. The iterative joint multiuser 

receiver considered in this thesis uses soft detection and a SISO decoder for a convolutional code. 

Thus there is only one constituent decoder and soft information is passed at reference point A. 

Receiver variants both with soft information and hard information feedback from the decoding at 

reference point D are considered. 

In the improved RAKE receiver for mobile terminals the feedback at reference point D is not 

used in order to reduce the receiver complexity, which is especially important in the mobile 

terminal receiver. Thus a soft output RAKE receiver is used followed by soft decision decoding. 

Thus only one constituent decoder is used and soft information is only passed at reference point 

A. 
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3 SOFT DETECTION AND DECODING 

In Section 2.3 soft detection and soft decoding were briefly introduced. In this chapter we give an 

overview of detection theory and discuss soft detection and soft decoding more thoroughly in the 

context of detection theory, where soft detection and soft decoding play a central role especially 

in reduced complexity detection methods, which are often applicable in cases, such as channel 

decoding, where there are so many decision alternatives that the straightforward extension of the 

classical binary detection is not practical. These methods typically utilize some underlying 

structure of the problem. We use dependency graphs (Bayesian networks to be precise) to 

describe the structure and show how different structures are utilized in various algorithms. 

Finally, we discuss the detection problems arising in wideband CDMA systems and show how 

these problems can be solved with different algorithms when certain simplifications are made.        

3.1 DETECTION OF RANDOM PROCESSES 

The goal of signal detection (and estimation) is to process information-bearing signal in order to 

draw some conclusions about the information that they contain. This can be modeled as 

extracting information about a random process by using the output of another, dependent random 

process. As such it is closely related to the problem of statistical inference and shares the 

common foundation laid by the classical work of Bayes [Bayes], Gauss [Gauss], Fisher [Fis22], 

and Neyman and Pearson [NeP33]. A good review of detection theory is given by Kailath and 

Poor in [KaP98].  

In most signal detection methods the decisions are based on probabilistic inference. This means 

that a set of (conditional) probabilities or some metric derived from those is calculated and the 

decision is made based on these. For instance, when making the detection decision, the 

alternative that corresponds to the maximum a posteriori probability, may be selected or, in 

binary cases, the sign of the log likelihood ratio gives the selected alternative ([Poo94]). 

According to our definition, soft detection and decoding methods are algorithms that produce the 

probabilities or other continuous-value metrics that are used in some detection algorithm. The 

difference between soft detection and soft decoding in this context is that soft detection is used 

for cases where there are only a few alternatives (e.g. binary or M-ary signals), whereas soft 
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decoding is used for soft detection of sequences that are generated by some kind of channel 

encoder. 

On the other hand, hard detection and decoding methods produce one specific selection of the 

alternative decision possibilities without any information of the reliability of the decision. These 

methods may be used as a part of a larger detection algorithm. These terms should not be 

confused with soft and hard decision decoding defined in Section 2.3. Recall that soft and hard 

decision decoding are both hard decoding methods, but in soft decision decoding the input is soft 

information, that is a set of probability distributions or some derived metric, like log-likelihood 

ratio. In fact, hard decision coding is an example where a hard detection method (hard detection 

of signals corresponding to individual code word symbols) is a part of a larger detection 

algorithm (code sequence detection).      

3.2 CLASSICAL DETECTION THEORY 

The basic classical detection problem is the detection of signals in white Gaussian noise 

([Nor43]). There one needs to choose between two hypotheses of the form 

TttntyH ≤≤= 0),()(:0  (1) 

and 

TttntstyH ≤≤+= 0),()()(:1  (2) 

where s(t) represents the signal of interest and n(t) is white Gaussian noise. The signal may be 

completely known, known except for a few random or unknown parameters (e.g. 

)cos()()( 0 θωα += ttAts ), or a random process.  

The case of a known signal is covered in basic textbooks. As usual, the problem can be reduced 

to the calculation of the likelihood ratio, which in this case can be written as [WoJ65]: 

.)(
2
1)()(exp)(

0 0

2









−= ∫ ∫
T T

dttydttytsTL  
(3) 

From this formulation it is evident that the solution is equivalent to a detector using matched filter 

receiver, which is optimal in the signal-to-noise ratio sense and originates from the early work on 

RADAR detection [Nor43]. The case of a known signal with unknown or random parameters has 

also been studied in several specific cases; see e.g. [Poo94].  
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This basic problem can be extended to a case where the signal is a random process, for instance a 

Gaussian random process. Another way of extending the problem is by allowing the noise to be 

colored or even non-Gaussian. See [KaP98] for a review on these cases.  

One can generalize the binary case to the case of multiple hypothesis of the form 

MktntstyH kk ,,2,1),()()(: K=+=  (4) 

The multiple hypothesis case can be handled in most cases by introducing a dummy hypothesis, 

)()(:0 tntyH = , and then using the chain rule for likelihood ratios [Poo94]. Typically, the 

complexity of the solution grows linearly with M.    

3.3 REDUCED COMPLEXITY METHODS 

Classical detection theory gives sufficient tools for binary detection as well as for multiple-

hypothesis case, when the number of alternative hypotheses is limited. In digital communications, 

the cases of multiple hypotheses arise in two basic situations: detection of M-ary signaling 

alphabet and the joint detection of statistically dependent multiple data transmissions. In the M-

ary signaling case, the number of hypotheses M is often small (e.g. 8 or 16) and the complexity is 

manageable. The second case arises in applications such as coded communications and multiple-

access communications. In these applications the entire sequence or group of symbols must be 

detected jointly for optimal detection. If the number of M-ary symbols to be jointly detected is N, 

then the number of possible hypotheses is NM . This number is so large in many practical 

detection applications that the linear complexity of the methods reviewed in the previous section 

is not feasible. Thus some form of complexity reduction is necessary. Fortunately many practical 

applications can be described (with sufficient accuracy) with models that have suitable structure 

so that the complexity of optimal detection can be substantially reduced. In this section we 

describe how complexity can be reduced in hard sequence detection where the sequence 

likelihoods (a priori probabilities) are used and in iterative sequence detection, where the 

symbol-by-symbol MAP (maximum a posteriori probability) criterion is used. 

One approach to complexity reduction is to consider the stochastic structure of the system. In this 

viewpoint, the structure describes the dependencies between different random variables in the 

system model. Often many problems have stochastic structure that simplifies the calculation of 

various probability distributions of interest. This naturally reduces the complexity of soft 

detection.  
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For hard sequence detection these simplifications typically also allow the application of dynamic 

programming substantially reducing the complexity [KaP98]. This approach can be used to 

obtain many well-known detection algorithms such as the Viterbi algorithm for detecting 

convolutionally encoded data transmitted over memoryless channels [Omu69], [Vit67], the 

maximum likelihood sequence estimator (MLSE) for equalizing linearly dispersive channels 

[For72] and multiuser detectors (MUD) for demodulating non-orthogonally multiplexed data 

[Ver86], [Ver98]. This approach is discussed in Section 3.3.1. 

With symbol-by-symbol a posteriori probability calculations, a different approach is preferable. 

For calculation of probability distributions, the dependencies between different random variables 

can be presented with a suitable graphical model such as Bayesian network [Pea88], factor graph 

[FKL97] or some other variant. A good overview on different graphical models from the digital 

communications point of view is given in [Fre98]. In brief, the various graphical models can be 

used to develop algorithms for inferring the distributions of selected random variables in the 

system model given the observed values of some other random variables. Examples of these 

algorithms include the forward-backward algorithm [BaP66] for chain type structures and sum-

product algorithm [KFL01] for singly-connected graphical models. A good review of these and 

various other related algorithms can be found in [AjM00] and [KFL01]. These algorithms are 

essentially generalized forms of soft detection and soft decoding algorithms, which calculate 

probability distributions for certain random variables (presenting often the transmitted 

information) in a model describing the communications system. The use of these methods for 

iterative sequence detection is discussed in Section 3.3.2. 

Here, to give a more specific example we consider a simple case where a information bit vector 
T

210 ),,( uuu=u  is transmitted using BPSK modulation in an AWGN channel. The received 

vector is thus  

nuy +== T
210 ),,( yyy , (5) 

where T
210 ),,( nnn=n  is a vector of additive white Gaussian noise samples. Figure 4 shows the 

Bayesian network for the system that describes the dependencies between the variables. Note that 

the information bits are assumed independent. The random variables presenting noise are shown 

as dashed, because conventionally these are not shown and instead the distribution of ky  is 

modified to include the effect of noise. Here we include also those for clarity. For simplicity of 

the notations we consider a receiver where the detection is done by finding the information bit  
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Figure 4 A simple Bayesian network for BPSK modulation in AWGN channel 
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Figure 5 Bayesian network for a non-systematic convolutional code 

vector that maximizes the a posteriori probability instead of symbol-by-symbol MAP. Thus the 

corresponding soft detection problem is to calculate the probability distribution p(u|y). The 

dependency structure in Figure 4 means that the joint probability distribution p(u,y) can be 

factored as  

∏
=

=
2

0

),(),(
k

kk yupp yu . 
(6) 

This is in essence how also the sum-product algorithm calculates the distribution.  

From Equation (6) by using the independence of ky ’s it can also be seen that the a posteriori 

probability can be factored as ∏ )|( kk yup . Thus the maximization of the a posteriori 
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probability can in fact be done component-wise and the u can be determined by finding each ku  

that maximizes the corresponding component distribution )|( kk yup . In the case of this simple 

example, this can of course seen also directly.In the previous example the soft detection 

algorithm was reduced to a trivial one. This was possible because the model was memoryless in 

the sense that the random variables at different sampling times were independent. In [Fre98] a 

more complex example is presented where convolutional channel coding is modeled using the 

Bayesian network shown in Figure 5. In the example, the information bits T
210 ),,( uuu=u are 

passed to the convolutional encoder that produces the output bits T
543210 ),,,,,( xxxxxx=x  and 

the state transition sequence T
210 ),,( sss=s by the code-dependent rules: 





=
= −

)(
),( 1

ii

iii

sfx
usgs

. 
(7) 

White Gaussian noise is then added to produce the received sequence T
543210 ),,,,,( yyyyyy=y . 

In this case, the forward-backward algorithm is the Bahl, Cocke, Jelinek and Raviv (BCJR) 

algorithm [BCJ74] that is used as a component decoder to calculate the symbol-by-symbol a 

posteriori probabilities in iterative decoding of Turbo codes. This example is discussed further in 

Section 3.3.1.1 where the maximum likelihood sequence estimator for this system is considered. 
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Figure 6 Bayesian network for a  (7,4) Hamming code 
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When the network is more general, the conventional forward-backward algorithm cannot be 

applied. The forward-backward algorithm can be generalized to the sum-product algorithm 

[AjM00], [KFL01]. This algorithm can be used to compute probability distributions when the 

network is singly-connected, that is, any two vertices are connected only by a single path when 

edge directions are ignored. The sum-product algorithm is in fact also applicable for networks 

that are not singly-connected. However, in that case the algorithm does not produce the 

distributions precisely. In fact it is known, [Coo90], that the calculation of the probability 

distributions in general Bayesian networks is NP-hard. There is a strong body of evidence 

[MMC98], implying that the sum-product algorithm in multiply-connected graphs nevertheless 

produces good approximations of the distributions in many important application areas, in 

particular in the area of iterative channel decoding [SKL98], but the understanding of the 

behavior of the algorithm for multiply-connected graphs is still incomplete. See [FrM98] for a 

good overview on the subject. The iterative algorithms are discussed further in Section 3.3.2.  

In [FrM98] an example is given where a (7,4) Hamming code is considered. This code takes 4 

input bits and outputs these bits together with three parity bits 2104 uuux ⊕⊕= , 

3105 uuux ⊕⊕=  and 3216 uuux ⊕⊕= . The coded bits are transmitted through an AWGN 

channel using BPSK modulation. The corresponding Bayesian network is shown in Figure 6. It is 

clearly not singly-connected (e.g. the loop 05140 uxuxu →→→→ ). Due to the simple nature 

of the code, even the exact symbol-by-symbol a posteriori probabilities can be calculated. In 

[FrM98], a performance comparison between the MAP decoders that use the exact symbol-by-

symbol a posteriori probabilities and decoders that use a posteriori probability estimates 

calculated by a sum-product algorithm on the network in Figure 6 are done. At 10-3 BER, the 

performance loss of the sum-product algorithm is about 0.25dB. It should be mentioned here that 

other methods can be used for calculating the probability distributions in multiply-connected 

Bayesian networks, such as Gibbs sampling [Pea88], variational inference [SJJ96] and Helmholtz 

machines [DHN95]. They are not typically used in detection and decoding applications and are 

thus outside the scope of this thesis. 

3.3.1 Hard Sequence Detection 

In this section we describe how a reduced complexity approach can be used in sequence 

detection, that is, in detectors where the entire information vector is detected simultaneously. The 

soft sequence detection is not considered mainly because the calculation of probabilities for all 
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possible sequences is usually not feasible in practice. This is why the symbol probabilities are 

usually used in soft decoding. Although the sum-product algorithm is not directly applicable for 

sequence probability calculations we still use Bayesian networks when describing the calculation 

of probability distributions. This is done for the consistency of the presentation. For sequence 

estimation, the complexity reduction is done through the use of dynamic programming following 

the approach in [KaP98]. 

The specific methods considered in this section are the maximum-likelihood (ML) detection and 

linear detection. Applications such as the Viterbi algorithm for detecting convolutionally encoded 

data transmitted over memoryless channels [Omu69], [Vit67], maximum likelihood sequence 

estimator (MLSE) for equalizing linearly dispersive channels [For72] and multiuser detector 

(MUD) for demodulating non-orthogonally multiplexed data [Ver86], [Ver98] are discussed as 

examples.  

3.3.1.1 Maximum-Likelihood Detection 

Given the observed vector y in some system model, the maximum likelihood sequence detection 

of some unknown information vector u means solving the optimization problem: 

)(maxˆ u|yu
u

p
U∈

= . (8) 

The complexity of solving (8) by brute force (e.g. by exhaustive search) is proportional to the 

number of possible information vectors, that is the cardinality |U|. However, with a suitable 

probabilistic structure of the problem, the complexity can be reduced substantially by using 

dynamic programming.  

Our first example considers a convolutional decoder. Consider again the Bayesian network for 

convolutional channel coding shown in Figure 5. Recall the notation, where the information bits 
T

210 ),,( uuu=u were passed to the convolutional encoder that produced the output bits 

T
543210 ),,,,,( xxxxxx=x  and the state transition sequence T

210 ),,( sss=s . White Gaussian 

noise was subsequently added to produce the received sequence T
543210 ),,,,,( yyyyyy=y .  

At the receiver we want to maximize the likelihood )( u|yp . The dependence structure in Figure 

5 implies that the joint probability distribution can be factored as 

),|(),(),( xsu,yxsu,yx,su, ppp =  (9) 
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            )|(),( xyxsu, pp= , 

where the last equality applies, because, as is evident from the graph, given the transmitted 

codeword x the received vector y is independent of the state vector s and the information vector 

u. From (9) we obtain after some simplifications 

∑
∈

=
X

ppp
x

)()()( u|xx|yu|y . (10) 

Note that x is in fact uniquely determined by u and thus only one term in the summation is 

different from zero. Thus by denoting )(ux Φ=  the output of the encoder with input u we get 

).()()( x|y(u)|yu|y ppp =Φ=  (11) 

So far we have not utilized the memoryless property of the channel. This property is in fact 

indicated in the Bayesian network in Figure 5 where the different received bits ky  are only 

connected via the state variables. Thus given the transmitted codeword )(ux Φ= , which 

determines the state transition sequence the components ky  of the receiver vector y are 

independent. Thus Equation (11) can be factored and by adopting the log-notation we obtain the 

well-known decision rule  

∑
=∈

Φ=
N

n
nU

yp
1

)(lnmaxˆ nu
(u)|u . 

(12) 

Due to the state structure of the system model, dynamic programming can be applied to this 

problem, resulting in the Viterbi algorithm. As a summary the dependency structure of the system 

was used explicitly twice to get Equation (12) and once implicitly to allow for dynamic 

programming to be used. 

Our next example is the maximum-likelihood sequence estimator (MLSE) for linearly dispersive 

intersymbol-interference channels. In this example the transmitted information bits 
T

210 ),,( uuu=u are distorted when transmitted through the channel which is modeled by the 

channel matrix H. The channel thus creates inter-symbol interference. The received vector 
T

210 ),,( yyy=y  consists of these distorted bits further degraded by additive white Gaussian 

noise: 

nHuy += . (13) 
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Figure 7 Bayesian network for a simple channel with ISI between the consecutive symbols  

Figure 7 shows the Bayesian network for a simple ISI channel with such a short delay spread that 

there is intersymbol interference (ISI) only between the consecutive symbols. The channel matrix 

is not explicitly shown in Figure 7, since the channel coefficients are modeled in this case as 

deterministic variables and only random variables of the model are shown in Bayesian networks. 

They are however implicitly contained in the graph in the conditional PDFs )( u|iyp . See 

Section 5.1 for a model where channel coefficients are modeled as random variables. 

Although the probability distribution )( u|yp for Figure 7 can be calculated rather easily, the 

derivation of general algorithm based on the presentation of the figure is not simple. One option 

is to modify the Bayesian network by introducing artificial state variables that are used to present 

the channel state, that is the symbols transmitted in the past. This leads to a Bayesian network 

similar to that of Figure 5 and the resulting algorithm is the Viterbi equalizer. The complexity 

depends on the maximum delay spread of the channel.  

In this example it is also straightforward to use the linear system model (13) to derive the MLSE 

in the conventional way. In this case we get  







−= )()(

2
1exp

2
1)( T

22 Hu-yHu-yu|y
σπσ

p  
(14) 

and the problem may after some simplifications be reduced to maximizing 

RuuHyu(u) TT2 −=Ω , (15) 

where HHR T= . This optimization problem is NP-complete and thus offers little improvement 

in complexity over exhaustive search. However, since the maximal delay spread is in practice 
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limited, H is a banded matrix and the complexity of the algorithm is substantially reduced. More 

details can be found in [KaP98], where also the detailed complexity reduction reasoning can be 

found. It is interesting to note that even this alternative reasoning uses artificial channel state 

variables that contain the past information bits.  

As a last example we consider the optimum multiuser detection (in the maximum-likelihood 

sense). The derivation and analysis of the optimum multiuser receiver has been done by Verdù 

[Ver86] in the early eighties, when it was realized that the performance of the conventional 

detector can be exceeded, if the detection is done jointly for all users. For a K-user basic 

synchronous channel, the decision rule is to select T
1 ,, )u(u KK=u that maximizes  

HuuAuu(u) TT2 −=Ω , (16) 

where ARAH =  is the unnormalized cross-correlation matrix. However, in this case the above 

complexity reduction method cannot be used, essentially since H is not a banded matrix. In fact it 

is known ([Ver89]) that the existence of an algorithm whose computational complexity is 

polynomial (w.r.t K) would imply that a polynomial algorithm exists for the famous traveling 

salesman problem. Thus the maximization of (16) can be solved with an algorithm whose time 

complexity per bit is )/2( KO K  and no better algorithm is known. 

3.3.1.2 Linear Detection 
In this section we will briefly review the linear sequence detectors: decorrelating or zero-forcing 

detector and minimum-mean-squared-error (MMSE) detector. This review is used in Chapter 4 

when reviewing the coded multiuser receivers.  

One common way (see e.g [KaP98]) to derive reduced complexity is to look at a system model 

presented as a linear system 

nHuy +=  (17) 

instead of the probabilistic structure and furthermore to restrict the possible detectors (for the 

binary case) to be of the form  

( )zu sgnˆ = , (18) 

where 

Myz =  (19) 
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and M is an arbitrary matrix. Such detectors are known as linear detectors. Using (17), we can 

write (19) as 

( ) ( )nI-MuI-MHnuz +++= , (20) 

where I is the identity matrix. Thus the vector z is a composition of four terms: the desired signal 

u, the irreducible noise n, the structured interference (MR-I)u, and the residual noise (M-I)n. 

Note that only the latter two terms can be controlled by the choice of M. Setting M=I removes 

the residual noise term and the resulting detector becomes the symbol-by-symbol matched filter 

detector. This detector is optimal when H is a diagonal matrix, but in the general case it suffers 

from the structured interference, which, depending on the system that is modeled, can be for 

instance inter-symbol or multiple access interference. Alternatively, by choosing 1−= HM , we 

get a zero-forcing detector, which drives the structured interference term to zero. This is also 

known as the zero-forcing equalizer in the context of inter-symbol interference channel and as the 

decorrelating detector in the context of multiuser detection.  

Although the zero-forcing detector is optimal in the maximum-likelihood sense, it has the 

undesirable feature of noise enhancement due to the introduction of a residual noise term. An 

alternative detector between the previous two extremes can be derived by selecting M which 

minimizes the quadratic mean )( 2z-uE . This minimum-mean-square-error (MMSE) detector is 

given by [Pro95] 

( ) 1−+= IHM 2σ . (21) 

 

In this section we have briefly shown, how the classical reduced complexity (hard) sequence 

detectors can be derived by considering the stochastic structure of the system. For reference we 

have also discussed linear methods. All of these methods are basic textbook material although the 

Bayesian network approach is not commonly used. In the next section we use again the Bayesian 

network approach to review a more recently discovered class of reduced complexity sequence 

detectors: the iterative detectors.  

3.3.2 Iterative Sequence Detection Methods 

In the beginning of Section 3.3 we discussed the symbol-by-symbol MAP decoding when the 

problem has a natural multiply-connected structure. In this section we give practical examples 

and describe how iterative methods can be successfully applied for such problems. A first 
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example is the optimum multiuser detection for convolutionally coded CDMA systems 

considered in [GiW96]. The dependency graph for that problem is shown in Figure 8 for the two-

user case. There are several “loops” in the graph and thus the exact probability distributions 

cannot be calculated with probability propagation methods. In fact, as with the multiply 

connected problems in general, this problem also results in a solution with exponential 

computational complexity, which makes it impractical. As calculated in [GiW96], the time 

complexity per decoded bit for multiuser MLSE is )2( WKO , where W is the constraint length for 

the convolutional coding used in the system and K is the number of users. For instance, for a 

realistic 16-user case using the convolutional coding typically used in WCDMA systems with 

W=9, the number of the states in the joint trellis is 1432  and the time complexity per decoded bit 

is 1442 . 

Naturally, there are many ways to produce suboptimal solutions to these kinds of problems. From 

the Bayesian network perspective, a most natural approach is to use some approximating 

algorithms for the computation of the probability distributions. These were briefly discussed in 

the beginning of Section 3.3. In this subsection we investigate more deeply the possibility of 

using the sum-product algorithm, which is exact for singly-connected graphs also for multiply 

connected graphs. Specifically, we study problems that produce Bayesian graphs that are multiply 

connected, but which allow execution of some efficient simplified version of the sum-product 

algorithm (e.g. allow the use of the forward-backward algorithm) in a number of separate parts of 

the network. The algorithm is executed in the different parts of the network either sequentially or 

in parallel and the connections between the parts are ignored during this. After the completion of 

the algorithms, the probability information is exchanged between the regions and the process is 

repeated. This approach is referred to as iterative methods in this thesis. A well-known example 

of these methods is the well-known Turbo decoding algorithm [Skl98]. 

Figure 9 shows the Bayesian network for a simplified Turbo code used as an example in 

[MeV98]. The close relation between the sum-product algorithm and Turbo decoding was 

recognized in [MMC98], where it was shown that turbo decoding can be viewed as an 

implementation of a calculation of a posteriori probabilities using the sum-product algorithm in 

which the presence of loops in the Bayesian network is ignored.   
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Figure 8 Bayesian network for coded multiuser detection with convolutional code and two users 

They also show how this approach can be used to routinely derive several previously known 

iterative, but suboptimal, decoding algorithms for a number of different error-control systems, 

such as Gallager’s low-density parity-check codes [Gal62], serially concatenated codes [BeM96], 

and product codes [HOP96]. Thus the Bayesian network approach provides a very attractive 

general methodology for devising low-complexity iterative decoding algorithms for hybrid coded 

systems. In Section 4 we show how this approach can also be applied to coded multiuser 

detection, where several proposed iterative algorithms can be understood through the use of 

Bayesian networks.  



 23

1u

4y
4n

2u

5y
5n

4x 5x

0u

0n

3x1x 2x0x

1n 2n 3n

3y1y 2y0y

1s 2s0s

1s′ 2s′0s′

10x 11x9x7x 8x6x

10y
10n

11y
11n6n 7n 8n

9n

9y7y 8y6y

 

Figure 9 Bayesian network for a simple Turbo code in an AWGN channel 

3.4 SOFT DETECTION AND DECODING IN WIDEBAND CDMA SYSTEMS 

In this section we summarize the soft detection and decoding applications that are relevant in 

wideband CDMA systems. In current 3GPP wideband CDMA systems, the soft detection and 

decoding methods are used primarily in functions related to channel decoding. Both Turbo codes 

and convolutional codes are used, and convolutional codes may be used either with RS coding as 

a concatenated code, or as a stand-alone coding for services such as speech [3GPPc]. It is well 

known that the use of soft decision decoding can offer a significant performance gain in fading 

channels [Pro95, p.813], and it is thus typically applied when convolutional code is used either as 

stand-alone code or as an inner code of a concatenated coding scheme. This is a very simple 

application of soft detection. When Turbo codes are used, some iterative decoder algorithm is 

used in the receiver, which also utilizes soft decoding. 

Looking at longer-term developments and the state-of-the-art research, the most extensively 

studied soft detection and decoding application for wideband CDMA systems is the iterative 

reception for coded multiuser detection that is discussed more extensively in Chapter 4. Also 



 24 

other studies addressing the soft detection and decoding in wideband CDMA systems have been 

done.  

In [LiL00], an iterative PDF estimation and decoding scheme based on non-parametric PDF 

estimation is proposed for CDMA systems when the global noise is non-Gaussian distributed, as 

is the case with only a small number of high-power interfering users. In [HaA96], a decoder 

structure for concatenated codes is proposed that uses soft outputs produced by the inner stages of 

the receiver as compared to the standard approach, where hard outputs are produced by the inner 

stages. In [RaA97] the optimum metric for soft decision decoding with channel state information 

in the presence of fading is derived and the performance gains achieved with this are 

demonstrated. In [Nag98] a receiver with an iterative soft decision using forward-error-corrected 

data is proposed. This utilizes a soft-decision Viterbi decoder preceded with a soft-decision 

processor, which obtains feedback info from the decoder output. 

One can also utilize soft detection to produce improved soft output CDMA detectors that provide 

input for soft decision decoders. This approach is discussed in detail in Chapter 5. 

In this thesis we study two different applications of soft detection and decoding for wideband 

CDMA systems. The use of iterative receivers for coded multiuser detection is a long-term 

possibility, because the receiver complexity is still substantial. This will be the main topic of 

Section 4. In mobile stations, the processing power and power consumption constraints are still 

more stringent and thus more attention must be paid to the algorithm complexity. Thus in Section 

5 we study the soft-detection problem of producing the correct soft information for soft-decision 

decoding of a convolutional code by using a RAKE-like soft detector. 
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4 CODED MULTIUSER RECEIVERS 

In this chapter we review coded multiuser receivers and show how Bayesian networks can also be 

applied to understand iterative joint receivers for coded CDMA systems. When interfering users 

are present in a CDMA system, the total interference power, although spread over the whole 

bandwidth, steadily increases. With a simple matched filter (MF) receiver this causes a gradual 

increase of the symbol error rate. The performance loss is more severe if the interfering users are 

using higher transmitting powers than the desired user. This phenomenon is called the near-far 

problem. It was first recognized and solved by Verdú [Ver86], by proposing that the symbols of 

all the users should be detected simultaneously.  However, as was discussed in Section 3.3.2, this 

original (optimal) receiver structure was prohibitively complex and thus suboptimal approaches 

were needed. The research of multiuser receivers that detect the symbols of all the users 

simultaneously has grown since Verdú’s original article into a whole research branch.  

There are also ways to further extend the idea of joint detection. Since all practical systems 

employ some channel coding to improve the performance, one could argue that the optimum joint 

receiver should jointly detect and decode the information streams of all users. Clearly, this is an 

even more complex task to be carried out in practice, but again some suboptimal algorithms can 

provide the desirable tradeoff between the performance gain and complexity. The work on this 

research area has been active during the last years and the articles [P1, P2] in this thesis are part 

of this research.  

The detailed content of this chapter is as follows. In Section 4.1 we will deviate slightly from the 

main theme and describe how the channel coding should in fact be integrated with the spreading 

for the maximum performance gain. This approach is presented to give some perspective when 

investigating the main subject of the chapter, namely, how soft detection and decoding methods 

may be used to achieve a closer connection with channel decoder and multiuser detection for a 

good performance gain when separate spreading and channel coding are used. In the rest of the 

chapter, multiuser receivers for coded CDMA systems are presented based on the classification 

given in [GWi96].  
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The broad class of multiuser receiver architectures which treat multiuser detection and channel 

decoding separately are referred to as partitioned multiuser receivers and are discussed in Section 

4.2. The drawback with the partitioned approach is that since the multiuser detection operates at 

the code symbol level as though there were no coding in the link, it will not derive any advantage 

from the coding. This drawback can be avoided with a tighter integration between the multiuser 

detection and decoding. In Section 4.3 we will review the existing research on such integrated 

receiver architectures. Our emphasis in this thesis is on the iterative joint multiuser receivers, 

which are reviewed in depth in Section 4.3.3.  

4.1 COMBINED CHANNEL CODING AND SPREADING 

The code rate can be defined as the ratio of the information bits to the code bits. Any non-trivial 

channel code has a code rate Q<1. Assuming that a fixed information bit rate is required, the 

encoding increases the signal bandwidth by spreading it with a factor of R=1/Q. Usually, this 

spreading is kept as small as possible to save bandwidth. However, in DS-CDMA systems the 

signal spreading is desirable and the spreading process can be considered as a low-rate code, 

which is simply a repetition code followed by a multiplication with the spreading code. This 

suggests that, instead of a high rate channel code followed by separate spreading, a performance 

gain could be achieved by using a low rate channel coding that would also perform the spreading 

with the spreading factor R=1/Q, where Q<<1 is the code rate. This approach was first proposed 

and analyzed in [Vit90]. There a very low rate convolutional code is used as a channel code. The 

encoder output rate is equal to the chip rate and thus no further spreading is required. The encoder 

output is multiplied with a pseudo-random scrambling sequence in both the quadrature and in-

phase branches. 

The analysis in [Vit90] shows that the total capacity of a CDMA system using combined coding 

and spreading asymptotically approaches the Shannon limit in the AWGN channel. It is not a 

surprise from the information theoretic point of view, but since these kinds of systems are 

expected to be implementable in practice at least in the long-term, this is an important result. 

4.2 PARTITIONED MULTIUSER RECEIVERS 

When designing a multiuser receiver architecture for a coded CDMA system, a simple approach 

is to consider multiuser detection and channel decoding separately. This class of multiuser 

receiver architectures is referred to as partitioned multiuser receivers. One can take any of the 

uncoded multiuser receivers followed by a channel decoder. If the particular multiuser receiver 
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produces hard decisions, hard decision decoding must be used which causes some loss of 

performance. This is called the hard decision approach. The hard decision case is analyzed in 

[GWi96] and can be used mainly as a reference point. The performance of the hard decision 

multistage IC followed by a channel decoder is analyzed in [JuK99]. 

Alternatively, one can design multiuser detectors that provide soft decisions. This is called the 

soft decision approach. In this case the soft decision decoding can be utilized separately for each 

user. The soft decision approach is also analyzed in [GWi96] for a conventional single-user soft-

decision receiver and for a soft-output decorrelating detector. In addition, the paper contains a 

brief discussion on trellis-based soft-output multiuser detectors and on soft-output multistage 

detection. It should be emphazised that, in the partitioned approach, the tentative decisions in the 

multistage detection do not utilize the channel code information. The multistage detection using 

channel code in tentative detection is discussed in Section 4.3.  

Other linear soft-decision multiuser receivers are considered in [Ale97], [SRA96] and  [SAR98], 

where a soft-output decorrelating receiver (See section 3.3.1.2) is studied and a new kind of linear 

receiver, called the projection receiver, is proposed. The projective receiver achieves interference 

cancellation by projecting the undesired users onto the space spanned by the desired users’ signal 

vectors. The detector calculates the least-squares estimate of the interfering users’ data that is 

used to yield the soft output. A computationally efficient adaptive version of the algorithm is 

proposed in [ScM97] and [SAR97]. 

In [VSP97], a soft-output Maximum A Posteriori (MAP) detector is used to provide optimum 

sequence of soft inputs to the disjoint channel decoders of the users. In [HaS97], the soft-output 

multiuser detection algorithms are based on the algorithms developed for channels with ISI. This 

leads to a derivation of an optimum soft-output multiuser estimation (OSOME) algorithm and a 

reduced complexity suboptimal version (SSOME). Another trellis-based partitioned receiver for 

an asynchronous CDMA system is proposed in [NSR98], where a modified reduced-complexity 

recursive detector (RCRD) is used as a soft-output multiuser detector followed by a bank of 

Viterbi decoders, one for each user. 

4.3 INTEGRATED MULTIUSER RECEIVERS 

Since all the partitioned multiuser receivers operate at the code symbol level as if there were no 

coding on the link, there is no advantage taken from the coding in the actual multiuser detection 

phase. This causes a performance loss. This can be avoided by integrating the multiuser detection 

and channel decoding more tightly.  
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4.3.1 Optimal Multiuser Receiver for Coded CDMA Systems 
In [GiW96], the optimal multiuser sequence estimator is formulated for a coded DS-CDMA 

system in a non-dispersive additive white Gaussian noise channel. The receiver thus performs 

multiuser detection and channel decoding together by using a Viterbi algorithm, which in the case 

of a rate-1/2 code is operating on a trellis with 12 −WK  states and two branches per state, where K is 

the number of users and W is the constraint length of the convolutional code. The number of the 

states clearly grows very fast with both K and W. In fact, even a simple four-user example with a 

four-state rate-1/2 convolutional code (W=3) requires a trellis with 2048 states! Thus the optimal 

multiuser sequence estimation is prohibitively complex for a real system. It does however provide 

a good reference point by which to judge the suboptimal receivers. In [GWi96] the use of some 

sub-optimum trellis-based algorithm using for instance reduced trellis or sequential decoding is 

proposed to reduce the complexity.  

For CDMA systems using trellis-based modulation and coding, an optimal multiuser receiver was 

proposed in [FaA96]. They also proposed a sub-optimum detector based on a reduced tree search 

algorithm and a multistage IC receiver.    

4.3.2 Interference Cancellation with Hard Decoded Tentative Decisions 

In decision-directed multiuser receivers such as successive IC and multistage IC receivers, the 

coding information can be included very naturally in the receiver structure by using the channel 

decoder output as tentative decisions. This general approach is proposed and analyzed already in 

[GWi96], where a soft decision Viterbi algorithm is proposed for tentative decision generation in 

a multistage IC receiver. The performance of such a receiver is analyzed in [JuK99]. Also the use 

of partial interference cancellation in combination of joint decoding is studied there. 

In [RKS97], a joint successive interference cancellation scheme is proposed, where hard or soft 

decision Viterbi decoding is used in each step of the interference cancellation. In [BrY98], an 

improved method is proposed, where several hypotheses are maintained in each user's Viterbi 

decoder until several lower-power users have been decoded. 

The approach presented above can also be applied to multistage IC receivers. In [DaE98] and 

[DEA98] soft-decision decoding is used for tentative decisions in a multistage IC receiver to 

reduce the complexity of the joint detection and decoding scheme. Suboptimal channel decoding 

is also used to further reduce the complexity. In [HaL98] and [HLi98] soft-decision decoding is 

used for tentative decisions in a multiuser detector that is additionally using a sliding-window-
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based approach to cancel the multiuser interference. In [HaL99], a modified version of the 

receiver structure is proposed that effectively combines the RAKE receiver with the joint 

multiuser receiver and decoder proposed earlier. 

As was mentioned previously, a multistage IC receiver that uses decoded tentative decisions is 

proposed for CDMA systems using a trellis-based modulation and coding scheme in  [FaA96].  

One main difficulty with using decoded tentative decisions in interference cancellation in fading 

channels is that, if fading is slow compared to the data rate, a large interleaving block-size is 

required to provide sufficient coding gain, if the normal channel code is also used for tentative 

decisions.  In this case, the additional de-interleaving and re-interleaving required causes an 

unacceptably long delay in the cancellation process. There are also some significant system 

impacts of this delay in wideband CDMA systems, which are discussed in 4.3.4. [SaN96] and 

[SaW96] propose this kind of system using multi-carrier modulation where no interleaving is 

required. They also use the regenerative or chip level interference cancellation, where the 

interference cancellation is performed at each stage for the spread signal. 

Some other decision-directed receivers for coded systems have also been proposed. A minimum-

mean-squared-error decision-feedback (MMSE DF) multiuser receiver for coded CDMA systems 

is proposed in [MVF99]. A single stage decision-feedback multiuser detector (DFMD) using soft 

decision Viterbi decoder is proposed in [HaS96]. 

4.3.3 Iterative Joint Multiuser Receivers 
The receivers described in the previous section use hard decoder outputs for tentative decisions. 

The only exception is the receiver proposed in [BrY98], where several hypotheses are 

maintained. By using soft output decoders, a performance gain may be achieved by using soft 

information for the interference cancellation. In the related literature, the interference cancellation 

receivers with soft tentative decisions are usually called iterative joint multiuser receivers. This 

name probably comes from the use of soft-input-soft-output (SISO) decoders in a manner similar 

to that of the iterative decoding schemes such as the decoding of Turbo codes. These algorithms 

are typically derived from iterative decoding schemes in an essentially ad hoc manner. In our 

context, these methods can be understood by looking at the corresponding Bayesian network. 

Figure 10 shows the Bayesian network for a simple convolutionally coded synchronous CDMA 

system already discussed in Section 3.3.2. Assuming that the incoming distributions are known, 

then any variant of the forward-backward algorithm such as the MAP algorithm (or the max-log-

MAP) can be applied by the SISO decoders (one for each user to be decoded) operating on the 
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frame part of the network. The key remaining issue is how the soft information is exchanged 

between the individual SISO decoders. Different papers propose different methods for this 

information exchange. A similar approach can be taken in asynchronous and Turbo-coded 

CDMA systems, but the network will be more cumbersome.  

In [WaP98] and [WaP99] SISO decoders are used both for multiuser detection and for channel 

decoding in an iterative manner for convolutionally coded CDMA systems. A synchronous 

CDMA system is considered in [WaP98] and this is extended to asynchronous CDMA systems in 

[WaP99].  In these papers the exact multiuser SISO and two alternative low-complexity 

algorithms are proposed that are based on soft interference cancellation and on linear MMSE 

filtering. In [ARA99], a similar receiver structure is analyzed for a large number of users 

(compared to the processing gain) in a convolutionally coded asynchronous CDMA system and a 

near-single user performance is reported. In [Moh97], [Moh98], [Moh98b] and [MoG98] a 

slightly different structure for an asynchronous CDMA system is studied which is derived from 

iterative methods used for minimizing cross-entropy. A reduced-complexity scheme using Log-

MAP approximation of the exact MAP algorithm is proposed for convolutionally coded 

asynchronous CDMA systems in [VaW98]. In [ReA97], [RAA97], [Ral97] and [RSA98] a 

synchronous CDMA system in an AWGN channel is studied and still another approach is 

proposed where the decoder input metric is calculated in a reduced manner. The complexity of 

this approach is reduced in [Chi01] where a decision-feedback SISO multiuser detector is used. 

In [ZhB01] an iterative multiuser receiver for decoding Turbo-decoded synchronous CDMA 

signals is studied both for Gaussian and non-Gaussian impulse noise. 

In [QTG00] an iterative interference cancellation receiver for asynchronous Turbo-coded CDMA 

is proposed. Expectation values of the coded bits are used as soft values in the interference 

cancellation step. This essentially means that the soft values are calculated by taking hyperbolic 

tangent of the log-likelihood ratios for the coded bits. 

In [HsW01] a low complexity iterative multiuser receiver for Turbo-coded synchronous CDMA 

system is proposed. A modified decorrelating decision-feedback detector that uses given a priori 

log-likelihood-ratios to produce soft-output is proposed.  
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Figure 10 Generic message exchange principle for iterative joint multiuser receivers 

In [HSH97], a multi-code CDMA system is studied and an iterative receiver using soft tentative 

decisions based on the SISO decoder output is proposed. The same kind of receiver was 

independently proposed in [P1] where it was compared with an optimal multiuser likelihood 

calculation algorithm developed in the same article. The work on the optimal multiuser likelihood 

calculation algorithm was continued in [P2], where the impact of the variance estimation 

algorithm was studied.    

In [KaH97] the use of soft tentative decisions based on the SISO decoder output is studied for 

coded multi-carrier CDMA (MC-CDMA) systems. This is also studied in [AAA98] and in 

[AkA98]. In [Her98] the iterative cancellation of interference with the aid of soft values of the 

decoded bits is studied for multi-code CDMA systems. In [ThG01], a soft iterative multisensor 

array receiver for convolutionally coded asynchronous CDMA systems is proposed. 

4.3.4 System Issues of Iterative Joint Multiuser Receivers 

In addition to the increased complexity, the main difficulty with using iterative joint multiuser 

receivers - or IC receivers with decoded tentative decisions - in fading channels is the 

prohibitively long delay caused by the interleaved channel codes. Currently, interleaving is 

virtually always used in channel codes designed for fading channels because it is a relatively 
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simple method to obtain the required time diversity. However, in order to obtain this time 

diversity, the interleaving block length must be substantially longer than the channel coherence 

time.  On the other hand, the whole interleaving block must be received before the iterative 

detection/decoding process can take place. This means that there is a significant delay between 

the actual reception of the signal and the actual availability of the receiver symbol. This is 

naturally unacceptable for delay-sensitive applications.  

However, even worse problems are caused by this delay to fast power control, which is used in 

wideband CDMA systems. The operation of the fast power control requires that the transmission 

power is adjusted based on the received power control (PC) bit. This needs to be done with a 

reasonably low delay. Thus the delay induced by the iterative joint detection/decoding is 

unacceptable high. There are two alternative solutions to this problem. In the first alternative one 

detects and decodes the power control bits with a conventional receiver. For instance in 3GPP 

WCDMA systems this is reasonably straightforward, since the power bits are transmitted in a 

separate physical control channel. Naturally the joint detection/decoding gain is not achieved for 

PC bits, which reduces the system performance. This approach is not studied further in this thesis.  

The second alternative is to use a coding scheme that is a concatenation of an inner non-

interleaved code and an outer interleaved code. Only the inner code would be used in the 

multiuser detection and the delay between the symbol reception and the availability of the 

detected symbols would be reduced. In [P3], an analysis is presented which shows that 

interleaving is not so significant for good interference cancellation performance even in 

correlated fading channels. In fact, in a correlated Rayleigh fading channel, the performance of an 

IC receiver using decoded tentative decisions and a relatively weak non-interleaved code will be 

near the single-user performance limit.  
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5 SOFT DETECTION AND DECODING IN MOBILE 

TERMINALS 

In the previous chapter the use of soft detection and decoding methods was considered for the 

base station receiver. In the mobile terminal the complexity constraints are much harder and the 

use of advanced signal processing algorithms must be justified more carefully. In particular the 

limited processing power of a mobile terminal implies that the use of iterative methods 

considered for coded multiuser detection in Section 4 can only be justified if the achieved gains 

are sufficient.  However, the downlink interference levels are in general much smaller than the 

uplink MAI and this imples less achievable gain in the downlink. Thus an approach is selected 

where the iterative methods are not studied, but instead the focus is on soft detection methods 

derived by modeling inter-symbol-interference as independent Gaussian noise. This approach can 

be seen a multipath variant of Gaussian approximation. It is shown that even with these 

moderate-complexity methods a significant gain is achieved compared to the conventional RAKE 

receiver. 

In this chapter we review the use of these soft methods in mobile CDMA receivers. Although the 

original contributions [P4]-[P6] use Gaussian approximation and conventional analytic methods 

instead of the Bayesian networks, here we choose to use the Bayesian network approach to 

describe the problems. This is to achieve unified presentation, and to illustrate how these 

problems appear from the perspective of iterative methods. Wherever appropriate we point out 

some key issues related to applying iterative methods to these problems. 

5.1 REDUCING THE COMPLEXITY IN SOFT DETECTION AND DECODING 

Looking at RAKE-type receivers, which employ a bank of correlator fingers to utilize the 

multipath diversity, the filter bank outputs in the downlink of a WCDMA system are given by 
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Figure 11 Bayesian network for CDMA downlink system model with two users and known channel 

coefficients 

where ),,,,( kjpliρ is the correlation between different symbols and users in different paths, )( p
jh  

are the channel coefficients for pth path, and ikx is the coded information symbol for user k that is 

generated by some encoder e.g. via a state machine 
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As stated earlier, the detection and decoding problem for a mobile receiver in this context can be 

regarded as a problem of probabilistic inference in a Bayesian network. In the downlink with 

multipath propagation, the signals traveling via different paths are misaligned in time and 

interpath interference is introduced even when orthogonal codes are used for different users. 

Thus there is interference both between different users as well as between different symbols. The 

resulting Bayesian network is shown in Figure 11. For simplicity, the channel coefficients are 

assumed to be deterministic and thus not included in the Bayesian network. The case where 

channel coefficients are considered as random variables is discussed later. In this case however,  
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Figure 12 Bayesian network for a CDMA downlink model for one user when interference is modelled by 

Gaussian approximation and channel coefficients are known 

the limited processing power of a mobile terminal does not allow the use of iterative methods 

considered for coded multiuser detection in Section 4, especially given the interference levels that 

are much smaller than for uplink MAI, which implies less achievable gain.  

One alternative is to ignore the interdependencies between the subsequent symbols. The model is 

thus simplified to the one in Figure 12. As a result, the interpath interference is modeled as 

independent Gaussian interference. In fact this is a multi-path variant of the well-known Gaussian 

approximation. This approach may be used to derive improved RAKE receivers with moderate 

complexity. 

In the previous discussion the channel coefficients have been assumed known for simplicity. Now 

we need to deal with those explicitly as random variables. Thus we add them in Figure 12, which 

results in the Bayesian network shown in Figure 13. Notice that the channel coefficients are 

assumed to be uncorrelated between different paths, but correlated in time. Although the resulting 

network looks relatively simple, it results in significant complexity increase when the sum-

product algorithm is applied to the network. This is due to the fact that the channel coefficients 

are continuous-valued random variables while the other random variables in the network (with  
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Figure 13 Bayesian network for a CDMA downlink model for one user when interference is modelled by 

Gaussian approximation and channel coefficients are unknown 

the exception of the additive white Gaussian noise variables which are typically treated implicitly 

in the sum-product algorithm) are discrete valued.  

This has a deep impact since the marginalisation step, which plays a key role in the sum-product 

algorithm, requires an integral to be calculated over random variables. For discrete random 

variables this reduces to a summation over the value range of the variable, but for continuous 

variables there is no simple way to do this. See [Fre98] for a review on sum-product algorithm in 

mixed networks containing both continuous- and discrete-valued random variables. Other 

approaches, which do not use Bayesian networks, can naturally also be applied, such as the blind 

linear equalization for CDMA downlink proposed in [SlG00]. 

It should be observed that for the continuous-valued random variables representing the channel 

noise and interference, these problems can be avoided by incorporating these variables into the 

matched filter outputs )(l
iy . Thus the )(l

iy ’s become continuous-valued, but this does not cause the 

problems mentioned above, since these are the observed random variables. We will use a similar 

approach to deal with the channel coefficients. Furthermore we will assume perfect interleaving 

and subsequently assume that the channel coefficients are uncorrelated. This results in a Bayesian  
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Figure 14 Bayesian network for a CDMA downlink model with perfect interleaving for one user when 

interference is modelled by Gaussian approximation and channel coefficients are unknown  

network shown in Figure 14. It should be noted that this network is in fact singly-connected. Thus 

the sum-product algorithm is reduced to symbol metric generation followed by the application of 

a SISO decoder. If only hard decisions are required for information bits, the SISO decoder may 

be replaced with a soft decision Viterbi decoder. Thus the emphasis is on the symbol metric 

generation problem.  

This approach of having a symbol metric generation followed by a Viterbi decoder has been used 

in the publications [P4]-[P6] to derive an improved RAKE receiver with a moderate complexity. 

In the next section we discuss these and other improver RAKE receivers that can be utilized in 

symbol metric generation for soft decoders. 

5.2 SYMBOL METRIC GENERATION FOR SOFT DECISION DECODERS 

In CDMA systems, the metric is usually generated from the output of the RAKE receiver 

([Pro95]), where the signals propagating through different paths are received in individual fingers 

of the RAKE receiver. The outputs from these fingers are then coherently combined to provide 

the detected signal. The combining algorithm commonly used in CDMA RAKE receivers is the 
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conventional maximal ratio combining (MRC) algorithm, which is known to produce maximal 

signal-to-noise ratio for diversity channels with equal noise powers and perfect channel estimates. 

However, when receiving a signal through a multipath channel from a base station, a large part of 

the noise in the RAKE finger output is due to the interference between the signals propagating 

through different paths [HHT97], [HJL99].  

The original MRC combining scheme by Brennan can be extended in many ways to take this 

inter-path-interference into account. In [TSW00] both an optimum and suboptimum combining 

scheme for RAKE receivers in DS-CDMA systems are proposed. The optimum combining 

requires the inversion of the interference-plus-noise covariance matrix, while the suboptimal 

approach only utilizes noise and interferer powers. In [BOW00] a generalized RAKE receiver is 

proposed, where the weights are derived from a maximum likelihood formulation.  

In the research constituting the second part of this thesis, methods similar to the suboptimal 

approach in [TSW00] are independently proposed. However, the derivations are performed in a 

different manner using the ideas presented in Section 5.1. This allows consideration of additional 

issues such as eventual channel estimation errors and non-constant amplitude modulation 

schemes. In the remainder of this section we shall briefly discuss the approach used.  

Consider a RAKE receiver for a CDMA system. As was mentioned above, the actual noise power 

varies between the fingers depending on the multipath component magnitudes and the number of 

interfering users. This means that in practice different RAKE fingers have unequal interference 

powers and thus the metric derived from the conventional MRC output will not produce the 

correct path metrics for the maximum-likelihood decoder even if the interference is assumed to 

be Gaussian. On the other hand the original MRC algorithm derived by Brennan [Bre59] is 

optimal for combining diversity branches with Gaussian noise having unequal noise powers in 

different branches. In Brennan’s scheme, each combining weight is inversely proportional to the 

noise power of the diversity branch. Thus the implementation of this scheme requires estimates of 

these noise powers. In addition the channel estimation errors are not taken into account. Using the 

approach presented in Section 5.1 we can derive an improved RAKE receiver that takes all these 

issues into account. This was done in [P4], [P5] and [P6] without explicitly using the Bayesian 

network approach taken here. 

Mobile systems are currently evolving to satisfy increasing demands on packet-data services, in 

particular the need for higher bit rates [NBK00], [FPR01]. In GSM for instance, the EDGE 

standardization is currently under development to provide faster packet-data services [3GPPb]. In 
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the currently completed version (Release 99) of the wideband CDMA (WCDMA) specification, 

the technology used in the third generation mobile systems, high data rates are realized using low 

spreading factors, e.g. spreading factor G=4 for 2 Mbps data rate. Recently there have been many 

studies on the evolution of the WCDMA air interface beyond the original requirements, such as 

the high-speed downlink packet access (HSDPA), which is aiming at high peak data rates and 

low overall delays [PDF01], and which will be included in the next version (Release 5) of the 

specification [3GPPa]. The HSDPA utilizes fast link adaptation, where the modulation size and 

the rate of the channel encoder are adapted to track the variations of the radio channel. In practice 

the data will be transferred using a higher order modulation (e.g. QAM) and a smaller amount of 

channel encoding when the channel quality is good.  

In order to obtain satisfactory performance with low spreading factors and high-order modulation 

schemes advanced CDMA receiver structures are needed. One way to improve the performance is 

to utilize the receiver structure using soft metric generation followed by a soft-decision decoder 

as discussed above. It is well known that the use of soft decision decoding can offer a significant 

performance gain in fading channels [Pro95, p. 813]. This approach is studied in detail in [P5]. 



 40 

 

 



 41

6 SUMMARY OF PUBLICATIONS 

This section gives a summary of the publications constituting this thesis. These publications 

result from research on soft detection and decoding. First part of the research focuses on coded 

multiuser detection in the CDMA base station and second part on the reception in a mobile 

terminal. Publications [P1], [P2] and [P3] contain the results of the research work related to the 

coded multiuser detection and are discussed in Section 6.1. Since none of these publications 

contains a general overview, we explain also the research work done in more detail. The second 

part of the research considers improved RAKE-based reception in the mobile terminal employing 

soft detection. Publications [P4], [P5] and [P6] contain the results of that research and are 

discussed in Section 6.2. Since Bayesian networks are not explicitly used in the publications, we 

describe here, how they were used in the development of the algorithms presented in the 

publications. The general approach was to develop the initial idea for the receiver structure using 

Bayesian networks, after which the detailed derivation of the various components in the 

receivers, such as the likelihood calculation algorithms, was done with other methods. 

6.1 RECEIVERS USING ITERATIVE DECODING WITH INTERFERENCE 

CANCELLATION 

The first part of this thesis consists of research studying the use of iterative receivers in coded 

multiuser detection. This research is reported in Publications [P1]-[P3]. The starting point for this 

research was to utilize methods that are used for Turbo decoding. The recently discovered 

connection between Turbo decoding and sum-product algorithm in Bayesian networks [MMC98] 

suggested that Bayesian networks could be utilized in the development of the iterative algorithm 

structure instead of some ad hoc arguments. This approach became gradually the general 

approach taken in this thesis. 

However, the sum-product algorithm can be relatively complex for general single-connected 

Bayesian networks. Since the goal was to have an algorithm that has a manageable complexity 

the iterative receiver structure needed to be selected carefully. There are some known Bayesian 

network structures, where the sum-product algorithm reduces to an algorithm that has a 

manageable complexity. The two main cases of interest here are: 
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• A simple star-like structure where the sum-product algorithm reduces to likelihood 

calculations with closed expressions (e.g. Figure 4).  

• A chain-like structure that allows the use of backward-forward algorithm (e.g. Figure 5). 

This kind of structure typically arises from channel coding and this algorithm is in that 

case the well-known APP decoder. 

If the Bayesian network presenting the problem can be partitioned to components that have one 

of the given structures, one can approximate the sum-product algorithm by iteratively executing 

the simplified algorithm in the component graphs and by exchanging the probability information 

through the random variables common to the components. It should be emphasized that the 

accuracy or even the convergence of this kind of iterative approximation has not yet been proven 

although there is a strong body of experimental evidence to suggest that the approximation is 

good [MMC98].  

6.1.1 Use of Bayesian networks in basic algorithm design 

After the general approach was clear the first step in the actual research work was to formulate 

the coded multiuser detection problem. With the notation of [P1], this problem can be described 

in a symbol level system model as 

iii nRAxy += , (24) 

where R is the cross correlation matrix, A is the amplitude matrix, ni is the channel noise term 

and T)()1( ),,( K
iii xx K=x is the coded data vector containing the transmitted data symbols of every 

users. For every user it is an output from some encoding process that can be expressed by a state 

machine: 
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Given the random variables in the system model, one can construct the corresponding Bayesian 

network. The resulting full graph is too complex to be presented here in detail. In some specific 

cases even the full graph is simple enough to be presented. For instance the graph corresponding 

the case with two users and rate ½ code is shown in Figure 10. A high-level view of the general 

case, which is used as a basis for partitioning the graph into suitable components, is shown in 

Figure 15.  
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The general-case Bayesian network can be constructed from component graphs of two different 

types: type A shown in detail in Figure 16 and type B shown in Figure 17. The partitioning of the 

full Bayesian network into these components is also shown in Figure 15. There is one component 

graph of type A for every user k consisting of the uncoded data symbols )(k
ju , the state variables 

)(k
js  and the transmitted data symbols )(k

ix . There is one component graph of type B for every 

received symbol consisting of the received symbol )(k
iy  together with the transmitted data 

symbols of all the users )(k
ix . Note that the transmitted data symbols )(k

ix  are included in both 

component graph types.  

Given this partitioning into component graphs we can now approximate the sum-product 

algorithm by executing the algorithm in the component graphs, exchanging the probability 

information through the common variables )(k
ix  in different component graphs and by reiterating 

the process. However, first we need to investigate what the sum-product algorithm looks like in 

the component graphs of type A and B. 

Component graph A for user k-1

)1( −k
ix

Component graph A for user k

)(k
ix

Component graph A for user k+1

)1( +k
ix

)1( +k
iy

)1( +k
in

Component graph B for 
user k+1 and symbol i

Component graph B for 
user k-1 and symbol i

)1( −k
iy

)1( −k
in

 

Figure 15 Graph of the general case coded MUD with partitioning 
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Figure 16 Component graph of Type A 
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Figure 17 Component graph of Type B 

Sum-product algorithm for graphs of Type A 

In essence, the sum-product algorithm calculates the probabilities )( )(k
iup  (and new estimates for 

)( )(k
ixp  if necessary) given the probabilities of the transmitted data symbols )( )(k

ixp  and the 

knowledge of the encoder state machine expressed by (25). It is based on passing two types of 

messages between the nodes representing the random variables, the “likelihood” messages λ  and 
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the “probability” messages π  (See Figure 16). In the case of a chain-like structure of Type A, 

messages are first passed from the nodes representing the transmitted symbols )(k
ix  and the user 

symbols )(k
ju  to the nodes representing the state variables )(k

js . In the second state, a sequence of 

messages is passed both forward and backward in the “chain” consisting of the nodes 

representing the state symbols. Finally, messages are passed from state variable nodes to nodes 

representing the transmitted symbols )(k
ix  and the user symbols )(k

ju . The probabilities )( )(k
iup  

(and )( )(k
ixp  if necessary) can be calculated using the content of these messages. This is in 

essence the generalized forward-backward algorithm. 

Next we describe the content of the messages and the calculations done in each node in more 

detail. In general, given some random variables X and Y, where Y is dependent on X, the message 

λ  from Y to X contains a list of nonnegative number indexed by the value range of X. If x is a 

variable taking values in the range of X, then the likelihood message is often denoted by 

))(( xXY →λ . Informally it is the probability of the “evidence” for the node representing Y 

conditioned on X=x. Similarly, the message π  from X to Y contains a list of probabilities. It is 

indexed by the value range of X and denoted by ))(( xYX →π , where x is the indexing variable. 

Roughly, for each x this is the probability of the event X=x conditioned on the “evidence” in the 

tree “behind” the random variable that originates the message. 

Looking at a Type A graph in Figure 16, the following messages are passed. The message 

))(( )()( ssx k
j

k
lRj →+λ  from node )(k

lRjx +  to node )(k
js  is ( ))())(( )()()( sfxpssx l

k
lRj

k
j

k
lRj ==→ ++λ  for all 

possible values of s. This can be calculated from the probability distributions )( )(k
lRjxp +  originating 

from component graph B, since lf  is known. 

Similarly, the message ))(( )()( usu k
j

k
j →π from )(k

ju  to )(k
js is the probability of the event uu k

j =)(  

conditioned on the “evidence” in the tree “behind” )(k
ju . This is in fact just the a priori 

probability. Thus we have )())(( )()()( uupusu k
j

k
j

k
j ==→π . 

Moving to the more complicated cases, the message ))(( )()(
1 sss k

j
k

j →+λ  from )(
1

k
js +  to )(k

js  is the 

marginalized probability 
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 for all possible values of s. Thus this is effectively calculated from )(,),( )()(
1

k
N

k
j xpxp L+  and the a 

priori probabilities )(,),( )()(
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k
j upup L+  in a recursive manner.  
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j
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for all possible values of s. Thus this is effectively calculated from )(,),( )(
1

)(
1

k
j

k xpxp −L  and the a 

priori probabilities )(,),( )(
1

)(
1

k
j

k upup −L  in a recursive manner. 

After both the forward and the backward message passing phases have completed, the likelihood 

message ))(( )()( uus k
j

k
j →λ  can be transmitted from )(k

js  to )(k
ju . This can be calculated as  
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The symbol probabilities can now be calculated as ))(()( )()()()( k
i

k
j

k
j

k
i uusup →= λ .  

In iterative receiver we also need to update the probabilities )( )(k
ixp . These are updated based on 

the message ))(( )(
)1(

)( sxs k
ljR

k
j ++→π  transmitted from )(k

js  to )(
)1(

k
ljRx ++ . The content of this message 

is 
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The symbol probabilities can be calculated as 

∑
++=

++++ →=
)(
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)1( ))(()(
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ljRl xsfs
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lRj

k
j

k
ljR sxsxp π . (30) 

The formulas above are in fact equivalent to the calculations done in a posteriori probability 

(APP) decoding algorithm also called maximum a posteriori (MAP) decoding algorithm. 

Furthermore, in this case the sum-product algorithm with the given message passing scheduling is 

actually functionally equivalent to APP decoding algorithm [MMC98]. Thus the calculation can 

in practice be done by using the APP decoding algorithm. 

Sum-product algorithm for graphs of Type B 

In the component graph of Type B the sum-product algorithm effectively calculates the 

probability )|( )(k
ii xyp . Following the steps in the sum-product algorithm, then messages 

)())(( )()()( xxpxyx h
i

k
i

h
i ==→π  (31) 

are first transmitted to the node )(k
iy  for all kh ≠ . The message transmitted to node )(k

ix is 
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 If the observed value for )(k
iy  is 0y , then the message transmitted to node )(k

ix  is thus 

)|())(( )(
0

)()( xxyypxxy k
ii

k
i

k
i ===→λ . (33) 

Note that Equation (12) in [P1] is essentially just the Equation (32) for log-likelihood ratios. The 

new value for the probability )( )(k
ixp  that is passed to component graphs of Type A can be 

calculated recursively as 
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Basic Iterative Algorithm used in [P1]-[P3] 

Now we can combine the two algorithms to obtain the basic iterative algorithm used in [P1]-[P3]. 

The random variables )(k
ix  are the common variables both component graph types and we obtain 

an approximate algorithm for calculating )|( )()( k
i

k
i yup  as follows: 

1. Set the probabilities )( )(k
ixp  to some initial value, e.g. ½. 

2. From the observed values for iy  calculate the )|( )()( k
i

k
i xyp  in component graphs of type 

B. In practice Equation (32) is used. In the publications [P1]-[P3] also suboptimal variants 

of this calculation are used. See Section 6.1.2 for more discussion on these. 

3. Update )( )(k
ixp by Equation (34) and pass this to the component graphs of type A. 

Calculate )( )(k
iup  and )( )(k

ixp  with APP decoding algorithm. 

4. Go to step 2 and use the new estimate for )( )(k
ixp . Iterate this as long as necessary. 

Thus we have obtained a moderate complexity iterative algorithm Looking at the reference 

CDMA receiver structure in Figure 3, the soft information is passed a reference points A and D. 

In reference point E soft or hard information can be used, although in the simulations hard 

decisions were made at this point an the resulting bit error rate (BER) was calculated. In this 

study, convolutional coding was assumed and thus there were no constituent decoders or 

reference points B and C. However, it is straightforward to extend this work to systems using 

Turbo codes. 

In this section we have described how Bayesian networks was utilized to develop and understand 

the iterative coded multiuser receiver studied in publications [P1]-[P3]. In the next section we 

summarize the research work done for this topic. 

6.1.2 Summary of the research performed on coded multiuser detection 

The starting point of the research reported in publications [P1]-[P3] was the iterative algorithm 

discussed in Section 6.1.1. Several further developments took place during the research activity. 

These are summarized in this section. 
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As was mentioned in Section 6.1.1 the sum-product algorithm for Bayesian network in Figure 16 

is functionally equivalent the well-known APP (also known as MAP) algorithm [MCC98]. Thus 

the basic iterative receiver structure can be described using the APP decoder and likelihood 

calculation formula without explicitly mentioning Bayesian networks. This approach was taken 

first in [P1] and later as a general approach in this study. The main rationale behind this decision 

was that using commonly known techniques in the publications made those both simpler and 

easier to understand for an average reader. One major factor impacting this decision was the lack 

of any theoretical results regarding the convergence of iterative approximation for sum-product 

algorithm. 

The graph in Figure 17 is so simple that the sum-product algorithm results a closed-from 

expression. Nevertheless, the calculation of summation in Equation (32) is still relatively 

complex to be implemented in a base station receiver. Thus in [P1] two suboptimal alternatives 

were proposed. The hard decision likelihood calculation was derived by approximation the 

logarithm of the sum by the maximum of the logarithms; a common method used in both Turbo 

decoding and Bayesian networks [BDM96]. In essence, the following approximation is used. 
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Assuming that we have a very reliable estimate ix̂  and thus 1)ˆ( ≈iP x , then the max-log 

approximation in (35) results 
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When this approximation is used )ˆ|(log )(
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Thus this approximation is in fact hard decision interference cancellation followed by likelihood 

calculation for an AWGN channel with variance 2σ . 

The second alternative is otherwise the same as the previous one, but it uses the expectation value 

of the transmitted channel symbol instead of the hard decision value in the likelihood calculation. 

In the binary case using log-likelihood ratios, this is just a hyperbolic tangent of a scaled log-

likelihood ratio for the transmitted channel symbol. 

For all these likelihood calculation methods an estimate of channel variance is needed for the 

calculation of the distribution of )(k
iy , which is the only continuous random variable in the 

Bayesian network describing the system model. Theoretically, an estimate of the variance 
2σ should be used. During the simulations done for [P1] and [P2] it became evident that the 

convergence speed of the suboptimal alternatives can be substantially increased if a larger value 

is used for this estimate during the first simulation steps. This kind of behavior is typical to 

approximate iterative methods and the only difficulty is usually to determine the correct rate of 

decreasing the value. Since both suboptimal algorithms can be expressed by an interference 

cancellation step followed by a likelihood calculation step, it was natural to use the variance of 

the modified samples after each interference cancellation. The simulations showed that with this 

modification, even the hard decision interference cancellation performance was close to optimal 

likelihood calculation performance.  This was one of the key findings reported in [P1].  

In [P1], a simple averaging was used to obtain the variance estimate. Naturally some more 

advanced estimation methods could increase the performance gain. Since the variance re-

estimation had a significant impact on the performance of the suboptimal algorithms, this was 

investigated further in [P2]. It was found that the use of improved variance estimation method 

taken from [RA97] slightly improved the convergence of the hard decision IC algorithm. 

In addition to the increased complexity, the main difficulty in using iterative joint multiuser 

receivers - or IC receivers with decoded tentative decisions - in fading channels is the 

prohibitively long delay caused by the interleaved channel codes. Currently interleaving is 

virtually always used in channel codes designed for fading channels, because it is a relatively 

simple method to obtain the required time diversity. However, in order to obtain this time 

diversity, the interleaving block length must be substantially longer than the channel coherence 

time. On the other hand, the whole interleaving block must be received before the iterative 

detection/decoding process can take place. This means that there is a significant delay between 

the actual reception of the signal and the actual availability of the receiver symbol. This is 
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unacceptable for delay-sensitive applications, but it is really catastrophic for fast power control, 

which is used in wideband CDMA systems. The operation of the fast power control requires the 

transmission power to be adjusted based on the received power control (PC) bit. This needs to be 

done with a reasonably low delay and the delay induced by the iterative joint detection/decoding 

is just unacceptable high.  

One way to reduce the delay is to utilize a coding scheme, which is a concatenation of an inner 

non-interleaved code and an outer interleaved code for coded multiuser detection. In this 

approach only the inner code would be used in the multiuser detection and the delay between the 

symbol reception and the availability of the detected symbols would be reduced. This observation 

motivated the work reported in [P3], where we estimated the capacity of such CDMA receivers 

when operating over a correlated Rayleigh fading channel. The analysis shows that interleaving is 

not necessary for good interference cancellation performance even in correlated fading channels. 

In fact, in a correlated Rayleigh fading channel, the performance of an IC receiver using decoded 

tentative decisions and a relatively weak non-interleaved code will be near the single-user 

performance limit. 

Even with this approach, there are significant system level problems for current WCDMA system 

(UTRAN FDD mode) specified by 3GPP, where the channel decoding is done for blocks that 

have duration a multiple of 10ms, but the power control command is sent for each slot, that is, 

once for every 666 µs [3GPPc]. Thus from system perspective even this approach is not feasible 

unless significant changes are made for layer 1 structure in UTRAN FDD mode. At the moment 

this does not seem feasible.  

One remaining possibility is to apply the coded multiuser detection only for WCDMA data 

channel, not for the control channel where the power control bits are transmitted. This approach 

is not studied further in this thesis. 

6.2 SOFT-OUTPUT RAKE RECEIVERS FOR CDMA MOBILE TERMINALS 

In papers [P4], [P5] and [P6] we study the performance improvement achieved by using soft 

decision and decoding techniques in CDMA downlink. As for the base station receivers, the 

detection and decoding problem for mobile receiver can also be regarded as a problem of 

probabilistic inference in a Bayesian network. In the downlink the channelisation codes for 

different users are orthogonal, but with multipath propagation, the signals traveling via different 

paths are misaligned in time and interpath interference is introduced even when orthogonal codes 

are used for different users. Thus there is interference both between different users as well as 
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between different symbols. In this case however, the limited processing power of a mobile 

terminal does not allow the use of iterative methods considered for coded multiuser detection in 

Section 4, especially given the lower achievable gain implied by the interference levels that are 

much smaller than for uplink MAI. 

Based on the above considerations a different starting point was selected for this part of research 

and the interfering users were modeled as Gaussian noise in the Bayesian network. The aim was 

to derive receivers that take into account channel estimation errors, do not require variance 

estimation and that also are suitable for higher modulation schemes. 

6.2.1 Use of Bayesian networks in basic algorithm design 

The symbol level system model from [P5] is 

)()()()( nwnxnhny lll += , (38) 

where )(nhl  are the channel coefficients, )(nwl is the combined channel noise and interference 

with variance 2
lσ , and x(n) is the coded channel symbol obtained from 
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The resulting Bayesian network is shown in Figure 18. Note that this graph is not multiply-

connected and thus the sum-product results the exact probabilities. Nevertheless, partitioning the 

graph into simpler components is still useful to identify the appropriate receiver structure. 

In the same way as for the uplink coded multiuser detection, this graph can be partitioned into the 

chain-like component of Type A arising from channel coding shown in Figure 19 and the 

likelihood calculation component shown in Figure 20. 
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Figure 18 Bayesian network presenting the downlink system model 
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Figure 19 Chain-like component of Type A in downlink model 
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Figure 20 Likelihood calculation component graph in downlink model 

Since the component graph in Figure 19 is of Type A, the APP decoding can again be used to 

calculate the probabilities. However, the message passing between the components is in this case 

only one-way and thus the resulting receiver structure is non-iterative. Looking at the reference 

CDMA receiver structure, this corresponds to a case where no information is passed at reference 

point D and soft information is passed at reference point A and hard information in reference 

point E. Again there are no constituent decoders and thus reference points B and C do not exist. 

As a result the channel decoder does not need to provide soft output. Thus any soft decision 

decoding algorithm is applicable. In publications [P4]-[P6] the Viterbi algorithm was used in the 

simulations to achieve low complexity. 

For the component graph shown in Figure 20 the most significant feature is that there is message 

passing between s')(nhl  and the corresponding s')(nyl , which are both continuous-valued 

random variables. This creates some difficulties since the corresponding message 

)))(()(( hnynh ll →π lists a non-negative real value for every possible value of the random 

variable. The problem is how to handle these infinite lists in the practical implementation of the 

algorithm. Furthermore, the summations in the sum-product algorithm become integrations for 

continuous-valued random variables, which complicates the situation even more. This can be 

seen in message )))(()(( xnxnyl →λ , which can be expressed as 
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dhxnxhnhnyphnxnhxnxny llll ∫ ==→=→ ))(,)(|)(()))(()(()))(()(( πλ . (40) 

Finally, we also need to take into account the channel estimates )(ˆ nhl  available in the receiver 

when calculating the likelihoods. Two alternative approaches for doing this were used in this 

study. 

In [P4] and [P6] we pass a list containing only one entry { })(ˆ)( nhyh lll =→π . With only this 

information available, the random variable )(nhl is effectively treated as an observed variable. 

We obtain 
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(41) 

In the Viterbi decoder implementing the algorithm for component graph in Figure 19, these 

likelihood messages are used to calculate the conditional probabilities 

))())(()(())(|)(( ∏ →=
l

l nxnxnynxnp λy  required in Viterbi decoding. As a result we obtain 

that the input for the Viterbi decoder is 

∏ 
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This formula is a special case of Equation (16) in [P5], when 02 =
lzσ . Following the same 

reasoning as in Section 3.3 in [P5] and defining F as an arbitrary positive real constant, we can 

conclude that for constant-amplitude modulation schemes this probability can be expressed as a 

transformation of metric 
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which is obtaining through the use of conventional RAKE receiver with Brennan’s MRC scheme. 

In practice this means that for constant-amplitude modulation schemes the metric (43) can be 

used as the input for the Viterbi decoder. Using this connection between the probabilities and the 

MRC one can derive new enhanced MRC schemes using the results obtained by considering 

Bayesian networks. This was the approach taken for [P4] and [P6].  
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When this method is used, any channel estimation error is propagated to the likelihood 

calculation in node representing )(nyl . In [P6] we used the assumption that the channel estimates 

are perfect for the analysis and simulations. In the scheme proposed in [P4], these estimation 

errors are taken into account in the likelihood calculation by treating the channel estimation error 

in the same way as the noise-and-interference terms s')(nwl . This can be done when a constant-

amplitude modulation scheme is used.  

In [P5] we take a different approach and pass the observed mean value )(ˆ nhl  of the channel 

coefficient together with an estimate of the variance to the node representing s')(nyl . This means 

that the message is { }2),(ˆ))()((
lzlll nhnynh σπ =→ . For brevity of the notation we define in the 

following ))()(( nynh ll →= ππ . The channel coefficients )(nhl  are assumed to be complex 

Gaussian random variables, and either by directly integrating (40) or by using the same reasoning 

as in [P5] we obtain: 
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As before, in the Viterbi decoder implementing the algorithm for component graph in Figure 19, 

these likelihood messages are used to calculate the conditional probabilities required in Viterbi 

decoding as 
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(45) 

 

This is the Equation (16) in [P5] presenting the correct input to the Viterbi decoder. In that 

publication an estimate of variance 2
lzσ  is obtained by weighting an analytical noise-and-

interference power estimate with a estimator diversity factor. This scheme is applicable to all 

modulation schemes. 
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6.2.2 Summary of the research performed on soft-output RAKE receivers 

The starting point for this research was the considerations discussed in Section 6.2.1. Again, the 

approach was not to use Bayesian network approach explicitly in the publications in order to 

simplify the derivations. However, these considerations played a major role when developing the 

initial algorithms.   

In [P4] we proposed a modified maximal ratio combining (MRC) scheme that is more suitable for 

RAKE receivers in wideband code division multiple access (WCDMA) mobile terminals then the 

conventional MRC scheme. In this case Equation (43) was used. The channel estimation errors 

were taken into account in the likelihood calculation where the channel estimation error was 

treated in the same way as the noise-and-interference terms s')(nwl . This approach is possible 

when a modulation scheme is used that has constant amplitude constellation points. For 

simplicity of the presentation, the results in [P4] were presented based on Brennan’s MRC 

scheme. In particular, a modified MRC scheme corresponding the results shown in Section 6.2.1 

was derived analytically assuming unequal noise powers and imperfect channel estimates in 

different RAKE fingers.  

In [P5] we proposed an improved soft-output RAKE detector providing a more accurate metric in 

these situations and thus giving a performance gain especially with low spreading gains and high-

order modulation schemes. The proposed receiver produces a bit metric for the soft-decision 

decoder taking into account the multipath fading channel, the interfering users and the channel 

estimation errors. For this publication Equation (45) was utilized. For simplicity, the results in the 

publication were derived without explicitly using Bayesian networks. We first formulated the 

system model containing the transmitter, channel and RAKE correlator finger models. Then we 

derived the optimum symbol metric based on the system models, assuming that the interference 

and channel noise are Gaussian distributed and uncorrelated both in time and between the RAKE 

fingers. The channel estimation errors were assumed to be Gaussian distributed. The optimum 

metric calculation requires the estimation of the noise variance in different RAKE finger outputs. 

To make our proposed soft-output RAKE receiver feasible in practice, we used a metric that 

employs an analytical estimate of the noise variances without requiring explicit noise variance 

estimation. Finally, we presented simulation results showing that a clear performance gain when 

low spreading factors or high-order constellations were used. 

In [P6] we proposed an improved maximal ratio combining (MRC) scheme for RAKE receivers 

in Mobile CDMA terminals. It was based on the original MRC scheme derived by Brennan and 
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performed nearly as well as Brennan's method. However, unlike Brennan’s method, our improved 

scheme did not require the estimation of the RAKE finger noise powers. We also analyzed the 

gain obtained through the use of Brennan's MRC scheme for mobile CDMA terminals, and 

showed that both the Brennan's original MRC scheme and, more importantly, our improved 

scheme results in significantly higher signal-to-noise ratios than the conventionally used MRC 

scheme. Simulations were also presented to further compare the performance of the conventional 

MRC and our proposed MRC scheme. 

6.3 ORIGINALITY AND CONTRIBUTION OF THE PUBLICATIONS 

In this section we list these contributions in detail for each publication and summarize the major 

and minor achievements in the publications constituting this thesis. 

 In [P1] an iterative receiver structure that utilizes the decoding information for multiuser 

detection was proposed and analyzed. The receiver structure was suggested by the ideas 

described in Section 6.1.1. The optimal as well as two suboptimal multiuser likelihood 

calculation algorithms were presented. Similar approaches had been independently studied in 

[REA97] and [HSH97]. In [REA97] a different likelihood calculation method was proposed than 

in [P1]. In [HSH97], which was not known to the author at the time of this research, an IS-95 

system was studied and the optimum likelihood calculation similar to the one presented in [P1] 

was derived along with some suboptimal alternatives. The method for derivation and the 

suboptimal alternatives were different from those given in [P1]. Furthermore, the impact of 

variance estimation was not discussed in [HSH97]. Thus the major novel contributions in [P1] 

were the proposed suboptimal likelihood calculation algorithms utilizing the variance re-

estimation approach, which significantly improved the performance of the suboptimal algorithms. 

This approach was discovered through the Bayesian network considerations discussed in Section 

6.1. These contributions were novel and previously unpublished.  

Since the variance estimation was found to have a significant impact on the suboptimal 

algorithms in [P2] the impact of different variance estimators was studied. The main contribution 

in this publication was to show how the more advanced channel variance estimation method 

presented in [RA97] could be used to improve the suboptimal hard decision algorithm proposed 

in [P1]. This contribution was novel and not previously reported anywhere. 

The work reported in [P3] was motivated by the discovery of the system issues discussed in 

Section 6.1. The iterative coded multiuser detection with interleaved channel coding causes 

delays that are problematic especially for fast power control. To evaluate the feasibility of having 
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a non-interleaved simple inner code that would be used in coded multiuser detection, it was 

necessary to analyze the interference cancellation performance in correlated Rayleigh channel 

when such code is used. This was done in [P3].  

There were two novel contributions in this publication. First, we derived an iterative way of 

analytically estimating the amount of noise present at mth stage in an interference cancellation 

(IC) receiver utilizing channel coding. Furthermore, by calculating the error probabilities for non-

interleaved codes in correlated Rayleigh channel, we were able to analytically estimate the 

performance of IC CDMA receivers that are using non-interleaved channel coding to improve the 

reliability of the tentative decisions. Second, we estimated the performance of such receivers in 

correlated Rayleigh channels through simulations. Both results were novel and not reported 

before. 

At this point the focus of the research was shifted due to some external circumstances. Thus in 

[P4], [P5] and [P6] we studied the performance improvement achieved by using soft decision and 

decoding techniques in CDMA downlink. In this case non-iterative receivers were considered. 

In [P4] a modified maximal ratio combining (MRC) scheme was proposed that was based on the 

ideas described in Section 6.2.1. This scheme is more suitable for RAKE receivers in wideband 

code division multiple access (WCDMA) mobile terminals than the conventional MRC scheme. 

The main contribution in this paper was a novel MRC scheme, which takes into account the 

different noise powers in different fingers in a similar way as the suboptimal scheme proposed in 

[TSW00], but also takes into account the channel estimation errors. 

In [P5] we proposed an improved soft-output RAKE detector that provides a more accurate 

metric and gives a performance gain especially with low spreading gains and high-order 

modulation schemes. It was based on the considerations described in Section 6.2.1 and used a bit 

metric for the soft-decision decoder taking into account the multipath fading channel, the 

interfering users and the channel estimation errors. The major novel contributions in this 

publication were the new bit metric for the soft-decision decoder, which is suitable also for 

higher-order modulation schemes, the method to estimate the noise powers in different fingers 

based on the channel estimates and an analytical method to estimate channel estimation errors. 

These results were novel and previously unpublished. 

In [P6] we proposed an improved maximal ratio combining (MRC) scheme for RAKE receivers 

in mobile CDMA terminals. The algorithm was similar to the one presented in [TSW00] and 

[P4]. However, here the analytical estimate of the noise powers developed in [P5] were used. We 
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also analyzed the gain obtained through the use of Brennan's MRC scheme for mobile CDMA 

terminals, and showed that both the Brennan's original MRC scheme and, more importantly, our 

improved scheme results in significantly higher signal-to-noise ratios than the conventionally 

used MRC scheme. The major contributions in this paper were the use of the analytical estimate 

of the noise powers needed for the enhanced MRC and the analysis of the MRC schemes. These 

results were novel and not reported before. 

The major achievements in this thesis are the following: 

• In [P1], the suboptimal multiuser likelihood algorithms utilizing the variance re-

estimation approach, which significantly improves the performance of these suboptimal 

algorithms.  

• In [P3], the derivation of an iterative way to analytically estimate the amount of noise 

present at mth stage in a coded interference cancellation (IC) receiver and the analytical 

estimate of the correlated channel performance of IC CDMA receivers that are using non-

interleaved channel coding to improve the reliability of the tentative decisions. 

• In [P5], a new bit metric for the soft-decision decoder, which is suitable also for higher-

order modulation schemes, the method to estimate the noise powers in different fingers 

based on the channel estimates and the analytical method to estimate channel estimation 

errors. 

• In [P6] the analysis of the performance of different MRC schemes. 

The minor achievements in the thesis are the following: 

• The work in [P2] showing how the more advanced channel variance estimation methods 

presented can be used to improve the suboptimal hard decision algorithm. 

• In [P3] the performance simulations of the coded interference cancellation receivers in 

correlated Rayleigh fading channels. 

• In [P4] the enhanced MRC scheme, which takes into account the different noise powers in 

different RAKE fingers and the channel estimation errors. 

• In [P6] the use of the analytical estimate of the noise powers in different RAKE fingers in 

the enhanced MRC scheme. 
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6.4 AUTHOR’S CONTRIBUTION TO THE PUBLICATIONS 

The author’s contribution has been essential to publications [P1]-[P6].  

In publication [P1], the author has been responsible for development of the proposed algorithm as 

well as for the writing of the publication. Furthermore all simulations were carried out by the 

author. The second author provided valuable comments on the work and suggested several 

modifications substantially improving the publication. 

In publications [P2]-[P4] and [P6], the author was the sole contributor. 

In publication [P5], the author was responsible for development of the proposed algorithm 

although the development was significantly influenced by the discussions with the second author. 

The author carried out all simulations as well as the writing of the publication. The second author 

provided valuable comments on the work and suggested major modifications in the publication 

structure that substantially improved its quality. 
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7 CONCLUSIONS 

The provision of high-speed, high-quality wireless data services creates a need for further 

development of existing receiver algorithms as well as for the creation of completely new 

solutions. The main problem addressed in this thesis was the application of soft detection and 

decoding algorithms in the receivers of the base stations as well as in the mobile terminals in a 

way that good performance is achieved but that the computational complexity remains 

acceptable. 

Two specific cases were considered in this thesis: coded multiuser detection in the CDMA base 

station and improved RAKE-based reception employing soft detection in the mobile terminal. To 

review the required background, a general introduction was given in Chapter 1 followed by a 

short background on wireless systems and receivers in Chapter 2. In Chapter 3, soft detection and 

decoding was introduced starting from detection theory and introducing soft detection by 

considering reduced complexity methods and in particular such iterative methods where soft 

detection and decoding play a key role. This chapter was concluded by a review of soft detection 

and decoding in wideband CDMA systems. 

Throughout Chapter 3, the Bayesian networks were used to illustrate the problems addressed by 

soft detection and decoding. This view was selected because it was the original concept of this 

research, but also to emphasize the underlying connection between the two apparently separate 

research cases considered in this thesis.  

In Chapter 4, the application of soft detection and decoding was studied for coded multiuser 

detection in CDMA base stations. The state-of-the-art research on coded multiuser receivers was 

reviewed with the emphasis on iterative joint multiuser receivers, the type of receivers considered 

in publications [P1] and [P2]. Finally, some system issues of iterative joint multiuser receivers 

were considered related the analysis presented in [P3]. 

In Chapter 5 the application of soft detection for an improved RAKE-based reception in the 

mobile terminal was studied. The approach used to derive the improved RAKE receivers 

proposed in [P4], [P5] and [P6] was presented.  
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In Chapter 6, a summary of the publications and the author’s contribution in those were 

presented.  We also summarized the research work done. Since Bayesian networks were not 

explicitly utilized in the publications, we described how they were used in the development of the 

algorithms presented in the publications. The general approach was to develop the initial idea for 

the receiver structure using Bayesian networks, after which the detailed derivations of the various 

components in the receivers, such as the likelihood calculation algorithms, were done with other 

methods. Finally we listed the major and minor achievements in the publications constituting the 

thesis. 

The new contributions of this thesis were made in two areas. The first part of the research focused 

on coded multiuser detection in the CDMA base station. The publications [P1], [P2] and [P3] 

contain the results of the research work related to the coded multiuser detection. The key 

achievements of this part of the research were development of the suboptimal multiuser 

likelihood algorithms in [P1] utilizing the variance re-estimation approach, which significantly 

improved the performance of these suboptimal algorithms as well as the work in [P2] showing 

how the more advanced channel variance estimation methods can be used to improve the 

suboptimal hard decision algorithm. In [P3], the key results were the derivation of an iterative 

way to analytically estimate the amount of noise present at mth stage in a coded interference 

cancellation (IC) receiver and the analytical estimate of the correlated channel performance of IC 

CDMA receivers that are using non-interleaved channel coding to improve the reliability of the 

tentative decisions. 

The second part of the research focused on the reception in the mobile terminal and considered 

improved RAKE-based reception in the mobile terminal employing soft detection. The 

publications [P4], [P5] and [P6] contain the results of that research. The key achievements of this 

part of the research were the enhanced MRC scheme in [P4], which took into account the 

different noise powers and the channel estimation errors in different RAKE fingers. In [P5] a new 

bit metric was proposed for the soft-decision decoder, which was also suitable for higher-order 

modulation schemes. The contributions in [P5] also included a method to estimate the noise 

powers in different fingers based on the channel estimates and an analytical method to estimate 

channel estimation errors. Finally, in [P6] the key contributions were the analysis of the 

performance of different MRC schemes as well as the enhanced MRC scheme using the 

analytical estimate of the noise powers in different RAKE fingers. 
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8 FUTURE WORK 

There are several potential ways to continue this research both in the area of coded multiuser 

detection as well as in the area of soft detection/decoding in mobile terminals. Moreover, at a 

more general level the use of Bayesian networks in the area of communications could also be 

investigated further. In this section we give some possible directions for future research in all of 

these areas.  

In the area of coded multiuser detection, there is a vast body of existing research on the different 

receiver algorithms and on the performance gains achieved as was discussed in Section 4. 

However, there are several open system-level issues such as the ones discussed in Section 4.3.4. 

Thus the successful deployment of coded multiuser receivers in existing wideband CDMA 

systems requires that the feasibility of the deployment and the achievable performance gains are 

evaluated from the system point of view. Even with the existing knowledge it seems likely that 

coded multiuser detection is not very practical in systems utilizing fast power control or any other 

mechanisms that require low-latency feedback. One notable exception might be systems utilizing 

some short inner coding e.g. some short space-time block code like the Alamouti-type codes 

[Ala98].  

There are also some complexity issues that need to be studied further in coded multiuser 

detection. So far the done research has concentrated on studying the performance gains without 

looking into implementation constraints. The implementation aspects need to be investigated 

before any deployment decisions can be made.  

In the area of soft detection/decoding in mobile terminals there are no significant system issues 

hindering the deployment of the algorithms studied in this thesis. However, there are issues in the 

actual implementation, such as the performance of fixed-point implementation. These need to be 

studied further to evaluate the final feasibility of the proposed algorithms. 

Looking at the further utilization of Bayesian networks in the development of new algorithms in 

the area of communications, there are many potential opportunities. In principle the Bayesian 

networks can be applied whenever the problem can be described using a system model with 
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random variables. However, currently there are some factors limiting the usability of the 

Bayesian network approach.  

First of all, the behavior of the approximate iterative algorithm in multiply-connected Bayesian 

networks should be understood better. In particular, theoretical results about the convergence of 

these algorithms and about propagation of eventual estimation errors are needed. Furthermore, 

the efficient handling of the continuous-valued random variables is currently possible only in 

limited case by using different kinds of ad hoc methods. Accordingly, the utilization of Bayesian 

networks in communications applications is currently almost exclusively limited to cases like 

channel decoding, where the random variables are essentially discrete. A more uniform way to 

handle continuous-valued random variables would be very beneficial. 

For many important communications applications, the available processing power remains as a 

limitation also in near future. This applies in particular to the algorithms that are executed in 

mobile terminals. The use of Bayesian networks in these applications would become much more 

attractive, if some low-complexity variants of the sum-product algorithm were discovered. The 

best such candidates are probably some approximate algorithms. Again, the key issue is to 

understand how the propagation of the calculation errors affects the convergence and accuracy of 

the results. As was mentioned before, some theoretical results on this would be very useful.   

The last requisite for the wider acceptance of the Bayesian network approach is to have a good 

and easily readable way to present both the networks and the algorithms used. A good effort for a 

common framework is made in [Fre98], but a more digestible way to use and analyze the 

Bayesian networks is needed in order to make the approach attractive to a working 

communications engineer.  
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