520 research outputs found

    Soft-Decision Low-Complexity Chase Decoders for the RS(255,239) Code

    Full text link
    [EN] In this work, we present a new architecture for soft-decision Reed-Solomon (RS) Low-Complexity Chase (LCC) decoding. The proposed architecture is scalable and can be used for a high number of test vectors. We propose a novel Multiplicity Assignment stage that sorts and stores only the location of the errors inside the symbols and the powers of a that identify the positions of the symbols in the frame. Novel schematics for the Syndrome Update and Symbol Modification blocks that are adapted to the proposed sorting stage are also presented. We also propose novel solutions for the problems that arise when a high number of test vectors is processed. We implemented three decoders: a h = 4 LCC decoder and two decoders that only decode 31 and 60 test vectors of true h = 5 and h = 6 LCC decoders, respectively. For example, our h = 4 decoder requires 29% less look-up tables in Virtex-V Field Programmable Gate Array (FPGA) devices than the best soft-decision RS decoder published to date, while has a 0.07 dB coding gain over that decoder.This research was funded by the Spanish Ministerio de Economia y Competitividad and FEDER grant number TEC2015-70858-C2-2-RTorres Carot, V.; Valls Coquillat, J.; Canet Subiela, MJ.; GarcĂ­a Herrero, FM. (2019). Soft-Decision Low-Complexity Chase Decoders for the RS(255,239) Code. Electronics. 8(1):1-13. https://doi.org/10.3390/electronics8010010S11381Cideciyan, R., Gustlin, M., Li, M., Wang, J., & Wang, Z. (2013). Next generation backplane and copper cable challenges. IEEE Communications Magazine, 51(12), 130-136. doi:10.1109/mcom.2013.6685768Koetter, R., & Vardy, A. (2003). Algebraic soft-decision decoding of reed-solomon codes. IEEE Transactions on Information Theory, 49(11), 2809-2825. doi:10.1109/tit.2003.819332Sudan, M. (1997). Decoding of Reed Solomon Codes beyond the Error-Correction Bound. Journal of Complexity, 13(1), 180-193. doi:10.1006/jcom.1997.0439Guruswami, V., & Sudan, M. (1999). Improved decoding of Reed-Solomon and algebraic-geometry codes. IEEE Transactions on Information Theory, 45(6), 1757-1767. doi:10.1109/18.782097Jiang, J., & Narayanan, K. R. (2008). Algebraic Soft-Decision Decoding of Reed–Solomon Codes Using Bit-Level Soft Information. IEEE Transactions on Information Theory, 54(9), 3907-3928. doi:10.1109/tit.2008.928238Jiangli Zhu, Xinmiao Zhang, & Zhongfeng Wang. (2009). Backward Interpolation Architecture for Algebraic Soft-Decision Reed–Solomon Decoding. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 17(11), 1602-1615. doi:10.1109/tvlsi.2008.2005575Jiangli Zhu, & Xinmiao Zhang. (2008). Efficient VLSI Architecture for Soft-Decision Decoding of Reed–Solomon Codes. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(10), 3050-3062. doi:10.1109/tcsi.2008.923169Zhongfeng Wang, & Jun Ma. (2006). High-Speed Interpolation Architecture for Soft-Decision Decoding of Reed–Solomon Codes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14(9), 937-950. doi:10.1109/tvlsi.2006.884046Zhang, X. (2006). Reduced Complexity Interpolation Architecture for Soft-Decision Reed–Solomon Decoding. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14(10), 1156-1161. doi:10.1109/tvlsi.2006.884177Xinmiao Zhang, & Parhi, K. K. (2005). Fast factorization architecture in soft-decision Reed-Solomon decoding. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 13(4), 413-426. doi:10.1109/tvlsi.2004.842914Bellorado, J., & Kavcic, A. (2010). Low-Complexity Soft-Decoding Algorithms for Reed–Solomon Codes—Part I: An Algebraic Soft-In Hard-Out Chase Decoder. IEEE Transactions on Information Theory, 56(3), 945-959. doi:10.1109/tit.2009.2039073GarcĂ­a-Herrero, F., Valls, J., & Meher, P. K. (2011). High-Speed RS(255, 239) Decoder Based on LCC Decoding. Circuits, Systems, and Signal Processing, 30(6), 1643-1669. doi:10.1007/s00034-011-9327-4Zhang, W., Wang, H., & Pan, B. (2013). Reduced-Complexity LCC Reed–Solomon Decoder Based on Unified Syndrome Computation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 21(5), 974-978. doi:10.1109/tvlsi.2012.2197030Peng, X., Zhang, W., Ji, W., Liang, Z., & Liu, Y. (2015). Reduced-Complexity Multiplicity Assignment Algorithm and Architecture for Low-Complexity Chase Decoder of Reed-Solomon Codes. IEEE Communications Letters, 19(11), 1865-1868. doi:10.1109/lcomm.2015.2477495Lin, Y.-M., Hsu, C.-H., Chang, H.-C., & Lee, C.-Y. (2014). A 2.56 Gb/s Soft RS (255, 239) Decoder Chip for Optical Communication Systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(7), 2110-2118. doi:10.1109/tcsi.2014.2298282Wu, Y. (2015). New Scalable Decoder Architectures for Reed–Solomon Codes. IEEE Transactions on Communications, 63(8), 2741-2761. doi:10.1109/tcomm.2015.2445759Garcia-Herrero, F., Canet, M. J., Valls, J., & Meher, P. K. (2012). High-Throughput Interpolator Architecture for Low-Complexity Chase Decoding of RS Codes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(3), 568-573. doi:10.1109/tvlsi.2010.210396

    Error-correction coding for high-density magnetic recording channels.

    Get PDF
    Finally, a promising algorithm which combines RS decoding algorithm with LDPC decoding algorithm together is investigated, and a reduced-complexity modification has been proposed, which not only improves the decoding performance largely, but also guarantees a good performance in high signal-to-noise ratio (SNR), in which area an error floor is experienced by LDPC codes.The soft-decision RS decoding algorithms and their performance on magnetic recording channels have been researched, and the algorithm implementation and hardware architecture issues have been discussed. Several novel variations of KV algorithm such as soft Chase algorithm, re-encoded Chase algorithm and forward recursive algorithm have been proposed. And the performance of nested codes using RS and LDPC codes as component codes have been investigated for bursty noise magnetic recording channels.Future high density magnetic recoding channels (MRCs) are subject to more noise contamination and intersymbol interference, which make the error-correction codes (ECCs) become more important. Recent research of replacement of current Reed-Solomon (RS)-coded ECC systems with low-density parity-check (LDPC)-coded ECC systems obtains a lot of research attention due to the large decoding gain for LDPC-coded systems with random noise. In this dissertation, systems aim to maintain the RS-coded system using recent proposed soft-decision RS decoding techniques are investigated and the improved performance is presented

    A New Chase-type Soft-decision Decoding Algorithm for Reed-Solomon Codes

    Full text link
    This paper addresses three relevant issues arising in designing Chase-type algorithms for Reed-Solomon codes: 1) how to choose the set of testing patterns; 2) given the set of testing patterns, what is the optimal testing order in the sense that the most-likely codeword is expected to appear earlier; and 3) how to identify the most-likely codeword. A new Chase-type soft-decision decoding algorithm is proposed, referred to as tree-based Chase-type algorithm. The proposed algorithm takes the set of all vectors as the set of testing patterns, and hence definitely delivers the most-likely codeword provided that the computational resources are allowed. All the testing patterns are arranged in an ordered rooted tree according to the likelihood bounds of the possibly generated codewords. While performing the algorithm, the ordered rooted tree is constructed progressively by adding at most two leafs at each trial. The ordered tree naturally induces a sufficient condition for the most-likely codeword. That is, whenever the proposed algorithm exits before a preset maximum number of trials is reached, the output codeword must be the most-likely one. When the proposed algorithm is combined with Guruswami-Sudan (GS) algorithm, each trial can be implement in an extremely simple way by removing one old point and interpolating one new point. Simulation results show that the proposed algorithm performs better than the recently proposed Chase-type algorithm by Bellorado et al with less trials given that the maximum number of trials is the same. Also proposed are simulation-based performance bounds on the MLD algorithm, which are utilized to illustrate the near-optimality of the proposed algorithm in the high SNR region. In addition, the proposed algorithm admits decoding with a likelihood threshold, that searches the most-likely codeword within an Euclidean sphere rather than a Hamming sphere

    A Test Vector Generation Method Based on Symbol Error Probabilities for Low-Complexity Chase Soft-Decision Reed-Solomon Decoding

    Full text link
    © 2019 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] This paper presents a low-complexity chase (LCC) decoder for Reed-Solomon (RS) codes, which uses a novel method for the selection of test vectors that is based on the analysis of the symbol error probabilities derived from simulations. Our results show that the same performance as the classical LCC is achieved with a lower number of test vectors. For example, the amount of test vectors is reduced by half and by 1/16 for the RS(255,239) and RS(255,129) codes, respectively. We provide an evidence that the proposed method is suitable for RS codes with different rates and Galois fields. In order to demonstrate that the proposed method results in a reduction of the complexity of the decoder, we also present a hardware architecture for an RS(255,239) decoder that uses 16 test vectors. This decoder achieves a coding gain of 0.56 dB at the frame error rate that is equal to 10(-6) compared with hard-decision decoding, which is higher than that of an eta = 5 LCC. The implementation results in ASIC show that a throughput of 3.6 Gb/s can be reached in a 90-nm process and 29.1XORs are required. The implementation results in Virtex-7 FPGA devices show that the decoder reaches 2.5 Gb/s and requires 5085 LUTs.This work was supported by the Spanish Ministerio de Economia y Competitividad and FEDER under Grant TEC2015-70858-C2-2-R. This paper was recommended by Associate Editor M. Boukadoum.Valls Coquillat, J.; Torres Carot, V.; Canet Subiela, MJ.; García-Herrero, FM. (2019). A Test Vector Generation Method Based on Symbol Error Probabilities for Low-Complexity Chase Soft-Decision Reed-Solomon Decoding. IEEE Transactions on Circuits and Systems I Regular Papers. 66(6):2198-2207. https://doi.org/10.1109/TCSI.2018.2882876S2198220766

    Iterative Soft Input Soft Output Decoding of Reed-Solomon Codes by Adapting the Parity Check Matrix

    Full text link
    An iterative algorithm is presented for soft-input-soft-output (SISO) decoding of Reed-Solomon (RS) codes. The proposed iterative algorithm uses the sum product algorithm (SPA) in conjunction with a binary parity check matrix of the RS code. The novelty is in reducing a submatrix of the binary parity check matrix that corresponds to less reliable bits to a sparse nature before the SPA is applied at each iteration. The proposed algorithm can be geometrically interpreted as a two-stage gradient descent with an adaptive potential function. This adaptive procedure is crucial to the convergence behavior of the gradient descent algorithm and, therefore, significantly improves the performance. Simulation results show that the proposed decoding algorithm and its variations provide significant gain over hard decision decoding (HDD) and compare favorably with other popular soft decision decoding methods.Comment: 10 pages, 10 figures, final version accepted by IEEE Trans. on Information Theor

    On Multiple Decoding Attempts for Reed-Solomon Codes: A Rate-Distortion Approach

    Full text link
    One popular approach to soft-decision decoding of Reed-Solomon (RS) codes is based on using multiple trials of a simple RS decoding algorithm in combination with erasing or flipping a set of symbols or bits in each trial. This paper presents a framework based on rate-distortion (RD) theory to analyze these multiple-decoding algorithms. By defining an appropriate distortion measure between an error pattern and an erasure pattern, the successful decoding condition, for a single errors-and-erasures decoding trial, becomes equivalent to distortion being less than a fixed threshold. Finding the best set of erasure patterns also turns into a covering problem which can be solved asymptotically by rate-distortion theory. Thus, the proposed approach can be used to understand the asymptotic performance-versus-complexity trade-off of multiple errors-and-erasures decoding of RS codes. This initial result is also extended a few directions. The rate-distortion exponent (RDE) is computed to give more precise results for moderate blocklengths. Multiple trials of algebraic soft-decision (ASD) decoding are analyzed using this framework. Analytical and numerical computations of the RD and RDE functions are also presented. Finally, simulation results show that sets of erasure patterns designed using the proposed methods outperform other algorithms with the same number of decoding trials.Comment: to appear in the IEEE Transactions on Information Theory (Special Issue on Facets of Coding Theory: from Algorithms to Networks
    • …
    corecore