11 research outputs found

    Manifold Constrained Low-Rank Decomposition

    Full text link
    Low-rank decomposition (LRD) is a state-of-the-art method for visual data reconstruction and modelling. However, it is a very challenging problem when the image data contains significant occlusion, noise, illumination variation, and misalignment from rotation or viewpoint changes. We leverage the specific structure of data in order to improve the performance of LRD when the data are not ideal. To this end, we propose a new framework that embeds manifold priors into LRD. To implement the framework, we design an alternating direction method of multipliers (ADMM) method which efficiently integrates the manifold constraints during the optimization process. The proposed approach is successfully used to calculate low-rank models from face images, hand-written digits and planar surface images. The results show a consistent increase of performance when compared to the state-of-the-art over a wide range of realistic image misalignments and corruptions

    Robust Principal Component Analysis on Graphs

    Get PDF
    Principal Component Analysis (PCA) is the most widely used tool for linear dimensionality reduction and clustering. Still it is highly sensitive to outliers and does not scale well with respect to the number of data samples. Robust PCA solves the first issue with a sparse penalty term. The second issue can be handled with the matrix factorization model, which is however non-convex. Besides, PCA based clustering can also be enhanced by using a graph of data similarity. In this article, we introduce a new model called "Robust PCA on Graphs" which incorporates spectral graph regularization into the Robust PCA framework. Our proposed model benefits from 1) the robustness of principal components to occlusions and missing values, 2) enhanced low-rank recovery, 3) improved clustering property due to the graph smoothness assumption on the low-rank matrix, and 4) convexity of the resulting optimization problem. Extensive experiments on 8 benchmark, 3 video and 2 artificial datasets with corruptions clearly reveal that our model outperforms 10 other state-of-the-art models in its clustering and low-rank recovery tasks

    Low-Rank Matrices on Graphs: Generalized Recovery & Applications

    Get PDF
    Many real world datasets subsume a linear or non-linear low-rank structure in a very low-dimensional space. Unfortunately, one often has very little or no information about the geometry of the space, resulting in a highly under-determined recovery problem. Under certain circumstances, state-of-the-art algorithms provide an exact recovery for linear low-rank structures but at the expense of highly inscalable algorithms which use nuclear norm. However, the case of non-linear structures remains unresolved. We revisit the problem of low-rank recovery from a totally different perspective, involving graphs which encode pairwise similarity between the data samples and features. Surprisingly, our analysis confirms that it is possible to recover many approximate linear and non-linear low-rank structures with recovery guarantees with a set of highly scalable and efficient algorithms. We call such data matrices as \textit{Low-Rank matrices on graphs} and show that many real world datasets satisfy this assumption approximately due to underlying stationarity. Our detailed theoretical and experimental analysis unveils the power of the simple, yet very novel recovery framework \textit{Fast Robust PCA on Graphs

    The Unifying Frameworks of Information Measures

    Get PDF

    Curvature corrected tangent space-based approximation of manifold-valued data

    Full text link
    When generalizing schemes for real-valued data approximation or decomposition to data living in Riemannian manifolds, tangent space-based schemes are very attractive for the simple reason that these spaces are linear. An open challenge is to do this in such a way that the generalized scheme is applicable to general Riemannian manifolds, is global-geometry aware and is computationally feasible. Existing schemes have been unable to account for all three of these key factors at the same time. In this work, we take a systematic approach to developing a framework that is able to account for all three factors. First, we will restrict ourselves to the -- still general -- class of symmetric Riemannian manifolds and show how curvature affects general manifold-valued tensor approximation schemes. Next, we show how the latter observations can be used in a general strategy for developing approximation schemes that are also global-geometry aware. Finally, having general applicability and global-geometry awareness taken into account we restrict ourselves once more in a case study on low-rank approximation. Here we show how computational feasibility can be achieved and propose the curvature-corrected truncated higher-order singular value decomposition (CC-tHOSVD), whose performance is subsequently tested in numerical experiments with both synthetic and real data living in symmetric Riemannian manifolds with both positive and negative curvature
    corecore