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Information measures are capable of providing us with fundamental methodologies to analyze uncertainty and unveiling the sub-
stantive characteristics of random variables. In this paper, we address the issues of different types of entropies through g-generalized
Kolmogorov-Nagumo averages, which lead to the propositions of the survival Rényi entropy and survival Tsallis entropy. Therefore,
we make an inventory of eight types of entropies and then classify them into two categories: the density entropy that is defined
on density functions and survival entropy that is defined on survival functions. This study demonstrates that, for each type of the
density entropy, there exists a kind of the survival entropy corresponding to it. Furthermore, the similarity measures and normalized
similarity measures are, respectively, proposed for each type of entropies. Generally, functionals of different types of information-
theoretic metrics are equally diverse, while, simultaneously, they also exhibit some unifying features in all their manifestations. We
present the unifying frameworks for entropies, similarity measures, and normalized similarity measures, which helps us deal with

the available information measures as a whole and move from one functional to another in harmony with various applications.

1. Introduction

Measures of probabilistic uncertainty and information have
attracted growing attentions since Hartley introduced the
practical measure of information as the logarithm of the
amount of uncertainty associated with finite possible symbol
sequences, where the distribution of events is considered
to be equally probable [1]. Today, entropy plays a basic
role in the definitions of information measures with various
applications in different areas. It has been recognized as the
fundamental important field intersecting with mathematics,
communication, physics, computer science, economics, and
so forth [2-5].

The generalized information theory arising from the
study of complex systems was intended to expand classical
information theory based on probability. The additive prob-
ability measures, which are inherent in classical information
theory, are extended to various types of nonadditive measures
and thus result in different types of functionals that gen-
eralize Shannon entropy [6-8]. Generally, the formalization
of uncertainty functions involves a considerable diversity.
However, it also exhibits some unifying features [9].

11. Entropies Defined on Density Functions. We consider
(X,Y) as the continuous random variables (r.v.) over a
state space Q) x Q with the joint density function f(x, y)
and marginal density functions fy(x) and fy(y). We also
consider the conditional density function fyy(x | y) of X
givenY defined over Q. Note that f(x), f(y),and f(x | y)are
also used to mean fx(x), fy(y),and fyy(x | y), respectively,
if their meanings are clear in context.

Let f(x) be a density function of r.v. X with JR f(x)dx =
1. The Khinchin axioms [10] are capable of obtaining the
Shannon entropy in a unique way. However, this may be too
narrow-minded if one wants to describe complex systems.
Therefore, a generalized measure of an r.v. X with respect to
Kolmogorov-Nagumo (KN) averages [11] can be deduced as

0y =v ([ £ew (g ﬁ)dx), B

where y is a continuous and strictly monotonic KN function
[12] and hence has an inverse 1//_1.
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The KN averages can be extended in different manners to
propose more generalized information measures. We use the
g-logarithm function [13] given as

1—
X1 -

1
In x = ,
q l—q

(x>0, geR) 2)

to replace the logarithm function in (1). Note that logx =
lim,_,;In x and In x satisfies pseudoadditivity; for example,
In,(xy) = Ingx +Ingy + (1 - g)In xIn, y. Hence we extend
KN averages to a generalized measure of information X with
respect to g-generalized KN averages defined by

<X>?,=vf1(J f(x)t/f(lan( )) ) 3)

In terms of Rényi’s generalization on axioms of KN
averages [14], if g = 1 and y(x) = x in (3), it yields Shannon
entropy (SE) [15] defined as

HOO =~ f@)logf () dx. @

Based on Shannon entropy, the Shannon mutual informa-
tion (SMI) [15, 16] of r.v.s X and Y was given by
1(X,Y)

=HX)+H(Y)-H(XY)

)
=HX)-H(XIY),

where H(X,Y) is the joint Shannon entropy of (X,Y) and
H(X | Y) is the conditional Shannon entropy of X given Y.

If g = 1 and y is chosen as y(x) = 7% in (3), it yields
Rényi entropy (RE) [14] defined by

R, (X) =

1 o
. log L 7 (x)dx, (6)

where a > 0 and o # 1.

Shannon entropy and Rényi entropy are additive. If g = «
and y(x) = x in (3), we get the pseudoadditive entropy or
Tsallis entropy (TE) [17] defined by

RW)wame

= ﬁ(l— JRf“(x)dx>,

where o > 0 and o # 1.

We obtain H(X) = lim, ;R,(X) and H(X) =
lim, ,,T,(X). Therefore, Rényi entropy and Tsallis entropy
can be viewed as interpolation formulas of the Shannon
entropy (¢« = 1) and Hartley entropy (o« = 0). A relation
between Rényi and Tsallis entropies can be easily deduced as

1
T,(X) = Tl(l—exp (1-a)R,(X))). (8)
More recently, interest in generalized information
measures increases dramatically in different manners. A
respectable number of nonclassical entropies, rather than
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Shannon entropy, Rényi entropy, and Tsallis entropy, have
already been developed in the study of complex systems.
The exponential entropy (EE) of order « [18] was defined

by
. (X) = (L £ () dx)l/(lfa), ©)

where « > 0and o # 1.
We obtain R (X) =
lim,_,, log &,(X).

log&,(X) and H(X) =

1.2. Entropies Defined on Survival Functions. As narrated in
[19], information measures defined on the density function
suffer from several drawbacks, since the distribution function
is more regular than the density function. Therefore, the
cumulative residual entropy, which was defined on the
cumulative distribution function or equivalently the survival
function, was proposed as an alternative information mea-
sure of uncertainty.

Let X = (X,,X,,...,X,,) be a nonnegative r.v. in R}
We use the notation X > x to mean that X; > x; for
x; = 0,1 = 1,2,...,m. The multivariate survival function
of a nonnegative r.v. X is given as

Fy(x) = P(X > x)
(10)
=P(X,>x,X;,>%,....X,, > X,),
where x = (x,...,x,,) € R withRT' = {x ¢ R" : x =
(Xpee s X,),%; 20, i=1,...,m}.
If the density function is replaced by the survival func-
tion, g is set as 1, and y(x) = x in (3), it yields the survival
Shannon entropy (SSE) [19] defined as

H(X)=- J-Rm Fy (x)log F (x) dx. 1)

Since eight different types of entropies and their corre-
sponding similarity measures will be discussed subsequently,
it is worth pointing out that some notations and names of the
existing information measures will be changed in harmony
with the unifying frameworks throughout this paper.

To consider the conditional survival entropy, we denote
Fyx(x | y) as the conditional distribution function of X
givenY = yandalso 1_7X|Y(x | y) as the respective conditional
survival function.

The cross survival Shannon entropy (CSSE) of r.v.s (X, Y)
was given by [19]

ITXY)=X)-F(X|Y), (12)

where Z(X | Y) is the conditional survival Shannon entropy
of r.v.s X given Y defined as [19]
Z (X 1Y)

- _ (13)
=-Ey (Lm Fxy (x| )’)logFX\Y (x1y) dx)
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and Ey(-) here is the expectation with respect to an r.v. Y.
The nonnegativity of CSSE was proven in [19] and thus CSSE
was used as a similarity measure in image registration [20].
The generalized versions of SSE in dynamic systems were
discussed in [21, 22].

If the density function in (9) is replaced by the survival
function, this yields the survival exponential entropy (SEE)
[23] of an r.v. X € R with order « given by

B 1/(1-a)
%, (X) = (Lm (%) dx) : (14)

4+

where « > 0 and « # 1.

As an ongoing research program, generalized informa-
tion measure offers us a steadily growing inventory of distinct
entropy theories. Diversity and unity are two significant fea-
tures of these theories. The growing diversity of information
measures makes it increasingly more realistic to find a certain
information measure suitable for a given condition. The unity
allows us to view all available information measures as a
whole and to move from one measure to another as needed.
To that end, motivated by the researching approaches on
Shannon entropy, Shannon mutual information [2], SSE [19],
and SEE [23], we attempt to study information-theoretic
metrics in their manifestations. On one hand, we propose
several new types of entropies and their similarity measures;
on the other hand, for each type of the existing entropies,
except for Shannon entropy, we give the definitions of
similarity measures (see Tables 1 and 2). Finally, we deduce
the unifying frameworks for information measures emerging
from the study of complex systems based on probability.

The remainder of this paper is organized as follows.
Section 2 will propose the similarity measures defined on
the density function. In Section 3, the survival Rényi entropy
and survival Tsallis entropy are presented. In Section 4,
we address the similarity measures defined on the survival
function. The unifying frameworks of information measures
and examples are provided in Section 5. Finally, we conclude
this paper in Section 6.

2. Similarity Measures Defined on
the Density Function

Shannon mutual information measures the information of
an r.v. X conveying about another r.v. Y. It has been widely
used in image registration [24, 25] and pattern recognition
[26, 27]. Generally, as SMI is defined on Shannon entropy,
each type of entropies would lead to corresponding similarity
measures. In application, an idea similarity measure should
be nonnegative. To that end, we take the way as [15, 19, 23] to
define the similarity measures by linear expectation operator
rather than KN average operator weighted by the escort
distribution [28]. This section will present the similarity
measures defined on the density function corresponding to
Rényi entropy, Tsallis entropy, and the exponential entropy,
respectively.

2.1. Rényi Mutual Information

Lemma l. Let X and Y be r.v.s and let ¢(x) be a real convex
function. Then

Er(] o (e 1)dx) = | p(f)dx. )

If o(x) is strictly convex, the equality holds if and only if
X and Y are independent. If ¢(x) is concave, the inequality is
reversed.

Proof. Forareal convex function ¢(x), using Jensen’s inequal-
ity [29], we obtain

Ey(p(f(x19) 20 (Ey (f(x1y).  (6)

The equality holds if X and Y are independent. Since
f(x) = IR flx | y)f(y)dy, it is immediate that

Ey <L<P(f (x| y))dx>

(], (190 dx) £ )y
- (| e 1) £ () ay)dx

[ B U .

>

¢ (Ey (f (x 1)) dx

=

B L‘P(Lf(x I )’)f(}’)dy)dx

= JR(p(f (x)) dx.

Now consider the “only if” part of the lemma. If X and Y
are independent, then f(x | ¥) = f(x), and thus the equality
holds in (15). On the other hand, if the equality holds in (15),
then the equality holds in Jensen’s inequality (16), which leads
to Ey(@(f(x | ))) = p(Ey(f(x | ))). Then Ey(f(x | ) =
f(x | y) almost surely, since ¢ is strictly convex. We obtain
Ev(f(x | y)) = f(x) by (18); hence f(x | y) = f(x), which
leads to the independence of X and Y.

Lemma 1 plays an important role to prove the nonneg-
ativity for the similarity measure to be introduced, which is
defined on the density function. O

Definition 2. Let X and Y be r.v.s; the conditional Rényi
entropy of X given Y with order « is defined by

R, (X|Y)= ﬁE}, <log L f(x1y) dx), (18)

where « > 0 and « # 1.

Motivated by the definitions of the joint Shannon entropy
H(X,Y) = H(X) + H(Y | X) and joint survival Shannon
entropy #(X,Y) = #(X) + (Y | X), the joint Rényi
entropy can be similarly introduced.
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Definition 3. 'The joint Rényi entropy of r.v.s X and Y with
order « is defined as R, (X,Y) = R, (X) + R, (Y | X), where
a>0anda # 1.

Theorem 4. For r.v.s X and Y, we obtain R, (X) > R, (X | Y)
and R,(X,Y) < R (X) + R, (Y) forall« > 0 and o # 1.

Proof. Since 1/(1 — «) > 0 and t* is concave of t > 0 for all
0 < a < 1, using Lemma 1 and Jensen’s inequality, we have

1
1-«

R,(X) = log JR f*(x)dx

=R, (X |Y).

Since 1/(1 — «) < 0 and t* is convex of t > 0 for all « > 1,
using Lemma 1 and Jensen’s inequality, we obtain

1 o
R, (X) > — log Ey (Lf (x1y) dx)
1 o
2 = ocEY (log Lf (x1y) dx) (20)
=R, (X|Y).
Similarly, we have R, (Y) > R, (Y | X), and thus
R,(X,Y) =R, (X)+ R, (Y| X) <R (X)+ R, (Y). O

Definition 5. 'The Rényi mutual information (RMI) of r.v.s X
and Y with order « is defined as

IRoc (X’ Y) = R(x (X) + R[x (Y) - Roc (Y’ X)
21
R, (X) - R, (X V), o

where « > 0 and « # 1.

It is worth pointing out that the definition of RMI
parallels with the definitions of SMI (5) and CSSE (13). The
nonnegativity of RMI is ensured by Theorem 4. Considering
Theorem 4 that parallels with (5), we can give another form
of the definition for RMI as

IR (X,Y) = Ry (X) + R, (Y) = R, (X, Y)
22
:Roc(Y)_Ra(Y|X)- ( )

There are no essential differences between these two
forms of definitions for RMI. We only consider the similar
definitions as (24) for similarity measures throughout this
paper.

Using L'Hopital’s rules, it is easy to obtain I(X,Y) =
IR (X,Y)and H(X,Y) = lim,_,,R (X, Y).

The normalized Shannon mutual information (NSMI)
[16] of r.v.s X and Y was given as

lim

H(X)+H(®Y)

NI(X,Y) = T

(23)
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NSMI often acts as a robust similarity measure in image
registration [16, 30], attribute abstraction [31], and clustering
[32]. Note that 1 < NI(X,Y) < 2. In a similar way, different
forms of the normalized mutual information will be deduced
in this work.

Definition 6. The normalized Rényi mutual information
(NRMI) of r.v.s X and Y with order « is defined by

Ry (X) + R, (Y)

NIR (X,Y) = = 89

> (24)

where « > 0 and o # 1.

We immediately obtain NI(X,Y) = lim,_,; NIR, (X,Y)
by UHopitals rules.
2.2. Tsallis Mutual Information

Definition 7. The conditional Tsallis entropy of r.v. X given Y’
with order « is defined as

1 o
T,(X1Y)= ﬁEy<1—JRf (x|y)dx>, (25)
where o« > 0and ¢ # 1.

Definition 8. The joint Tsallis entropy of r.v.s X and Y with
order « is defined as T, (X,Y) = T, (X) + T, (Y | X), where
a>0anda # 1.

Theorem 9. Fortworv.sXandY, wehaveT,(X) > T (X |Y)
and T (X,Y) < T (X) + T,(Y) forall« > 0 and « # 1.

Proof. Since 1/(ac — 1) < 0 and t* is concave of ¢ for all 0 <
« < 1, using Lemma 1, we obtain

T (X) - Ey (T, (X | Y))

1—_[Rf‘x(x)dx_E <1—JRf°‘(x|y)dx

a—1

a—1

. (26)

- <EY <L A (x1y) dx) - JR (%) dx)

%1 <JR £ (x) dx L f* (ydx) =o0.

[04

vV

The inequality holds for all « > 1, since 1/(a — 1) > 0 and
t* is convex of t.
It is trivial to verify that T, (X, Y) < T (X) + T, (Y). O

Definition 10. The Tsallis mutual information (TMI) of r.v.s X
and Y with order « is defined as IT, (X, Y) = T, (X) - T, (X |
Y), where « > 0 and o # 1.

Using Theorem 9, we have IT,(X,Y) > 0.

Definition 11. The normalized Tsallis mutual information
(NTMI) of r.v.s X and Y with order « is defined by
T (X0 +T, (V)

NIT, (X,Y) = = )

> (27)

where o« > 0and ¢ # 1.
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It is easy to verify that
H(X) = limlTa (X),
oaA—
H(X,Y) = imT, (X,Y),
(28)
[(X,Y) = imIT, (X,Y),
NI(X,Y) = imNIT, (X.Y),
o—
by CHopital’s rules, and T, (X, X) = T,(X), NIT,(X,Y) > L.
2.3. Exponential Mutual Information

Definition 12. The conditional exponential entropy of r.v. X
given Y with order « is defined by

&, (X|Y)=E, (L £ (x 1) dx)l/(k“), (29)

where o > 0 and o # 1.
Definition 13. The joint exponential entropy of r.v.s X and Y
with order « is defined as &,(X,Y) = &,(X) + &,(Y | X),
where o > 0 and o # 1.

Theorem 14. For two r.v.s X and Y,

(i)

([ i)

foralla >0 and o # 1.

(30)

Proof. Since t* is concave of t > 0 forall 0 < & < 1, using

Lemma 1, we obtain EY(J‘R (x| y)dx) < fR f*(x)dx. The

equality is true, since 1/(1 —«) > 1 forall 0 < & < 1.
Similarly, since t* is convex of t > 0 for all « > 1, using

Lemma 1, we obtain EY(JR x| y)dx) = JR fH(x)dx. We

complete the proof by considering that ¢/~ is decreasing

int >0forall« > 1. ]
Theorem 15. For two rv.s X and Y, we obtain &,(X) =
EX 1 Y)and E(X,Y) < E(X) + ELY) foralla > 0
and o # 1.

Proof. Since t'/17 is convex of t > 0 forall 0 < « < 1, using
(30) and Jensen’s inequality, we obtain

5.00=(] 1w dx)l/w)
> <EY <L A (x1y) dx))l/(lia) (31)

> Ey (L f(x1y) dx)l/(lia) =&, (X|Y).

Since /" is concave and is decreasing in ¢ > 0 for all
« > 1, similarly we obtain

fe 0= (EY (L A (x1y) m))”“‘“’

2 E, (JR f"‘ (x | y) dx)l/(l—a) (32)

=&,(X1Y).
It is trivial to verify that &,(X,Y) < &,(X) + &,(Y). O

Definition 16. The exponential mutual information (EMI) of
r.v.s X and Y with order « is defined as I& (X, Y) = &, (X) -
&,(X 1Y), wherea > 0and & # 1.

Using Theorem 15, we have I&,(X,Y) > 0.

Definition 17. The normalized exponential mutual informa-
tion (NEMI) of r.v.s X and Y with order « is defined by

8 (X)+ &, (Y)

NI, (X,Y) = =2 X7

, (33)
where o« > 0and ¢ # 1.

3. Entropies Defined on the Survival Function

The existing survival Shannon entropy and the survival
exponential entropy extended the corresponding functionals
from the density function to the survival function. In this
section, we will propose the survival Rényi entropy and
the survival Tsallis entropy defined on the survival function
which, respectively, parallel with the classical Rényi entropy
and Tsallis entropy defined on the density function.

3.1. Survival Rényi Entropy. If the density function is replaced
by the survival function, g is setas1,and y is chosen as y/(x) =

"% in (3), it yields the survival Rényi entropy.

Definition 18. The survival Rényi entropy (SRE) of an r.v. X
with order « is defined as

Ry (X) =

1 —a
— log JRT Fy (x)dx, (34)

where o« > 0and ¢ # 1. . o
It is immediate to see that &, (X) = exp(%,(X)).

Definition 19. The conditional survival entropy of r.v. X given
Y with order « is defined as

Ro (X |Y) = ﬁEy (log JRm Fyy (x1y) dx)> (35)

where o > 0and o # 1.

Definition 20. The joint survival Rényi entropy of r.v.s X and
Y with order « is defined as @a(X, Y)= @a(X) +§“(Y | X),
where > 0 and « # 1.



Definition 21. The joint survival exponential entropy of r.v.s X
and Y with order « is defined as %a(X, Y) = %a(X )+ %a(Y |
X), where & > 0, # 1, and &(Y | X) = exp(Z,(Y | X))
is the conditional survival exponential entropy of r.v. Y given
X.

Theorem 22 will show the relation between SRE and
Shannon entropy.

Theorem 22. For an r.v. X, one has

F(X)> —— (H(X)-a), 0<a<l,

“ l1-a

(36)
%, (X) < ﬁ(H(X)—oc), a1,

Proof. Using the log-sum inequality [2, 19], we obtain

me(x)log f(x)

Fy (x)

dx > -log L Fy (x)dx (37)

m
4+

and thus ij f(x)logf(x)dx — '[mf(x)logf;((x)dx >
—log me F;((x)dx. We obtain

H(X) + ocj f(x) log Fy (x)dx
RY

(38)
< logJ- 1_3‘;( (x)dx.
Ry
Since dF x(x)/dx = — f(x), (38) can be written as
0
logJ- I?;(x)dx > H (X) —ocj logudu
RY 1 (39)

=H((X) -«

Note that 1/(1—«) > 0forall0 < e <land1/(1-«a) <0
for all @ > 1. We complete the proof by multiplying 1/(1 — o)
on both sides of (39). ]
Theorem 23. Let X andY be two r.v.s; then

R, (X,Y) > %(H(X,Y)—Zoc), O<a<l, (40)
-

_ 1
R, (XY) < 1—(H(X,Y)—2(x), a>1. (41)
-«
Proof. If 0 < « < 1, using Theorem 22, one has

R (X,Y) = R (X) + R (Y | X)

=

lla(H(X)+H(Y|X)—2a) (42)

= L(H(X,Y)—20c).
l-«

Similarly, the inequality in (41) holds for all & > 1.

Since %,(X) = log &,(X), some properties of SRE can
be similarly deduced by the proof approaches as SEE [23] and
SSE [19]. We list these properties as propositions and neglect
their proofs unless we can provide the improved, different, or
more concise versions. O
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Proposition 24. If Ex(X?) < oo, for some p > mja, i =
1,2,...,m, then Iga(X)I <ooforalla > 0anda # 1.

Proof. For sets A; € R, i = 1,2,...
inequality [33], we have

,m, using Holder’s

m
P(A,nAyn-nA)<[[P(a)"".  (3)
i=1

For all « > 0, we obtain

J Fy (x)dx = J (P(X > x))*dx
R” R?
- L [T(P(x, > x)) dx

< JR ﬁ(P (X; > x,-))“/m dx

(44)

i

The inequality in (44) follows from Markov’s inequality
[19, 34], where the integral on the right side exists if pa/m >

1, that is, if p < m/a. Hence, IR,,, F;((x)dx exists for all « > 0.

(1) If JR’” ?;(x)dx > 1, note that logt < tforallt > I;
then

| %o ()] = ‘ i —log LT Fy (x)dx

1
(45)
1

< — Fo (x) dx < oo.
[1 -« JRT x (%)

(i) If 0 < JR”‘ T’i(x)dx < 1, on one hand, for all « > 1,

since .[Rm F;((x)dx exists for all « > 0, we see 0 < @a(X) <

00. On the (lto}}er hand, forall 0 < o« < 1, we obtain 1 —«a > 0
and log .[Rm Fy(x)dx < 0. We complete the proof, since —oo <

R (X)<0forall0<a<l. O

Proposition 25. If the components X;, i = 1,2,...,m, of
rv. X = (X}, X,...,X,,) are independent, then R, (X) =
Y Re(X;) forall o > 0 and o # 1.
Proposition 25 is the immediate result of Theorem 15 in [23].
The Shannon entropy of a sum of independent variables
is larger than that of either; for example, HX +Y) >
max {H(X), H(Y)}. SRE has this similar property.

Proposition 26. Let X and Y be independent r.v.s; then
R X +Y) = max{R,(X), B, (Y)} foralle > 0 and « # 1.
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Proof. Since X and Y are independent, one has P(X +Y >
u) = _[fY(V)P(X > u—v)dv. Since 1 —« > 0 and t* is concave
oft > 0forall 0 < & < 1, using Jensen’s inequality, one has

P X+Y >u) > ij(V)P“(X su-v)dv.  (46)
Integrating both sides of u from 0 to co,

JP“(X+Y>u)du

ZJJfY(M)P“(X>u—v)dvdu
o (47)
=JfY(V)dVJ PY(X>u-v)du

= JP“(X > x)dx.
Then

logJ- P*(X+Y >u)du > logJ- PY(X > x)dx. (48)
R™ RY

Multiplying by 1/(1 — «) on both sides of the above leads
to @a(X +Y) > Q“(X), and exchanging X and Y leads to
R (X +Y) 2 R (Y).

We complete the proof by using Jensen’s inequality and
considering that 1 — a < 0 and t* is convex of ¢ > 0 for all
« > 1 in a similar way. O

Proposition 27. Let X = (X;,X,,...,X,,) and let Y =
(Y, Y,,....Y,) be rvs with Y, = kX, k; # 0,i =
1,2,...,m, for a constant vector k = (k,k,,...,k,) € R";

then R, (Y) = Y loglk;| + B (X) forall 0 < & < 1.

Proposition 28. Let X, be a sequence of m-dimensional non-
negative r.v.s converging in law to r.v. X. If all X,, are bounded
in L? for some p > mja, then R, (X) = lim,_ . R, (X,,) for
alla > 0 and o # 1.

Proposition 29. If X;, i = 1,2,...,m, of the rv. X = (X,
X,5...,X,,) are independent, then R,(X) = Y.} R, (X;) for
alla > 0 and o # 1.

3.2. Survival Tsallis Entropy. If the density function is
replaced by the survival function, g = «, and y(x) = x in
(3), or, equivalently, the density function is replaced by the
survival function and logarithm function is replaced by g-
logarithm function in (7), it yields the survival Tsallis entropy.

Definition 30. The survival Tsallis entropy (STE) of an r.v. X
with order « is defined as

— — 1
ecja (X) = JRT FX (X) lnamdx
(49)
1

- L (LT?X<x)dx-Jm?§§(x)dx),

+

where « > 0and o # 1.

Note that Fy (x) = L(:o fx(t)dt. Using integration by parts
formula, we obtain

J Fy (x)dx = xFy (x)'zo - J- xdFy (x)
R™ RY
(50)
= JRm xfx (x)dx = Ex (X).

Hence, the survival Tsallis entropy can also be written as
JFa(X) = (Ex(X)- .[Rm l?;(x)dx)/(oc —1). Itis easy to see that

#(X) =1lim,_,, 7 ,(X) and

1

-1

Al

o (X) = (Ex (X) - exp ((1-a) %, (X)))
(51)

= (B (00 - (1- ) log &, (X))

Definition 31. The conditional survival Tsallis entropy of r.v.
X given Y with order « is defined as

Tu(X11)= —
(52

By (B (1Y =)= [ P 12)),

where « > 0and o # 1. .
Note that Ey(Ex(X | Y = y)) = Ey(fp, Fxy(x |

y)dx) ;Ex(X). Then T ,(X | Y) = (1/(a — 1))(Ex(X) —
EJ’ J‘Rjr" Fxly(x | y)dx).

Definition 32. The joint survival Tsallis entropy of r.v.s X and
Y with order « is defined as 9_”0‘(X, Y)= ﬂta(X) +9T“(Y | X),
where o > 0 and o # 1. o o

It is easy to see that #Z(X) = lim,,;7,(X) and
H(X,Y) = lim,_,, T (X, Y) using CHopital’s rules.

Theorem 33. Let X be an r.v.; then

1

Ta(X) 2 — (Bx(X)-"7), 0<act,

(53)
T, (X)) < L (Ex (X) - ™), a>1.
a—1

Proof. It is easy to verify using (51) and Theorem 22.

Since there is a relation among JFa(X), Q“(X), and
ga(X) by (51), some properties of STE can be deduced by
the theorems of SEE and SRE. We only list these properties
as propositions and provide necessary explanations for their
proofs. O

e P .
Proposition 34. If E(X!) < oo for some p > m/a, i =

1,2,...,m, then T (X) < oo forall « > 0 and o # 1.
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Proof. Tt is easy to verify that T (X) >
Proposition 24, we see that J Fy(x)dx and

0. By the proof of
R l?;((x)dx

exist. Thus, 7 ,(X) < co foralla > 0 and « # 1. O

Proposition 35. Let X = (X;,X,,...,X,,) and let Y =

(Y, Y,,....Y,) be rvs with Y, = kX, k; # 0,i =

1,2,...,m, and let k = (ki,ky,...,k,) € R™ be a constant

vector; then T )= Hzllkildga(X)for allae > 0and « # 1.
This proposition can be proven using (30) in [23].

Proposition 36. Let X, be a sequence of m-dimensional
nonnegative r.v.s converging to X: 0 < o < 1 Ifall X,
are bounded in LP for some p > mja, then T (X) =
lim,, T ,(X,) foralla > 0 and o # 1.

It is immediate using (38) in [23].

Proposition 37. Let X andY be nonnegative and independent

rv.s;then T (X+Y) > max{J (X), T ,(V)} forallew > 0 and
o+ 1.

Proof. It can be proven in a similar way as Proposition 26 by
considering « — 1 < 0 and t — t* is convex of ¢ > 0 for all
0<a<landa—1>0andt—t"is concave of t > 0 for all
a> 1. O

4. Similarity Measures Defined on
the Survival Function

Paralleling with the similarity measures and the normalized
similarity measures defined on the density function in Sec-
tion 2, this section will focus on the corresponding similarity
measures and the normalized similarity measures defined on
the survival function. Traditionally, the kernel point is the
proofs of the nonnegativity for the similarity measures to be
introduced.

4.1. Cross Survival Rényi Entropy and Cross Survival
Exponential Entropy

Lemma 38. Let X and Y be r.v.s and let ¢(x) be a real convex
function; then

wo (],

+

(Fx (x))dx. (54)

¢ (Fxy (x| y))dx) > JRm ¢

+

If, moreover, ¢(x) is strictly convex, then equality holds in
(54) if and only if X and Y are independent. The inequality is
reversed if (x) is concave.

Lemma 38 was proven in [23]. It is a cornerstone to prove
the nonnegativity of each form of the similarity measure to be
introduced according to the survival function.

Theorem 39. Let X and Y be r.v.s; then Q“(X) > Q“(X | Y)
and & (X) 2 E,(X |Y) foralla > 0 and « # 1.
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Proof. Since t* is concave of t > 0 and 1/(1 — «) > 0 for
all 0 < «a < 1, note that logt is strictly concave of t. Using
Lemma 38 and Jensen’s inequality, we obtain

R, (X) = - log JRMF‘;‘( (x) dx
1 —
> logEY<J Fyy (x 1) dx)
S -
>

1 —a
- (XEY (log JRm Fyy (x1y) dx) (55)

:EY(l IOgL FX|Y(x|y) )
=R (X 1Y),

Similarly, considering that t* is convex of t > 0 and 1/(1 -
) < 0 for all @ > 1, the conclusion is the same.

It is trivial to verify that &,(X) > & (X | Y).

For r.v.s X and Y, using Theorem 39, we have

1/(1-a)
( J 1_3; (x) dx)
Rm

+

_a 1/(1-a)
2 (EY Lm Fyy(x1y) dx)

forall0 < wand  # 1. O

(56)

Definition 40. The cross survival Rényi entropy (CSRE) of
rvs X and Y with order « is defined as .F %, (X,Y) =
R (X) - R «(X 1Y), wherea > 0and  # 1.

Definition 41. 'The cross survival exponential entropy (CSEE)
of rv.s X and Y with order « is defined as & (X,Y) =
%‘X(X) - %a(X | Y), where « > 0 and o # 1.

Using Theorem 39 and (56), we obtain ﬁa(X, Y)>0
and F&,(X,Y) > 0.

Definition 42. The normalized cross survival Rényi entropy
(NCSRE) of r.v.s X and Y with order « is defined as

TIF, (X,Y) = %, (57)

where a > 0 and ¢ # 1.

Definition 43. The normalized cross survival exponential
entropy (NCSEE) of r.v.s X and Y with order « is defined as

NIE, (X,Y)= w, (58)
&, (X,Y)

where o > 0and o # 1.
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Definition 44. The normalized cross survival Shannon
entropy (NCSSE) of r.v.s X and Y is defined as

H(X)+ F (Y)

NI (X Y) ===
Z (X,Y)

(59)
Proposition 45. Let X and Y be two r.v.s; then %(X, Y) <

HX)+H(Y), R (X, Y) < B (X)+ R, (Y), and &, (X,Y) <
%“(X) + %a(Y),foroc >0and o # 1.

Proof. Since —tlogt is convex of t for t > 0, using Lemma 38,
it is immediate that Z(X,Y) < Z(X) + Z(Y). The rest can
be similarly proven by considering the range of & and using

Lemma 38.
Using L'Hopital’s rules, it is easy to see that ?(X, Y) =
lim, ,, 7 %,(X,Y) and ¥/ 7(X,Y) = lim,_,, /' IR (X,Y).
O

4.2. Cross Survival Tsallis Entropy

Theorem 46. Fortwor.v.s X andY, one hasJFa(X) > ./Fa(X |
Y)and T (X, Y) < T (X) + T ,(Y) foralla > 0 and o # 1.

Proof. Since ?X(x) = EY(?XD,(x | y)), using Lemma 38,
considering 1/( — 1) < 0 and ¢* is concave of t > 0 for all
0 < a < 1, we obtain

To(X) =T (X 1Y)

- ([ P 0a)

1 —a (60)
— (Lm Fy (x)dx

+

[04

For « > 1, similarly the conclusion is the same.
It is immediate to deduce the rest of conclusion by
Definition 32. O

Definition 47. The cross survival Tsallis entropy (CSTE) of
rv.s X and Y with order « is defined as ﬁa(X, Y) =
,9_‘06(X) —P/_‘“(X | Y), where « > 0 and o # 1.

Using Theorem 46, we obtain .FJ ,(X,Y) > 0 immedi-
ately.

Definition 48. The normalized cross survival Tsallis entropy
(NCSTE) of r.v.s X and Y with order « is defined as

To(X)+ T, (Y)

NIT, (X,Y)= 222
7, (X,Y)

, (61)

where > 0and « # 1. L L
Weobtain 7(X,Y) = lim,_,;, .77 (X,Y)and /' F(X,Y) =
e VI T (X,Y) by LHopital’s rules.

Note that F(X,Y) # JF(V,X), JR(X,Y) #+
IR (Y, X), FE(X,Y) + IE (Y, X), and FT (X,Y) #
ﬁ“(Y, X), whereas I(X,Y) is symmetric; for example,

lim

1

I(X,Y) = I(Y,X). We can define the symmetric versions
of the similarity measures and the normalized similarity
measures, taking the cross survival Rényi entropy as an
example, as

STR,(X,Y) = = (TR, (X,Y) + TR, (V, X)),

N | —

SNIR,(X,Y) (62)

= % (FIR(XY)+ N IR, (V,X)).

The similar way can be used to define the symmetric
similarity measures and normalized similarity measures for
those defined on the density function.

5. Unifying Frameworks and Examples

In this section, based on the generalized denotations on the
entropies discussed previously, we will classify the fourteen
types of entropies in two categories and then deduce the
unifying presentations for entropies, similarity measures, and
normalized similarity measures. Examples are also provided
to unveil some properties of the information measures.

As enumerated in Table 1, different types of entropies have
been discussed in this paper. There are three components in
each item: entropy, conditional entropy, and joint entropy.
In general, entropies in Table 1 can be classified into two
categories: one is defined on the density function and the
other is defined on the survival function. For simplicity, we
refer to them as the density entropy and survival entropy,
respectively. It is demonstrated that, for each type of the
density entropy in Column 2, there is a survival entropy in
Column 4 corresponding to it.

5.1. The Unifying Frameworks of Information Measures. For
convenience, we view Shannon entropy, Rényi entropy, Tsallis
entropy, and the exponential entropy as the classical density
entropy and view their corresponding survival entropies as
the classical survival entropy. We can see that the classical
density entropy, the classical survival entropy, and their
conditional entropy and joint entropy share similar presen-
tations.

Let Z ,(X) be one type of the generalized density entropy
or the generalized survival entropy of r.v. X with order a.
If « = 1, then #,(X) = Z(X) means the Shannon
entropy or the survival Shannon entropy. In these notations,
(X | Y) is the conditional entropy with order « > 0. The
corresponding joint entropy of r.v.s X and Y with order « > 0
can be introduced as

H,(X,Y)=T,(X)+,(Y|X). (63)

For rv.s X and Y, one has 7 (X, Y) < # (X) + Z,(Y)
forall & > 0.

Entropies, conditional entropies, and joint entropies are
listed in Table 1. The similarity measures and the normalized
similarity measures are shown in Table 2 in detail, where
the similarity measure is followed by the normalized one
in each item. In a similar way, the similarity measure can
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FIGURE I: Plots of eight different types of entropies. (a) Survival entropies. (b) Density entropies.

be classified into the density similarity measure defined on
the density function and the survival similarity measure
defined on the survival function and so can the normalized
similarity measures. Therefore, the unifying presentations for
a similarity and a normalized similarity measure associated
with a type of entropies can be deduced as

T (X Y) =, (X) + H, (X | Y),
T\ (X) + %, (Y)
7, (X,Y)

(64)

NI (X Y) = (65)

Note that .7, (X,Y) =
NI (XY).

We obtain 7, (X,Y) > 0 for all « > 0. Their symmetric
versions can be, respectively, given by

JF(X,Y) and /I, (X)Y) =

STIL(XY) == (I, (X,Y)+ 7, (Y, X)), (66)

— N | =

SHILXY) == (NI (XY)+ NI, (V,X)). (67)

T2

The unifying frameworks make it possible to view all
the available entropies listed in Table 1 as a whole and to
move from one to another as necessary. Subsequently, the
similarity measures and the normalized similarity measures
are simultaneously obtained.

5.2. Three Examples.

Example 1. Let X be an r.v. corresponding to the exponential
distribution with mean 1/A and density function f(x) =

Ae . We obtain F(x) = Ixoo ft)dt = e and

— 1
Z(X) = ~,
(X) 3
T, (X) = ——log \a,
a—1 (68)

_ 1

T (X) = —,

7a(X) A

&, (X) = (Aa) /@D

The survival Shannon entropy, survival Rényi entropy,
survival Tsallis entropy, and survival exponential entropy of
r.v. X are plotted in Figure 1(a) with 0.5 < « < 0.9and A = 1.1.

If A = 1, then F(x) = ¢* = f(x). Hence, the sur-
vival entropies become the corresponding density entropies.
Figure 1(b) shows Shannon entropy, Rényi entropy, Tsallis
entropy, and the exponential entropy of an r.v. X with 0.5 <
« < 1.5. We can see that some properties, such as concavity
and monotonicity, may be changed when we generalize
entropies by extending their definitions from the density
function to the survival function.

Example 2. Many literatures have pointed out that Shannon
entropy has drawbacks: each frequency of the occurrence
event contributes equally in summation or integral of its
functional and, simultaneously, the spatial information is
neglected. In fact, those entropies that are defined on density
functions have similar drawbacks to Shannon entropy. How-
ever, the survival entropy can overcome this drawback. For
instance, as shown in Figure 2, Lena is used as a fixed image
with size of 256 x 256. We exchange those pixels with the
same occurrence frequency in Figure 2(a) and then generate
the negative image as shown in Figure 2(b). Images (c) and
(d) are their histograms, respectively. Thereby images (a) and
(b) share the same occurrence frequency but specified to
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TaBLE 3: The values acquired from different types of entropy for testing images.

Image SE RE TE SSE SRE STE

(a) 5.1418 5.1755 9.0768 51.0285 22.9235 58.8816

(b) 5.1418 5.1755 9.0768 46.9452 25.9032 51.0613
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100
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200 4
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50 15

a otk

0 50 100 150
(d)

200

250

FIGURE 2: Testing images ((a) and (b)) and their histograms ((c) and (d)) accordingly.

different pixel values or, equivalently, to different random
variables.

The values of entropies of SE, RE, TE, SSE, SRE, and STE
for Figures 2(a) and 2(b) are shown in Table 3, respectively,
where « = 0.8. We can see that density entropies provide
the same values, whereas survival entropies provide different
values for these two images. In other words, these two
images contain the same information in the view of the
density entropy. But, to the survival entropy, the amount
of information there is different. It is demonstrated that
the survival entropy is capable of distinguishing the two
images, whereas the density entropy is not. The reason is that
spatial information is taken into account in survival entropy
formulas.

Example 3. We use a computerized tomography (CT) of
brain slice as a testing image to evaluate the properties of
similarity measures and normalized similarity measures. The
density of CT ranges from 0 to 255 with the mean of 92.683
and size of 256 x 256. It is originally fixed and viewed as
a template. A series of rotation transformations are applied
to it so as to obtain floating images for comparison with
the template. The range of rotation angle is set as [, 7].
We calculate the values of SMI, RMI, TMI, CSSE, CSRE,
and CSTE between the template and floating images, as
shown in Figure 3(a). Accordingly, as shown in Figure 3(b),
the values of the normalized similarity measures of NSMI,
NRMI, NTMI, NCSSE, NCSRE, and NCSTE acquired from
the template and floating images in this experiment are also
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FIGURE 3: The values of similarity measures (a) and normalized similarity measures (b) for image rotation transformations with angle range
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calculated with the same parameter settings, & =
Figure 3(a).

Figure 3 demonstrates that when the rotation angle is
zero or, equivalently, the template and the floating image are
perfectly aligned, all the values of the considered similarity
metrics reach their maximums. In other words, they all can
be adopted as similarity metrics in image processing.

Generally, the similarity measures defined on survival
function are more regular than those defined on density
function, since the density is computed as the derivative of
the survival function [19]. Therefore, the similarity measures
defined on survival function are more robust in matching
problems.

A kernel problem arising from matching problem is the
choice of similarity metrics. In Table 2, sixteen different types
of similarity measures and normalized similarity measures
are provided with unifying presentations by (64) and (65).
Their symmetric versions are given by (66) and (67) simul-
taneously. The proposed similarity measures are capable of
developing the means of matching in signal processing to
some extent.

0.8, as

6. Conclusions

This research is conducted in two dimensions. On one hand,
we extend KN averages to g-generalized KN averages to rede-
fine the existing classical entropies and to define the survival
Rényi entropy and survival Tsallis entropy on the survival
function. On the other hand, for each type of entropies
discussed, a similarity measure and a normalized similarity
measure are proposed accordingly. Some properties of the
information measures are researched.

We make an inventory of sixteen types of entropies, sim-
ilarity measures, and normalized similarity measures which
exhibit diversity and unity. This leads to the proposition of
the unifying frameworks for information measures. There-
fore, our work addresses a broad spectrum of information
measures as a whole through the unifying frameworks.
Undoubtedly, some of them will be conceptual if they are not
adapted for applications. More applications of the proposed
information measures will dominate our research in the near
future.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research is supported by 973 Program (2013CB329404),
the Fundamental Research Funds for the Central Universi-
ties (ZYGX2013Z005), NSFC (61370147 and 61170311), and
Sichuan Province Science and Technology Research Project
(2012GZX0080).

References

[1] R. T. V. Hartley, “Transmission of information ,” Bell System
Technical Journal, vol. 7, no. 3, pp. 535-563, 1928.

15

[2] T. M. Cover and J. A. Thomas, Elements of Information Theory,
John Wiley & Sons, New York, NY, USA, 1991.

[3] M. Banerjee and N. R. Pal, “Feature selection with SVD entropy:
some modification and extension,” Information Sciences, vol.
264, pp. 118-134, 2014.

[4] S. Kullback, Information Theory and Statistics, John Wiley &
Sons, New York, NY, USA, 1959.

[5] M. Ali, C. W. Ahn, M. Pant, and P. Siarry, “An image watermark-
ing scheme in wavelet domain with optimized compensation
of singular value decomposition via artificial bee colony;,
Information Sciences, vol. 301, pp. 44-60, 2015.

[6] V.M. Ili¢ and M. S. Stankovi¢, “Generalized Shannon-Khinchin
axioms and uniqueness theorem for pseudo-additive entropies,”
Physica A, vol. 411, pp. 138-145, 2014.

[7] S.Yu, T.-Z. Huang, X. Liu, and W. Chen, “Information measures
based on fractional calculus,” Information Processing Letters, vol.
112, no. 23, pp. 916-921, 2012.

[8] J.-E Bercher, “A simple probabilistic construction yielding
generalized entropies and divergences, escort distributions and
q-Gaussians,” Physica A, vol. 391, pp. 4460-4469, 2012.

[9] G.]J. Klir, Foundations of Generalized Information Theory, John
Wiley Sons, Inc, New Jersey, NJ, USA, 2006.

[10] A.I.Khinchin, Mathematical Foundation of Information Theory,
Mathematical Foundations of Information Theory, New York,
NY, USA, 1956.

[11] A. Ben-Tal, “On generalized means and generalized convex
functions,” Journal of Optimization Theory and Applications, vol.
21, no. 1, pp. 1-13, 1977.

[12] A. N. Kolmogorov, “Three approaches to the quantitative
definition of information,” International Journal of Computer
Mathematics. Section A. Programming Theory and Methods.
Section B. Computational Methods, vol. 2, pp. 157-168, 1968.

[13] C. Tsallis, “What are the numbers that experiments provide?”
Quimica Nova, vol. 17, p. 468, 1994.

[14] A. Rényi, “On measures of entropy and information,” in
Proceedings of the 4th Berkeley Symposium on Mathematical
Statistics and Probability, pp. 547-561, University of California,
Berkeley, Calif, USA, 1961.

(15] C.E.Shannon, “A mathematical theory of communication,” Bell
Labs Technical Journal, vol. 27, pp. 379-423, 623-656, 1948.

[16] C. Studholme, D. L. G. Hill, and D. J. Hawkes, “An overlap
invariant entropy measure of 3D medical image alignment;
Pattern Recognition, vol. 32, no. 1, pp. 71-86, 1999.

[17] C. Tsallis, “Possible generalization of Boltzmann-Gibbs statis-
tics,” Journal of Statistical Physics, vol. 52, no. 1-2, pp. 479-487,
1988.

[18] L. L. Campbell, “Exponential entropy as a measure of extent
of a distribution,” Zeitschrift fiir Wahrscheinlichkeitstheorie und
Verwandte Gebiete, vol. 5, no. 3, pp. 217-225, 1966.

[19] M. Rao, Y. Chen, B. C. Vemuri, and F. Wang, “Cumulative
residual entropy: a new measure of information,” Institute of
Electrical and Electronics Engineers Transactions on Information
Theory, vol. 50, no. 6, pp. 1220-1228, 2004.

[20] E E. Wang, B. C. Vemuri, M. Rao, and Y. Chen, “A new and
robust information theoretic measure and its application to
image alignment,” in Proceedings of the International Conferene
of Information Processing in Medical Imaging, pp. 388-400,
Ambleside, UK, 2003.

[21] M. Asadi and Y. Zohrevand, “On the dynamic cumulative
residual entropy;,” Journal of Statistical Planning and Inference,
vol. 137, no. 6, pp. 1931-1941, 2007.



16

[22]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

[32]

(33]

(34]

A. Di Crescenzo and M. Longobardi, “On cumulative
entropies,” Journal of Statistical Planning and Inference, vol. 139,
no. 12, pp. 4072-4087, 2009.

K. Zografos and S. Nadarajah, “Survival exponential entropies,”
Institute of Electrical and Electronics Engineers Transactions on
Information Theory, vol. 51, no. 3, pp. 1239-1246, 2005.

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O.
Leach, and D. J. Hawkes, “Nonrigid registration using free-
form deformations: application to breast MR images,” IEEE
Transactions on Medical Imaging, vol. 18, no. 8, pp. 712-721,1999.
N. Dowson, T. Kadir, and R. Bowden, “Estimating the joint
statistics of images using nonparametric windows with appli-
cation to registration using mutual information,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 30, no.
10, pp. 1841-1857, 2008.

Z. Zenadic, “Information discriminant analysis: feature extrac-
tion with an information-theoretic objective,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 29, no.
8, pp. 1394-1407, 2007,

S. M. H. Anvar, W.-Y. Yau, and E. K. Teoh, “Multiview face
detection and registration requiring minimal manual inter-
vention,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 10, pp. 2484-2497, 2013.

P. Jizba, “The world according to Rnyi: thermodynamics of
multifractal systems,” Annals of Physics, vol. 312, no. 1, pp. 17-
59,2004.

J. L. W. V. Jensen, “Sur les fonctions convexes et les inégalités
entre les valeurs moyennes,” Acta Mathematica, vol. 30, no. 1,
pp. 175-193, 1906.

D. A. Hahn, V. Daum, and J. Hornegger, “Automatic parameter
selection for multimodal image registration,” IEEE Transactions
on Medical Imaging, vol. 29, no. 5, pp. 1140-1155, 2010.

P. A. Estévez, M. Tesmer, C. A. Perez, and J. M. Zurada, “Nor-
malized mutual information feature selection,” IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 20, no. 2,
pp. 189-201, 2009.

Z. Zhang and K. Zhao, “Low-rank matrix approximation with
manifold regularization,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 7, pp. 1717-1729, 2013.

S. Abramovich, B. Mond, and J. E. Pecaric, “Sharpening Holders
inequality,” Journal of Mathematical Analysis and Applications,
vol. 196, pp. 1131-1134, 1995.

W. Pawtucki and W. Pleéniak, “Markov’s inequality and C*
functions on sets with polynomial cusps,” Mathematische
Annalen, vol. 275, no. 3, pp. 467-480, 1986.

Mathematical Problems in Engineering



Advances in Advances in . Journal of The Scientific Journal of
Operations Research Decision Sciences  Applied Mathematics World Journal Probability and Statistics

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Journal of

Optimization

Hindawi

Submit your manuscripts at
www.hindawi.com

International Journal of
Engineering
Mathematics

International Journal of

Analysis

Journal of : Advances in ] Mathematical Problems International Journal of Discrete Dynamics in
Complex Analysis Numerical Analysis in Engineering Differential Equations Nature and Society

International Journa!

of
Stochastic Analysis Mathematics Function Spaces Applied Analysis Mathematical Physics

Journal of Journal of Abstract and ; Advances in



https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

