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Information measures are capable of providing us with fundamental methodologies to analyze uncertainty and unveiling the sub-
stantive characteristics of random variables. In this paper, we address the issues of different types of entropies through 𝑞-generalized
Kolmogorov-Nagumo averages, which lead to the propositions of the survival Rényi entropy and survival Tsallis entropy.Therefore,
we make an inventory of eight types of entropies and then classify them into two categories: the density entropy that is defined
on density functions and survival entropy that is defined on survival functions. This study demonstrates that, for each type of the
density entropy, there exists a kind of the survival entropy corresponding to it. Furthermore, the similaritymeasures and normalized
similarity measures are, respectively, proposed for each type of entropies. Generally, functionals of different types of information-
theoretic metrics are equally diverse, while, simultaneously, they also exhibit some unifying features in all their manifestations. We
present the unifying frameworks for entropies, similarity measures, and normalized similarity measures, which helps us deal with
the available information measures as a whole and move from one functional to another in harmony with various applications.

1. Introduction

Measures of probabilistic uncertainty and information have
attracted growing attentions since Hartley introduced the
practical measure of information as the logarithm of the
amount of uncertainty associated with finite possible symbol
sequences, where the distribution of events is considered
to be equally probable [1]. Today, entropy plays a basic
role in the definitions of information measures with various
applications in different areas. It has been recognized as the
fundamental important field intersecting with mathematics,
communication, physics, computer science, economics, and
so forth [2–5].

The generalized information theory arising from the
study of complex systems was intended to expand classical
information theory based on probability. The additive prob-
ability measures, which are inherent in classical information
theory, are extended to various types of nonadditivemeasures
and thus result in different types of functionals that gen-
eralize Shannon entropy [6–8]. Generally, the formalization
of uncertainty functions involves a considerable diversity.
However, it also exhibits some unifying features [9].

1.1. Entropies Defined on Density Functions. We consider(𝑋, 𝑌) as the continuous random variables (r.v.) over a
state space Ω × Ω with the joint density function 𝑓(𝑥, 𝑦)
and marginal density functions 𝑓𝑋(𝑥) and 𝑓𝑌(𝑦). We also
consider the conditional density function 𝑓𝑋|𝑌(𝑥 | 𝑦) of 𝑋
given𝑌 defined overΩ. Note that𝑓(𝑥),𝑓(𝑦), and𝑓(𝑥 | 𝑦) are
also used tomean𝑓𝑋(𝑥),𝑓𝑌(𝑦), and𝑓𝑋|𝑌(𝑥 | 𝑦), respectively,
if their meanings are clear in context.

Let 𝑓(𝑥) be a density function of r.v.𝑋 with ∫
𝑅
𝑓(𝑥)𝑑𝑥 =1. The Khinchin axioms [10] are capable of obtaining the

Shannon entropy in a unique way. However, this may be too
narrow-minded if one wants to describe complex systems.
Therefore, a generalized measure of an r.v. 𝑋 with respect to
Kolmogorov-Nagumo (KN) averages [11] can be deduced as

⟨𝑋⟩𝜓 = 𝜓−1 (∫
𝑅
𝑓 (𝑥) 𝜓(log 1𝑓 (𝑥)) 𝑑𝑥) , (1)

where 𝜓 is a continuous and strictly monotonic KN function
[12] and hence has an inverse 𝜓−1.
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The KN averages can be extended in different manners to
propose more generalized information measures. We use the𝑞-logarithm function [13] given as

ln𝑞𝑥 = 𝑥1−𝑞 − 11 − 𝑞 , (𝑥 > 0, 𝑞 ∈ 𝑅) (2)

to replace the logarithm function in (1). Note that log 𝑥 =
lim𝑞→1ln𝑞𝑥 and ln𝑞𝑥 satisfies pseudoadditivity; for example,
ln𝑞(𝑥𝑦) = ln𝑞𝑥 + ln𝑞𝑦 + (1 − 𝑞)ln𝑞𝑥ln𝑞𝑦. Hence we extend
KN averages to a generalized measure of information𝑋 with
respect to 𝑞-generalized KN averages defined by

⟨𝑋⟩𝑞𝜓 = 𝜓−1 (∫
𝑅
𝑓 (𝑥) 𝜓(ln𝑞 1𝑓 (𝑥)) 𝑑𝑥) . (3)

In terms of Rényi’s generalization on axioms of KN
averages [14], if 𝑞 = 1 and 𝜓(𝑥) = 𝑥 in (3), it yields Shannon
entropy (SE) [15] defined as

𝐻(𝑋) = −∫
𝑅
𝑓 (𝑥) log𝑓 (𝑥) 𝑑𝑥. (4)

Based on Shannon entropy, the Shannonmutual informa-
tion (SMI) [15, 16] of r.v.s𝑋 and 𝑌 was given by

𝐼 (𝑋, 𝑌) = 𝐻 (𝑋) + 𝐻 (𝑌) − 𝐻 (𝑋, 𝑌)
= 𝐻 (𝑋) − 𝐻 (𝑋 | 𝑌) , (5)

where 𝐻(𝑋, 𝑌) is the joint Shannon entropy of (𝑋, 𝑌) and𝐻(𝑋 | 𝑌) is the conditional Shannon entropy of𝑋 given 𝑌.
If 𝑞 = 1 and 𝜓 is chosen as 𝜓(𝑥) = 𝑒(1−𝛼)𝑥 in (3), it yields

Rényi entropy (RE) [14] defined by

𝑅𝛼 (𝑋) = 11 − 𝛼 log∫
𝑅
𝑓𝛼 (𝑥) 𝑑𝑥, (6)

where 𝛼 > 0 and 𝛼 ̸= 1.
Shannon entropy and Rényi entropy are additive. If 𝑞 = 𝛼

and 𝜓(𝑥) = 𝑥 in (3), we get the pseudoadditive entropy or
Tsallis entropy (TE) [17] defined by

𝑇𝛼 (𝑋) = ∫
𝑅
𝑓 (𝑥) ln𝛼 1𝑓 (𝑥)𝑑𝑥

= 1𝛼 − 1 (1 − ∫𝑅 𝑓𝛼 (𝑥) 𝑑𝑥) ,
(7)

where 𝛼 > 0 and 𝛼 ̸= 1.
We obtain 𝐻(𝑋) = lim𝛼→1𝑅𝛼(𝑋) and 𝐻(𝑋) =

lim𝛼→1𝑇𝛼(𝑋). Therefore, Rényi entropy and Tsallis entropy
can be viewed as interpolation formulas of the Shannon
entropy (𝛼 = 1) and Hartley entropy (𝛼 = 0). A relation
between Rényi and Tsallis entropies can be easily deduced as

𝑇𝛼 (𝑋) = 1𝛼 − 1 (1 − exp ((1 − 𝛼) 𝑅𝛼 (𝑋))) . (8)

More recently, interest in generalized information
measures increases dramatically in different manners. A
respectable number of nonclassical entropies, rather than

Shannon entropy, Rényi entropy, and Tsallis entropy, have
already been developed in the study of complex systems.

The exponential entropy (EE) of order 𝛼 [18] was defined
by

E𝛼 (𝑋) = (∫
𝑅
𝑓𝛼 (𝑥) 𝑑𝑥)1/(1−𝛼) , (9)

where 𝛼 > 0 and 𝛼 ̸= 1.
We obtain 𝑅𝛼(𝑋) = logE𝛼(𝑋) and 𝐻(𝑋) =

lim𝛼→1 logE𝛼(𝑋).
1.2. Entropies Defined on Survival Functions. As narrated in
[19], information measures defined on the density function
suffer from several drawbacks, since the distribution function
is more regular than the density function. Therefore, the
cumulative residual entropy, which was defined on the
cumulative distribution function or equivalently the survival
function, was proposed as an alternative information mea-
sure of uncertainty.

Let 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑚) be a nonnegative r.v. in 𝑅𝑚+ .
We use the notation 𝑋 > 𝑥 to mean that 𝑋𝑖 > 𝑥𝑖 for𝑥𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑚. The multivariate survival function
of a nonnegative r.v.𝑋 is given as

𝐹𝑋 (𝑥) = 𝑃 (𝑋 > 𝑥)
= 𝑃 (𝑋1 > 𝑥1, 𝑋2 > 𝑥2, . . . , 𝑋𝑚 > 𝑥𝑚) , (10)

where 𝑥 = (𝑥1, . . . , 𝑥𝑚) ∈ 𝑅𝑚+ with 𝑅𝑚+ = {𝑥 ∈ 𝑅𝑚 : 𝑥 =(𝑥1, . . . , 𝑥𝑚), 𝑥𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑚}.
If the density function is replaced by the survival func-

tion, 𝑞 is set as 1, and 𝜓(𝑥) = 𝑥 in (3), it yields the survival
Shannon entropy (SSE) [19] defined as

H (𝑋) = −∫
𝑅𝑚
+

𝐹𝑋 (𝑥) log𝐹𝑋 (𝑥) 𝑑𝑥. (11)

Since eight different types of entropies and their corre-
sponding similarity measures will be discussed subsequently,
it is worth pointing out that some notations and names of the
existing information measures will be changed in harmony
with the unifying frameworks throughout this paper.

To consider the conditional survival entropy, we denote𝐹𝑌|𝑋(𝑥 | 𝑦) as the conditional distribution function of 𝑋
given𝑌 = 𝑦 and also𝐹𝑋|𝑌(𝑥 | 𝑦) as the respective conditional
survival function.

The cross survival Shannon entropy (CSSE) of r.v.s (𝑋, 𝑌)
was given by [19]

I (𝑋, 𝑌) = H (𝑋) −H (𝑋 | 𝑌) , (12)

whereH(𝑋 | 𝑌) is the conditional survival Shannon entropy
of r.v.s𝑋 given 𝑌 defined as [19]

H (𝑋 | 𝑌)
= −𝐸𝑌(∫

𝑅𝑚
+

𝐹𝑋|𝑌 (𝑥 | 𝑦) log𝐹𝑋|𝑌 (𝑥 | 𝑦) 𝑑𝑥) (13)
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and 𝐸𝑌(⋅) here is the expectation with respect to an r.v. 𝑌.
The nonnegativity of CSSE was proven in [19] and thus CSSE
was used as a similarity measure in image registration [20].
The generalized versions of SSE in dynamic systems were
discussed in [21, 22].

If the density function in (9) is replaced by the survival
function, this yields the survival exponential entropy (SEE)
[23] of an r.v.𝑋 ∈ 𝑅𝑚+ with order 𝛼 given by

E𝛼 (𝑋) = (∫
𝑅𝑚
+

𝐹𝛼𝑋 (𝑥) 𝑑𝑥)
1/(1−𝛼) , (14)

where 𝛼 > 0 and 𝛼 ̸= 1.
As an ongoing research program, generalized informa-

tionmeasure offers us a steadily growing inventory of distinct
entropy theories. Diversity and unity are two significant fea-
tures of these theories. The growing diversity of information
measuresmakes it increasinglymore realistic to find a certain
informationmeasure suitable for a given condition.The unity
allows us to view all available information measures as a
whole and to move from one measure to another as needed.
To that end, motivated by the researching approaches on
Shannon entropy, Shannonmutual information [2], SSE [19],
and SEE [23], we attempt to study information-theoretic
metrics in their manifestations. On one hand, we propose
several new types of entropies and their similarity measures;
on the other hand, for each type of the existing entropies,
except for Shannon entropy, we give the definitions of
similarity measures (see Tables 1 and 2). Finally, we deduce
the unifying frameworks for informationmeasures emerging
from the study of complex systems based on probability.

The remainder of this paper is organized as follows.
Section 2 will propose the similarity measures defined on
the density function. In Section 3, the survival Rényi entropy
and survival Tsallis entropy are presented. In Section 4,
we address the similarity measures defined on the survival
function. The unifying frameworks of information measures
and examples are provided in Section 5. Finally, we conclude
this paper in Section 6.

2. Similarity Measures Defined on
the Density Function

Shannon mutual information measures the information of
an r.v. 𝑋 conveying about another r.v. 𝑌. It has been widely
used in image registration [24, 25] and pattern recognition
[26, 27]. Generally, as SMI is defined on Shannon entropy,
each type of entropies would lead to corresponding similarity
measures. In application, an idea similarity measure should
be nonnegative. To that end, we take the way as [15, 19, 23] to
define the similarity measures by linear expectation operator
rather than KN average operator weighted by the escort
distribution [28]. This section will present the similarity
measures defined on the density function corresponding to
Rényi entropy, Tsallis entropy, and the exponential entropy,
respectively.

2.1. Rényi Mutual Information

Lemma 1. Let 𝑋 and 𝑌 be r.v.s and let 𝜑(𝑥) be a real convex
function. Then

𝐸𝑌 (∫
𝑅
𝜑 (𝑓 (𝑥 | 𝑦)) 𝑑𝑥) ≥ ∫

𝑅
𝜑 (𝑓 (𝑥)) 𝑑𝑥. (15)

If 𝜑(𝑥) is strictly convex, the equality holds if and only if
X and Y are independent. If 𝜑(𝑥) is concave, the inequality is
reversed.

Proof. For a real convex function𝜑(𝑥), using Jensen’s inequal-
ity [29], we obtain

𝐸𝑌 (𝜑 (𝑓 (𝑥 | 𝑦))) ≥ 𝜑 (𝐸𝑌 (𝑓 (𝑥 | 𝑦))) . (16)

The equality holds if X and Y are independent. Since𝑓(𝑥) = ∫
𝑅
𝑓(𝑥 | 𝑦)𝑓(𝑦)𝑑𝑦, it is immediate that

𝐸𝑌 (∫
𝑅
𝜑 (𝑓 (𝑥 | 𝑦)) 𝑑𝑥)

= ∫
𝑅
(∫
𝑅
𝜑 (𝑓 (𝑥 | 𝑦)) 𝑑𝑥)𝑓 (𝑦) 𝑑𝑦

= ∫
𝑅
(∫
𝑅
𝜑 (𝑓 (𝑥 | 𝑦)) 𝑓 (𝑦) 𝑑𝑦) 𝑑𝑥

= ∫
𝑅
𝐸𝑌 (𝜑 (𝑓 (𝑥 | 𝑦))) 𝑑𝑥

≥ ∫
𝑅
𝜑 (𝐸𝑌 (𝑓 (𝑥 | 𝑦))) 𝑑𝑥

= ∫
𝑅
𝜑(∫
𝑅
𝑓 (𝑥 | 𝑦) 𝑓 (𝑦) 𝑑𝑦) 𝑑𝑥

= ∫
𝑅
𝜑 (𝑓 (𝑥)) 𝑑𝑥.

(17)

Now consider the ”only if ” part of the lemma. If X and Y
are independent, then 𝑓(𝑥 | 𝑦) = 𝑓(𝑥), and thus the equality
holds in (15). On the other hand, if the equality holds in (15),
then the equality holds in Jensen’s inequality (16), which leads
to 𝐸𝑌(𝜑(𝑓(𝑥 | 𝑦))) = 𝜑(𝐸𝑌(𝑓(𝑥 | 𝑦))). Then 𝐸𝑌(𝑓(𝑥 | 𝑦)) =𝑓(𝑥 | 𝑦) almost surely, since 𝜑 is strictly convex. We obtain𝐸𝑌(𝑓(𝑥 | 𝑦)) = 𝑓(𝑥) by (18); hence 𝑓(𝑥 | 𝑦) = 𝑓(𝑥), which
leads to the independence of X and Y.

Lemma 1 plays an important role to prove the nonneg-
ativity for the similarity measure to be introduced, which is
defined on the density function.

Definition 2. Let X and Y be r.v.s; the conditional Rényi
entropy of𝑋 given 𝑌 with order 𝛼 is defined by

𝑅𝛼 (𝑋 | 𝑌) = 11 − 𝛼𝐸𝑦 (log∫𝑅 𝑓𝛼 (𝑥 | 𝑦) 𝑑𝑥) , (18)

where 𝛼 > 0 and 𝛼 ̸= 1.
Motivated by the definitions of the joint Shannon entropy𝐻(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌 | 𝑋) and joint survival Shannon

entropy H(𝑋, 𝑌) = H(𝑋) + H(𝑌 | 𝑋), the joint Rényi
entropy can be similarly introduced.
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Definition 3. The joint Rényi entropy of r.v.s X and Y with
order 𝛼 is defined as 𝑅𝛼(𝑋, 𝑌) = 𝑅𝛼(𝑋) + 𝑅𝛼(𝑌 | 𝑋), where𝛼 > 0 and 𝛼 ̸= 1.
Theorem 4. For r.v.s X and Y, we obtain 𝑅𝛼(𝑋) ≥ 𝑅𝛼(𝑋 | 𝑌)
and 𝑅𝛼(𝑋, 𝑌) ≤ 𝑅𝛼(𝑋) + 𝑅𝛼(𝑌) for all 𝛼 > 0 and 𝛼 ̸= 1.
Proof. Since 1/(1 − 𝛼) > 0 and 𝑡𝛼 is concave of 𝑡 > 0 for all0 < 𝛼 < 1, using Lemma 1 and Jensen’s inequality, we have

𝑅𝛼 (𝑋) = 11 − 𝛼 log∫
𝑅
𝑓𝛼 (𝑥) 𝑑𝑥

≥ 11 − 𝛼 log𝐸𝑌 (∫
𝑅
𝑓𝛼 (𝑥 | 𝑦) 𝑑𝑥)

≥ 11 − 𝛼𝐸𝑌 (log∫𝑅 𝑓𝛼 (𝑥 | 𝑦) 𝑑𝑥)
= 𝑅𝛼 (𝑋 | 𝑌) .

(19)

Since 1/(1 − 𝛼) < 0 and 𝑡𝛼 is convex of 𝑡 > 0 for all 𝛼 > 1,
using Lemma 1 and Jensen’s inequality, we obtain

𝑅𝛼 (𝑋) ≥ 11 − 𝛼 log𝐸𝑌 (∫
𝑅
𝑓𝛼 (𝑥 | 𝑦) 𝑑𝑥)

≥ 11 − 𝛼𝐸𝑌 (log∫𝑅 𝑓𝛼 (𝑥 | 𝑦) 𝑑𝑥)
= 𝑅𝛼 (𝑋 | 𝑌) .

(20)

Similarly, we have 𝑅𝛼(𝑌) ≥ 𝑅𝛼(𝑌 | 𝑋), and thus𝑅𝛼(𝑋, 𝑌) = 𝑅𝛼(𝑋) + 𝑅𝛼(𝑌 | 𝑋) ≤ 𝑅𝛼(𝑋) + 𝑅𝛼(𝑌).
Definition 5. The Rényi mutual information (RMI) of r.v.s 𝑋
and 𝑌 with order 𝛼 is defined as

𝐼𝑅𝛼 (𝑋, 𝑌) = 𝑅𝛼 (𝑋) + 𝑅𝛼 (𝑌) − 𝑅𝛼 (𝑌,𝑋)
= 𝑅𝛼 (𝑋) − 𝑅𝛼 (𝑋 | 𝑌) , (21)

where 𝛼 > 0 and 𝛼 ̸= 1.
It is worth pointing out that the definition of RMI

parallels with the definitions of SMI (5) and CSSE (13). The
nonnegativity of RMI is ensured by Theorem 4. Considering
Theorem 4 that parallels with (5), we can give another form
of the definition for RMI as

𝐼𝑅∗𝛼 (𝑋, 𝑌) = 𝑅𝛼 (𝑋) + 𝑅𝛼 (𝑌) − 𝑅𝛼 (𝑋, 𝑌)
= 𝑅𝛼 (𝑌) − 𝑅𝛼 (𝑌 | 𝑋) . (22)

There are no essential differences between these two
forms of definitions for RMI. We only consider the similar
definitions as (24) for similarity measures throughout this
paper.

Using L’Hôpital’s rules, it is easy to obtain 𝐼(𝑋, 𝑌) =
lim𝛼→1𝐼𝑅𝛼(𝑋, 𝑌) and𝐻(𝑋, 𝑌) = lim𝛼→1𝑅𝛼(𝑋, 𝑌).

The normalized Shannon mutual information (NSMI)
[16] of r.v.s𝑋 and 𝑌 was given as

𝑁𝐼 (𝑋, 𝑌) = 𝐻 (𝑋) + 𝐻 (𝑌)𝐻 (𝑋, 𝑌) . (23)

NSMI often acts as a robust similarity measure in image
registration [16, 30], attribute abstraction [31], and clustering
[32]. Note that 1 ≤ 𝑁𝐼(𝑋, 𝑌) ≤ 2. In a similar way, different
forms of the normalized mutual information will be deduced
in this work.

Definition 6. The normalized Rényi mutual information
(NRMI) of r.v.s𝑋 and 𝑌 with order 𝛼 is defined by

𝑁𝐼𝑅𝛼 (𝑋, 𝑌) = 𝑅𝛼 (𝑋) + 𝑅𝛼 (𝑌)𝑅𝛼 (𝑋, 𝑌) , (24)

where 𝛼 > 0 and 𝛼 ̸= 1.
We immediately obtain 𝑁𝐼(𝑋, 𝑌) = lim𝛼→1𝑁𝐼𝑅𝛼(𝑋, 𝑌)

by L’Hôpital’s rules.

2.2. Tsallis Mutual Information

Definition 7. The conditional Tsallis entropy of r.v.𝑋 given 𝑌
with order 𝛼 is defined as

𝑇𝛼 (𝑋 | 𝑌) = 1𝛼 − 1𝐸𝑦 (1 − ∫𝑅 𝑓𝛼 (𝑥 | 𝑦) 𝑑𝑥) , (25)

where 𝛼 > 0 and 𝛼 ̸= 1.
Definition 8. The joint Tsallis entropy of r.v.s 𝑋 and 𝑌 with
order 𝛼 is defined as 𝑇𝛼(𝑋, 𝑌) = 𝑇𝛼(𝑋) + 𝑇𝛼(𝑌 | 𝑋), where𝛼 > 0 and 𝛼 ̸= 1.
Theorem9. For two r.v.s X andY, we have𝑇𝛼(𝑋) ≥ 𝑇𝛼(𝑋 | 𝑌)
and 𝑇𝛼(𝑋, 𝑌) ≤ 𝑇𝛼(𝑋) + 𝑇𝛼(𝑌) for all 𝛼 > 0 and 𝛼 ̸= 1.
Proof. Since 1/(𝛼 − 1) < 0 and 𝑡𝛼 is concave of 𝑡 for all 0 <𝛼 < 1, using Lemma 1, we obtain

𝑇𝛼 (𝑋) − 𝐸𝑌 (𝑇𝛼 (𝑋 | 𝑌))
= 1 − ∫

𝑅
𝑓𝛼 (𝑥) 𝑑𝑥
𝛼 − 1 − 𝐸𝑌(1 − ∫𝑅 𝑓

𝛼 (𝑥 | 𝑦) 𝑑𝑥
𝛼 − 1 )

= 1𝛼 − 1 (𝐸𝑌 (∫𝑅 𝑓𝛼 (𝑥 | 𝑦) 𝑑𝑥) − ∫𝑅 𝑓𝛼 (𝑥) 𝑑𝑥)
≥ 1𝛼 − 1 (∫𝑅 𝑓𝛼 (𝑥) 𝑑𝑥 − ∫𝑅 𝑓𝛼 (𝑥) 𝑑𝑥) = 0.

(26)

The inequality holds for all 𝛼 > 1, since 1/(𝛼 − 1) > 0 and𝑡𝛼 is convex of 𝑡.
It is trivial to verify that 𝑇𝛼(𝑋, 𝑌) ≤ 𝑇𝛼(𝑋) + 𝑇𝛼(𝑌).

Definition 10. TheTsallismutual information (TMI) of r.v.s𝑋
and 𝑌 with order 𝛼 is defined as 𝐼𝑇𝛼(𝑋, 𝑌) = 𝑇𝛼(𝑋) − 𝑇𝛼(𝑋 |𝑌), where 𝛼 > 0 and 𝛼 ̸= 1.

UsingTheorem 9, we have 𝐼𝑇𝛼(𝑋, 𝑌) ≥ 0.
Definition 11. The normalized Tsallis mutual information
(NTMI) of r.v.s𝑋 and 𝑌 with order 𝛼 is defined by

𝑁𝐼𝑇𝛼 (𝑋, 𝑌) = 𝑇𝛼 (𝑋) + 𝑇𝛼 (𝑌)𝑇𝛼 (𝑋, 𝑌) , (27)

where 𝛼 > 0 and 𝛼 ̸= 1.
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It is easy to verify that

𝐻(𝑋) = lim
𝛼→1

𝑇𝛼 (𝑋) ,
𝐻 (𝑋, 𝑌) = lim

𝛼→1
𝑇𝛼 (𝑋, 𝑌) ,

𝐼 (𝑋, 𝑌) = lim
𝛼→1

𝐼𝑇𝛼 (𝑋, 𝑌) ,
𝑁𝐼 (𝑋, 𝑌) = lim

𝛼→1
𝑁𝐼𝑇𝛼 (𝑋, 𝑌) ,

(28)

by L’Hôpital’s rules, and 𝑇𝛼(𝑋,𝑋) = 𝑇𝛼(𝑋),𝑁𝐼𝑇𝛼(𝑋, 𝑌) ≥ 1.
2.3. Exponential Mutual Information

Definition 12. The conditional exponential entropy of r.v. 𝑋
given 𝑌 with order 𝛼 is defined by

E𝛼 (𝑋 | 𝑌) = 𝐸𝑦 (∫
𝑅
𝑓𝛼 (𝑥 | 𝑦) 𝑑𝑥)1/(1−𝛼) , (29)

where 𝛼 > 0 and 𝛼 ̸= 1.
Definition 13. The joint exponential entropy of r.v.s 𝑋 and 𝑌
with order 𝛼 is defined as E𝛼(𝑋, 𝑌) = E𝛼(𝑋) + E𝛼(𝑌 | 𝑋),
where 𝛼 > 0 and 𝛼 ̸= 1.
Theorem 14. For two r.v.s X and Y,

(𝐸𝑌 (∫
𝑅
𝑓𝛼 (𝑥 | 𝑦) 𝑑𝑥))1/(1−𝛼)

≤ (∫
𝑅
𝑓𝛼 (𝑥) 𝑑𝑥)1/(1−𝛼)

(30)

for all 𝛼 > 0 and 𝛼 ̸= 1.
Proof. Since 𝑡𝛼 is concave of 𝑡 > 0 for all 0 < 𝛼 < 1, using
Lemma 1, we obtain 𝐸𝑌(∫𝑅 𝑓𝛼(𝑥 | 𝑦)𝑑𝑥) ≤ ∫

𝑅
𝑓𝛼(𝑥)𝑑𝑥. The

equality is true, since 1/(1 − 𝛼) > 1 for all 0 < 𝛼 < 1.
Similarly, since 𝑡𝛼 is convex of 𝑡 > 0 for all 𝛼 > 1, using

Lemma 1, we obtain 𝐸𝑌(∫𝑅 𝑓𝛼(𝑥 | 𝑦)𝑑𝑥) ≥ ∫
𝑅
𝑓𝛼(𝑥)𝑑𝑥. We

complete the proof by considering that 𝑡1/(1−𝛼) is decreasing
in 𝑡 > 0 for all 𝛼 > 1.
Theorem 15. For two r.v.s X and Y, we obtain E𝛼(𝑋) ≥
E𝛼(𝑋 | 𝑌) and E𝛼(𝑋, 𝑌) ≤ E𝛼(𝑋) + E𝛼(𝑌) for all 𝛼 > 0
and 𝛼 ̸= 1.
Proof. Since 𝑡1/(1−𝛼) is convex of 𝑡 > 0 for all 0 < 𝛼 < 1, using
(30) and Jensen’s inequality, we obtain

E𝛼 (𝑋) = (∫
𝑅
𝑓𝛼 (𝑥) 𝑑𝑥)1/(1−𝛼)

≥ (𝐸𝑌 (∫
𝑅
𝑓𝛼 (𝑥 | 𝑦) 𝑑𝑥))1/(1−𝛼)

≥ 𝐸𝑌 (∫
𝑅
𝑓𝛼 (𝑥 | 𝑦) 𝑑𝑥)1/(1−𝛼) = E𝛼 (𝑋 | 𝑌) .

(31)

Since 𝑡1/(1−𝛼) is concave and is decreasing in 𝑡 > 0 for all𝛼 > 1, similarly we obtain

E𝛼 (𝑋) ≥ (𝐸𝑌 (∫
𝑅
𝑓𝛼 (𝑥 | 𝑦) 𝑑𝑥))1/(1−𝛼)

≥ 𝐸𝑌 (∫
𝑅
𝑓𝛼 (𝑥 | 𝑦) 𝑑𝑥)1/(1−𝛼)

= E𝛼 (𝑋 | 𝑌) .
(32)

It is trivial to verify thatE𝛼(𝑋, 𝑌) ≤ E𝛼(𝑋) +E𝛼(𝑌).
Definition 16. The exponential mutual information (EMI) of
r.v.s X and Y with order 𝛼 is defined as 𝐼E𝛼(𝑋, 𝑌) = E𝛼(𝑋) −
E𝛼(𝑋 | 𝑌), where 𝛼 > 0 and 𝛼 ̸= 1.

UsingTheorem 15, we have 𝐼E𝛼(𝑋, 𝑌) ≥ 0.
Definition 17. The normalized exponential mutual informa-
tion (NEMI) of r.v.s X and Y with order 𝛼 is defined by

𝑁𝐼E𝛼 (𝑋, 𝑌) = E𝛼 (𝑋) +E𝛼 (𝑌)
E𝛼 (𝑋, 𝑌) , (33)

where 𝛼 > 0 and 𝛼 ̸= 1.
3. Entropies Defined on the Survival Function

The existing survival Shannon entropy and the survival
exponential entropy extended the corresponding functionals
from the density function to the survival function. In this
section, we will propose the survival Rényi entropy and
the survival Tsallis entropy defined on the survival function
which, respectively, parallel with the classical Rényi entropy
and Tsallis entropy defined on the density function.

3.1. Survival Rényi Entropy. If the density function is replaced
by the survival function, 𝑞 is set as 1, and𝜓 is chosen as𝜓(𝑥) =𝑒(1−𝛼)𝑥 in (3), it yields the survival Rényi entropy.

Definition 18. The survival Rényi entropy (SRE) of an r.v. 𝑋
with order 𝛼 is defined as

R𝛼 (𝑋) = 11 − 𝛼 log∫
𝑅𝑚
+

𝐹𝛼𝑋 (𝑥) 𝑑𝑥, (34)

where 𝛼 > 0 and 𝛼 ̸= 1.
It is immediate to see that E𝛼(𝑋) = exp(R𝛼(𝑋)).

Definition 19. The conditional survival entropy of r.v.𝑋 given𝑌 with order 𝛼 is defined as

R𝛼 (𝑋 | 𝑌) = 11 − 𝛼𝐸𝑦 (log∫𝑅𝑚
+

𝐹𝛼𝑋|𝑌 (𝑥 | 𝑦) 𝑑𝑥) , (35)

where 𝛼 > 0 and 𝛼 ̸= 1.
Definition 20. The joint survival Rényi entropy of r.v.s𝑋 and𝑌with order 𝛼 is defined asR𝛼(𝑋, 𝑌) = R𝛼(𝑋)+R𝛼(𝑌 | 𝑋),
where 𝛼 > 0 and 𝛼 ̸= 1.
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Definition 21. The joint survival exponential entropy of r.v.s𝑋
and 𝑌 with order 𝛼 is defined asE𝛼(𝑋, 𝑌) = E𝛼(𝑋) +E𝛼(𝑌 |𝑋), where 𝛼 > 0, 𝛼 ̸= 1, and E𝛼(𝑌 | 𝑋) = exp(R𝛼(𝑌 | 𝑋))
is the conditional survival exponential entropy of r.v. 𝑌 given𝑋.

Theorem 22 will show the relation between SRE and
Shannon entropy.

Theorem 22. For an r.v.𝑋, one has
R𝛼 (𝑋) ≥ 11 − 𝛼 (𝐻 (𝑋) − 𝛼) , 0 < 𝛼 < 1,
R𝛼 (𝑋) ≤ 11 − 𝛼 (𝐻 (𝑋) − 𝛼) , 𝛼 > 1.

(36)

Proof. Using the log-sum inequality [2, 19], we obtain

∫
𝑅𝑚
+

𝑓 (𝑥) log 𝑓 (𝑥)
𝐹𝛼𝑋 (𝑥)𝑑𝑥 ≥ − log∫𝑅𝑚+ 𝐹

𝛼

𝑋 (𝑥) 𝑑𝑥 (37)

and thus ∫
𝑅𝑚
+

𝑓(𝑥)log𝑓(𝑥)𝑑𝑥 − ∫
𝑅𝑚
+

𝑓(𝑥)log𝐹𝛼𝑋(𝑥)𝑑𝑥 ≥
−log∫

𝑅𝑚
+

𝐹𝛼𝑋(𝑥)𝑑𝑥. We obtain

𝐻(𝑋) + 𝛼∫
𝑅𝑚
+

𝑓 (𝑥) log𝐹𝑋 (𝑥) 𝑑𝑥
≤ log∫

𝑅𝑚
+

𝐹𝛼𝑋 (𝑥) 𝑑𝑥.
(38)

Since 𝑑𝐹𝑋(𝑥)/𝑑𝑥 = −𝑓(𝑥), (38) can be written as

log∫
𝑅𝑚
+

𝐹𝛼𝑋 (𝑥) 𝑑𝑥 ≥ 𝐻 (X) − 𝛼∫0
1
log 𝑢 𝑑𝑢

= 𝐻 (𝑋) − 𝛼.
(39)

Note that 1/(1−𝛼) > 0 for all 0 < 𝛼 < 1 and 1/(1−𝛼) < 0
for all 𝛼 > 1. We complete the proof by multiplying 1/(1 − 𝛼)
on both sides of (39).

Theorem 23. Let𝑋 and 𝑌 be two r.v.s; then

R𝛼 (𝑋, 𝑌) ≥ 11 − 𝛼 (𝐻 (𝑋, 𝑌) − 2𝛼) , 0 < 𝛼 < 1, (40)

R𝛼 (𝑋, 𝑌) ≤ 11 − 𝛼 (𝐻 (𝑋, 𝑌) − 2𝛼) , 𝛼 > 1. (41)

Proof. If 0 < 𝛼 < 1, usingTheorem 22, one has

R𝛼 (𝑋, 𝑌) = R𝛼 (𝑋) +R𝛼 (𝑌 | 𝑋)
≥ 11 − 𝛼 (𝐻 (𝑋) + 𝐻 (𝑌 | 𝑋) − 2𝛼)
= 11 − 𝛼 (𝐻 (𝑋, 𝑌) − 2𝛼) .

(42)

Similarly, the inequality in (41) holds for all 𝛼 > 1.
Since R𝛼(𝑋) = logE𝛼(𝑋), some properties of SRE can

be similarly deduced by the proof approaches as SEE [23] and
SSE [19]. We list these properties as propositions and neglect
their proofs unless we can provide the improved, different, or
more concise versions.

Proposition 24. If 𝐸𝑋(𝑋𝑝𝑖 ) < ∞, for some 𝑝 > 𝑚/𝛼, 𝑖 =1, 2, . . . , 𝑚, then |R𝛼(𝑋)| < ∞ for all 𝛼 > 0 and 𝛼 ̸= 1.
Proof. For sets 𝐴 𝑖 ⊆ R, 𝑖 = 1, 2, . . . , 𝑚, using Hölder’s
inequality [33], we have

𝑃 (𝐴1 ∩ 𝐴2 ∩ ⋅ ⋅ ⋅ ∩ 𝐴𝑚) ≤ 𝑚∏
𝑖=1

𝑃 (𝐴 𝑖)1/𝑚 . (43)

For all 𝛼 > 0, we obtain
∫
𝑅𝑚
+

𝐹𝛼𝑋 (𝑥) 𝑑𝑥 = ∫
𝑅𝑚
+

(𝑃 (𝑋 > 𝑥))𝛼 𝑑𝑥
= ∫
𝑅𝑚
+

𝑚∏
𝑖=1

(𝑃 (𝑋𝑖 > 𝑥𝑖))𝛼 𝑑𝑥

≤ ∫
𝑅𝑚
+

𝑚∏
𝑖=1

(𝑃 (𝑋𝑖 > 𝑥𝑖))𝛼/𝑚 𝑑𝑥

= 𝑚∏
𝑖=1

∫∞
0
(𝑃 (𝑋𝑖 > 𝑥𝑖))𝛼/𝑚 𝑑𝑥𝑖

= 𝑚∏
𝑖=1

(∫1
0
𝐹𝛼/𝑚𝑋𝑖 (𝑥𝑖) 𝑑𝑥𝑖 + ∫∞

1
𝐹𝛼/𝑚𝑋𝑖 (𝑥𝑖) 𝑑𝑥𝑖)

≤ 𝑚∏
𝑖=1

(1 + ∫∞
1
( 1
𝑥𝑝𝑖 𝐸𝑋 (𝑋

𝑝
𝑖 ))
𝛼/𝑚 𝑑𝑥𝑖) .

(44)

The inequality in (44) follows from Markov’s inequality
[19, 34], where the integral on the right side exists if 𝑝𝛼/𝑚 >1, that is, if 𝑝 < 𝑚/𝛼. Hence, ∫

𝑅𝑚
+

𝐹𝛼𝑋(𝑥)𝑑𝑥 exists for all 𝛼 > 0.
(i) If ∫

𝑅𝑚
+

𝐹𝛼𝑋(𝑥)𝑑𝑥 ≥ 1, note that log 𝑡 < 𝑡 for all 𝑡 ≥ 1;
then

󵄨󵄨󵄨󵄨󵄨R𝛼 (𝑋)󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
11 − 𝛼 log∫

𝑅𝑚
+

𝐹𝛼𝑋 (𝑥) 𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 1|1 − 𝛼| ∫𝑅𝑚
+

𝐹𝛼𝑋 (𝑥) 𝑑𝑥 < ∞.
(45)

(ii) If 0 < ∫
𝑅𝑚
+

𝐹𝛼𝑋(𝑥)𝑑𝑥 < 1, on one hand, for all 𝛼 > 1,
since ∫

𝑅𝑚
+

𝐹𝛼𝑋(𝑥)𝑑𝑥 exists for all 𝛼 > 0, we see 0 < R𝛼(𝑋) <∞. On the other hand, for all 0 < 𝛼 < 1, we obtain 1 − 𝛼 > 0
and log∫

𝑅𝑚
+

𝐹𝛼𝑋(𝑥)𝑑𝑥 < 0.We complete the proof, since−∞ <
R𝛼(𝑋) < 0 for all 0 < 𝛼 < 1.
Proposition 25. If the components 𝑋𝑖, 𝑖 = 1, 2, . . . , 𝑚, of
r.v. 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑚) are independent, then R𝛼(𝑋) =∑𝑚𝑖=1R𝛼(𝑋𝑖) for all 𝛼 > 0 and 𝛼 ̸= 1.

Proposition 25 is the immediate result ofTheorem 15 in [23].
The Shannon entropy of a sum of independent variables

is larger than that of either; for example, 𝐻(𝑋 + 𝑌) ≥
max {𝐻(𝑋),𝐻(𝑌)}. SRE has this similar property.

Proposition 26. Let X and Y be independent r.v.s; then
R𝛼(𝑋 + 𝑌) ≥ max{R𝛼(𝑋),R𝛼(𝑌)} for all 𝛼 > 0 and 𝛼 ̸= 1.
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Proof. Since 𝑋 and 𝑌 are independent, one has 𝑃(𝑋 + 𝑌 >𝑢) = ∫𝑓𝑌(V)𝑃(𝑋 > 𝑢−V)𝑑V. Since 1−𝛼 > 0 and 𝑡𝛼 is concave
of 𝑡 > 0 for all 0 < 𝛼 < 1, using Jensen’s inequality, one has

𝑃𝛼 (𝑋 + 𝑌 > 𝑢) ≥ ∫𝑓𝑌 (V) 𝑃𝛼 (𝑋 > 𝑢 − V) 𝑑V. (46)

Integrating both sides of 𝑢 from 0 to∞,

∫𝑃𝛼 (𝑋 + 𝑌 > 𝑢) 𝑑𝑢
≥ ∫∫𝑓𝑌 (𝑢) 𝑃𝛼 (𝑋 > 𝑢 − V) 𝑑V 𝑑𝑢
= ∫𝑓𝑌 (V) 𝑑V∫∞

V
𝑃𝛼 (𝑋 > 𝑢 − V) 𝑑𝑢

= ∫𝑃𝛼 (𝑋 > 𝑥) 𝑑𝑥.

(47)

Then

log∫
𝑅𝑚
+

𝑃𝛼 (𝑋 + 𝑌 > 𝑢) 𝑑𝑢 ≥ log∫
𝑅𝑚
+

𝑃𝛼 (𝑋 > 𝑥) 𝑑𝑥. (48)

Multiplying by 1/(1 − 𝛼) on both sides of the above leads
to R𝛼(𝑋 + 𝑌) ≥ R𝛼(𝑋), and exchanging 𝑋 and 𝑌 leads to
R𝛼(𝑋 + 𝑌) ≥ R𝛼(𝑌).

We complete the proof by using Jensen’s inequality and
considering that 1 − 𝛼 < 0 and 𝑡𝛼 is convex of 𝑡 > 0 for all𝛼 > 1 in a similar way.

Proposition 27. Let 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑚) and let 𝑌 =(𝑌1, 𝑌2, . . . , 𝑌𝑚) be r.v.s with 𝑌𝑖 = 𝑘𝑖𝑋𝑖, 𝑘𝑖 ̸= 0, 𝑖 =1, 2, . . . , 𝑚, for a constant vector 𝑘 = (𝑘1, 𝑘2, . . . , 𝑘𝑚) ∈ 𝑅𝑚;
thenR𝛼(𝑌) = ∑𝑚𝑖=1 log|𝑘𝑖| +R𝛼(𝑋) for all 0 < 𝛼 < 1.
Proposition 28. Let𝑋𝑛 be a sequence of m-dimensional non-
negative r.v.s converging in law to r.v. X. If all 𝑋𝑛 are bounded
in 𝐿𝑝 for some 𝑝 > 𝑚/𝛼, then R𝛼(𝑋) = lim𝑛→∞R𝛼(𝑋𝑛) for
all 𝛼 > 0 and 𝛼 ̸= 1.
Proposition 29. If 𝑋𝑖, 𝑖 = 1, 2, . . . , 𝑚, of the r.v. 𝑋 = (𝑋1,𝑋2, . . . , 𝑋𝑚) are independent, thenR𝛼(𝑋) = ∑𝑚𝑖=1R𝛼(𝑋𝑖) for
all 𝛼 > 0 and 𝛼 ̸= 1.
3.2. Survival Tsallis Entropy. If the density function is
replaced by the survival function, 𝑞 = 𝛼, and 𝜓(𝑥) = 𝑥 in
(3), or, equivalently, the density function is replaced by the
survival function and logarithm function is replaced by 𝑞-
logarithm function in (7), it yields the survival Tsallis entropy.

Definition 30. The survival Tsallis entropy (STE) of an r.v. 𝑋
with order 𝛼 is defined as

T𝛼 (𝑋) = ∫
𝑅𝑚
+

𝐹𝑋 (𝑥) ln𝛼 1
𝐹𝑋 (𝑥)𝑑𝑥

= 1𝛼 − 1 (∫𝑅𝑚
+

𝐹𝑋 (𝑥) 𝑑𝑥 − ∫
𝑅𝑚
+

𝐹𝛼𝑋 (𝑥) 𝑑𝑥) ,
(49)

where 𝛼 > 0 and 𝛼 ̸= 1.

Note that𝐹𝑋(𝑥) = ∫∞𝑥 𝑓𝑋(𝑡)𝑑𝑡. Using integration by parts
formula, we obtain

∫
𝑅𝑚
+

𝐹𝑋 (𝑥) 𝑑𝑥 = 𝑥𝐹𝑋 (𝑥)󵄨󵄨󵄨󵄨󵄨∞0 − ∫
𝑅𝑚
+

𝑥𝑑𝐹𝑋 (𝑥)
= ∫
𝑅𝑚
+

𝑥𝑓𝑋 (𝑥) 𝑑𝑥 = 𝐸𝑋 (𝑋) .
(50)

Hence, the survival Tsallis entropy can also be written as
T𝛼(𝑋) = (𝐸𝑋(𝑋)−∫𝑅𝑚

+

𝐹𝛼𝑋(𝑥)𝑑𝑥)/(𝛼−1). It is easy to see that
H(𝑋) = lim𝛼→1T𝛼(𝑋) and

T𝛼 (𝑋) = 1𝛼 − 1 (𝐸𝑋 (𝑋) − exp ((1 − 𝛼)R𝛼 (𝑋)))
= 1𝛼 − 1 (𝐸𝑋 (𝑋) − (1 − 𝛼) logE𝛼 (𝑋)) .

(51)

Definition 31. The conditional survival Tsallis entropy of r.v.𝑋 given 𝑌 with order 𝛼 is defined as

T𝛼 (𝑋 | 𝑌) = 1𝛼 − 1
⋅ 𝐸𝑦 (𝐸𝑋 (𝑋 | 𝑌 = 𝑦) − ∫

𝑅𝑚
+

𝐹𝛼𝑋|𝑌 (𝑥 | 𝑦) 𝑑𝑥) ,
(52)

where 𝛼 > 0 and 𝛼 ̸= 1.
Note that 𝐸𝑌(𝐸𝑋(𝑋 | 𝑌 = 𝑦)) = 𝐸𝑌(∫𝑅𝑚

+

𝐹𝑋|𝑌(𝑥 |
𝑦)𝑑𝑥) = 𝐸𝑋(𝑋). Then T𝛼(𝑋 | 𝑌) = (1/(𝛼 − 1))(𝐸𝑋(𝑋) −𝐸𝑦 ∫𝑅𝑚

+

𝐹𝛼𝑋|𝑌(𝑥 | 𝑦)𝑑𝑥).
Definition 32. The joint survival Tsallis entropy of r.v.s𝑋 and𝑌with order 𝛼 is defined asT𝛼(𝑋, 𝑌) = T𝛼(𝑋)+T𝛼(𝑌 | 𝑋),
where 𝛼 > 0 and 𝛼 ̸= 1.

It is easy to see that H(𝑋) = lim𝛼→1T𝛼(𝑋) and
H(𝑋, 𝑌) = lim𝛼→1T𝛼(𝑋, 𝑌) using L’Hôpital’s rules.

Theorem 33. Let𝑋 be an r.v.; then

T𝛼 (𝑋) ≥ 1𝛼 − 1 (𝐸𝑋 (𝑋) − 𝑒𝐻(𝑋)−𝛼) , 0 < 𝛼 < 1,
T𝛼 (𝑋) ≤ 1𝛼 − 1 (𝐸𝑋 (𝑋) − 𝑒𝐻(𝑋)−𝛼) , 𝛼 > 1.

(53)

Proof. It is easy to verify using (51) andTheorem 22.
Since there is a relation among T𝛼(𝑋), R𝛼(𝑋), and

E𝛼(𝑋) by (51), some properties of STE can be deduced by
the theorems of SEE and SRE. We only list these properties
as propositions and provide necessary explanations for their
proofs.

Proposition 34. If 𝐸(𝑋𝑝𝑖 ) < ∞ for some 𝑝 > 𝑚/𝛼, 𝑖 =1, 2, . . . , 𝑚, thenT𝛼(𝑋) < ∞ for all 𝛼 > 0 and 𝛼 ̸= 1.
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Proof. It is easy to verify that T𝛼(𝑋) ≥ 0. By the proof of
Proposition 24, we see that ∫

𝑅𝑚
+

𝐹𝑋(𝑥)𝑑𝑥 and ∫
𝑅𝑚
+

𝐹𝛼𝑋(𝑥)𝑑𝑥
exist. Thus,T𝛼(𝑋) < ∞ for all 𝛼 > 0 and 𝛼 ̸= 1.
Proposition 35. Let 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑚) and let 𝑌 =(𝑌1, 𝑌2, . . . , 𝑌𝑚) be r.v.s with 𝑌𝑖 = 𝑘𝑖𝑋𝑖, 𝑘𝑖 ̸= 0, 𝑖 =1, 2, . . . , 𝑚, and let 𝑘 = (𝑘1, 𝑘2, . . . , 𝑘𝑚) ∈ 𝑅𝑚 be a constant
vector; thenT𝛼(𝑌) = ∏𝑚𝑖=1|𝑘𝑖|T𝛼(𝑋) for all 𝛼 > 0 and 𝛼 ̸= 1.

This proposition can be proven using (30) in [23].

Proposition 36. Let 𝑋𝑛 be a sequence of 𝑚-dimensional
nonnegative r.v.s converging to X: 0 < 𝛼 < 1. If all 𝑋𝑛
are bounded in 𝐿𝑝 for some 𝑝 > 𝑚/𝛼, then T𝛼(𝑋) =
lim𝑛→∞T𝛼(𝑋𝑛) for all 𝛼 > 0 and 𝛼 ̸= 1.

It is immediate using (38) in [23].

Proposition 37. Let𝑋 and𝑌 be nonnegative and independent
r.v.s; thenT𝛼(𝑋+𝑌) ≥ max{T𝛼(𝑋),T𝛼(𝑌)} for all 𝛼 > 0 and𝛼 ̸= 1.
Proof. It can be proven in a similar way as Proposition 26 by
considering 𝛼 − 1 < 0 and 𝑡 − 𝑡𝛼 is convex of 𝑡 > 0 for all0 < 𝛼 < 1 and 𝛼 − 1 > 0 and 𝑡 − 𝑡𝛼 is concave of 𝑡 > 0 for all𝛼 > 1.
4. Similarity Measures Defined on
the Survival Function

Paralleling with the similarity measures and the normalized
similarity measures defined on the density function in Sec-
tion 2, this section will focus on the corresponding similarity
measures and the normalized similarity measures defined on
the survival function. Traditionally, the kernel point is the
proofs of the nonnegativity for the similarity measures to be
introduced.

4.1. Cross Survival Rényi Entropy and Cross Survival
Exponential Entropy

Lemma 38. Let X and Y be r.v.s and let 𝜑(𝑥) be a real convex
function; then

𝐸𝑌(∫
𝑅𝑚
+

𝜑 (𝐹𝑋|𝑌 (𝑥 | 𝑦)) 𝑑𝑥) ≥ ∫
𝑅𝑚
+

𝜑 (𝐹𝑋 (𝑥)) 𝑑𝑥. (54)

If, moreover, 𝜑(𝑥) is strictly convex, then equality holds in
(54) if and only if X and Y are independent. The inequality is
reversed if 𝜑(𝑥) is concave.

Lemma 38 was proven in [23]. It is a cornerstone to prove
the nonnegativity of each form of the similarity measure to be
introduced according to the survival function.

Theorem 39. Let X and Y be r.v.s; thenR𝛼(𝑋) ≥ R𝛼(𝑋 | 𝑌)
and E𝛼(𝑋) ≥ E𝛼(𝑋 | 𝑌) for all 𝛼 > 0 and 𝛼 ̸= 1.

Proof. Since 𝑡𝛼 is concave of 𝑡 > 0 and 1/(1 − 𝛼) > 0 for
all 0 < 𝛼 < 1, note that log𝑡 is strictly concave of t. Using
Lemma 38 and Jensen’s inequality, we obtain

R𝛼 (𝑋) = 11 − 𝛼 log∫
𝑅𝑚
+

𝐹𝛼𝑋 (𝑥) 𝑑𝑥
≥ 11 − 𝛼 log𝐸Y (∫

𝑅𝑚
+

𝐹𝛼𝑋|𝑌 (𝑥 | 𝑦) 𝑑𝑥)
≥ 11 − 𝛼𝐸𝑌(log∫𝑅𝑚

+

𝐹𝛼𝑋|𝑌 (𝑥 | 𝑦) 𝑑𝑥)
= 𝐸𝑌( 11 − 𝛼 log∫

𝑅𝑚
+

𝐹𝛼𝑋|𝑌 (𝑥 | 𝑦) 𝑑𝑥)
= R𝛼 (𝑋 | 𝑌) .

(55)

Similarly, considering that 𝑡𝛼 is convex of 𝑡 > 0 and 1/(1−𝛼) < 0 for all 𝛼 > 1, the conclusion is the same.
It is trivial to verify that E𝛼(𝑋) ≥ E𝛼(𝑋 | 𝑌).
For r.v.s X and Y, usingTheorem 39, we have

(∫
𝑅𝑚
+

𝐹𝛼𝑋 (𝑥) 𝑑𝑥)
1/(1−𝛼)

≥ (𝐸𝑌∫
𝑅𝑚
+

𝐹𝛼𝑋|𝑌 (𝑥 | 𝑦) 𝑑𝑥)
1/(1−𝛼)

(56)

for all 0 < 𝛼 and 𝛼 ̸= 1.
Definition 40. The cross survival Rényi entropy (CSRE) of
r.v.s 𝑋 and 𝑌 with order 𝛼 is defined as IR𝛼(𝑋, 𝑌) =
R𝛼(𝑋) −R𝛼(𝑋 | 𝑌), where 𝛼 > 0 and 𝛼 ̸= 1.
Definition 41. The cross survival exponential entropy (CSEE)
of r.v.s 𝑋 and 𝑌 with order 𝛼 is defined as IE𝛼(𝑋, 𝑌) =
E𝛼(𝑋) −E𝛼(𝑋 | 𝑌), where 𝛼 > 0 and 𝛼 ̸= 1.

Using Theorem 39 and (56), we obtain IR𝛼(𝑋, 𝑌) ≥ 0
andIE𝛼(𝑋, 𝑌) ≥ 0.
Definition 42. The normalized cross survival Rényi entropy
(NCSRE) of r.v.s𝑋 and 𝑌 with order 𝛼 is defined as

NIR𝛼 (𝑋, 𝑌) = R𝛼 (𝑋) +R𝛼 (𝑌)
R𝛼 (𝑋, 𝑌) , (57)

where 𝛼 > 0 and 𝛼 ̸= 1.
Definition 43. The normalized cross survival exponential
entropy (NCSEE) of r.v.s𝑋 and 𝑌 with order 𝛼 is defined as

NIE𝛼 (𝑋, 𝑌) = E𝛼 (𝑋) +E𝛼 (𝑌)
E𝛼 (𝑋, 𝑌) , (58)

where 𝛼 > 0 and 𝛼 ̸= 1.
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Definition 44. The normalized cross survival Shannon
entropy (NCSSE) of r.v.s𝑋 and 𝑌 is defined as

NI (𝑋, 𝑌) = H (𝑋) +H (𝑌)
H (𝑋, 𝑌) . (59)

Proposition 45. Let 𝑋 and 𝑌 be two r.v.s; then H(𝑋, 𝑌) ≤
H(𝑋)+H(𝑌),R𝛼(𝑋, 𝑌) ≤ R𝛼(𝑋)+R𝛼(𝑌), andE𝛼(𝑋, 𝑌) ≤
E𝛼(𝑋) +E𝛼(𝑌), for 𝛼 > 0 and 𝛼 ̸= 1.
Proof. Since −𝑡 log 𝑡 is convex of 𝑡 for 𝑡 > 0, using Lemma 38,
it is immediate that H(𝑋, 𝑌) ≤ H(𝑋) +H(𝑌). The rest can
be similarly proven by considering the range of 𝛼 and using
Lemma 38.

Using L’Hôpital’s rules, it is easy to see that I(𝑋, 𝑌) =
lim𝛼→1IR𝛼(𝑋, 𝑌) and NI(𝑋, 𝑌) = lim𝛼→1NIR𝛼(𝑋, 𝑌).
4.2. Cross Survival Tsallis Entropy

Theorem46. For two r.v.s𝑋 and𝑌, one hasT𝛼(𝑋) ≥ T𝛼(𝑋 |𝑌) andT𝛼(𝑋, 𝑌) ≤ T𝛼(𝑋) +T𝛼(𝑌) for all 𝛼 > 0 and 𝛼 ̸= 1.
Proof. Since 𝐹𝑋(𝑥) = 𝐸𝑌(𝐹𝑋|𝑌(𝑥 | 𝑦)), using Lemma 38,
considering 1/(𝛼 − 1) < 0 and 𝑡𝛼 is concave of 𝑡 > 0 for all0 < 𝛼 < 1, we obtain

T𝛼 (𝑋) −T𝛼 (𝑋 | 𝑌)
= 1𝛼 − 1 (𝐸𝑌(∫𝑅𝑚

+

𝐹𝛼𝑋|𝑌 (𝑥 | 𝑦) 𝑑𝑥)
− ∫
𝑅𝑚
+

𝐹𝛼𝑋 (𝑥) 𝑑𝑥) ≥ 1𝛼 − 1 (∫𝑅𝑚
+

𝐹𝛼𝑋 (𝑥) 𝑑𝑥
− ∫
𝑅𝑚
+

𝐹𝛼𝑋 (𝑥) 𝑑𝑥) = 0.

(60)

For 𝛼 > 1, similarly the conclusion is the same.
It is immediate to deduce the rest of conclusion by

Definition 32.

Definition 47. The cross survival Tsallis entropy (CSTE) of
r.v.s 𝑋 and 𝑌 with order 𝛼 is defined as IT𝛼(𝑋, 𝑌) =
T𝛼(𝑋) −T𝛼(𝑋 | 𝑌), where 𝛼 > 0 and 𝛼 ̸= 1.

Using Theorem 46, we obtain IT𝛼(𝑋, 𝑌) ≥ 0 immedi-
ately.

Definition 48. The normalized cross survival Tsallis entropy
(NCSTE) of r.v.s𝑋 and 𝑌 with order 𝛼 is defined as

NIT𝛼 (𝑋, 𝑌) = T𝛼 (𝑋) +T𝛼 (𝑌)
T𝛼 (𝑋, 𝑌) , (61)

where 𝛼 > 0 and 𝛼 ̸= 1.
We obtainI(𝑋,𝑌) = lim𝛼→1IT𝛼(𝑋,𝑌) andNI(𝑋,𝑌) =

lim𝛼→1NIT𝛼(𝑋, 𝑌) by L’Hôpital’s rules.
Note that I(𝑋, 𝑌) ̸= I(𝑌,𝑋), IR𝛼(𝑋, 𝑌) ̸=

IR𝛼(𝑌,𝑋), IE𝛼(𝑋, 𝑌) ̸= IE𝛼(𝑌,𝑋), and IT𝛼(𝑋, 𝑌) ̸=
IT𝛼(𝑌,𝑋), whereas 𝐼(𝑋, 𝑌) is symmetric; for example,

𝐼(𝑋, 𝑌) = 𝐼(𝑌,𝑋). We can define the symmetric versions
of the similarity measures and the normalized similarity
measures, taking the cross survival Rényi entropy as an
example, as

SIR𝛼 (𝑋, 𝑌) = 12 (IR𝛼 (𝑋, 𝑌) +IR𝛼 (𝑌,𝑋)) ,
SNIR𝛼 (𝑋, 𝑌)

= 12 (NIR𝛼 (𝑋, 𝑌) +NIR𝛼 (𝑌,𝑋)) .
(62)

The similar way can be used to define the symmetric
similarity measures and normalized similarity measures for
those defined on the density function.

5. Unifying Frameworks and Examples

In this section, based on the generalized denotations on the
entropies discussed previously, we will classify the fourteen
types of entropies in two categories and then deduce the
unifying presentations for entropies, similaritymeasures, and
normalized similarity measures. Examples are also provided
to unveil some properties of the information measures.

As enumerated in Table 1, different types of entropies have
been discussed in this paper. There are three components in
each item: entropy, conditional entropy, and joint entropy.
In general, entropies in Table 1 can be classified into two
categories: one is defined on the density function and the
other is defined on the survival function. For simplicity, we
refer to them as the density entropy and survival entropy,
respectively. It is demonstrated that, for each type of the
density entropy in Column 2, there is a survival entropy in
Column 4 corresponding to it.

5.1. The Unifying Frameworks of Information Measures. For
convenience, we view Shannon entropy, Rényi entropy, Tsallis
entropy, and the exponential entropy as the classical density
entropy and view their corresponding survival entropies as
the classical survival entropy. We can see that the classical
density entropy, the classical survival entropy, and their
conditional entropy and joint entropy share similar presen-
tations.

LetH𝛼(𝑋) be one type of the generalized density entropy
or the generalized survival entropy of r.v. 𝑋 with order 𝛼.
If 𝛼 = 1, then H1(𝑋) = H(𝑋) means the Shannon
entropy or the survival Shannon entropy. In these notations,
H𝛼(𝑋 | 𝑌) is the conditional entropy with order 𝛼 > 0. The
corresponding joint entropy of r.v.s𝑋 and𝑌with order 𝛼 > 0
can be introduced as

H𝛼 (𝑋, 𝑌) = H𝛼 (𝑋) +H𝛼 (𝑌 | 𝑋) . (63)

For r.v.s 𝑋 and 𝑌, one has H𝛼(𝑋, 𝑌) ≤ H𝛼(𝑋) +H𝛼(𝑌)
for all 𝛼 > 0.

Entropies, conditional entropies, and joint entropies are
listed in Table 1. The similarity measures and the normalized
similarity measures are shown in Table 2 in detail, where
the similarity measure is followed by the normalized one
in each item. In a similar way, the similarity measure can
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Figure 1: Plots of eight different types of entropies. (a) Survival entropies. (b) Density entropies.

be classified into the density similarity measure defined on
the density function and the survival similarity measure
defined on the survival function and so can the normalized
similarity measures.Therefore, the unifying presentations for
a similarity and a normalized similarity measure associated
with a type of entropies can be deduced as

I𝛼 (𝑋, 𝑌) = H𝛼 (𝑋) +H𝛼 (𝑋 | 𝑌) , (64)

NI𝛼 (𝑋, 𝑌) = H𝛼 (𝑋) +H𝛼 (𝑌)
H𝛼 (𝑋, 𝑌) . (65)

Note that I1(𝑋, 𝑌) = I(𝑋, 𝑌) and NI1(𝑋, 𝑌) =
NI(𝑋, 𝑌).

We obtain I𝛼(𝑋, 𝑌) ≥ 0 for all 𝛼 > 0. Their symmetric
versions can be, respectively, given by

SI𝛼 (𝑋, 𝑌) = 12 (I𝛼 (𝑋, 𝑌) +I𝛼 (𝑌,𝑋)) , (66)

SNI𝛼 (𝑋, 𝑌) = 12 (NI𝛼 (𝑋, 𝑌) +NI𝛼 (𝑌,𝑋)) . (67)

The unifying frameworks make it possible to view all
the available entropies listed in Table 1 as a whole and to
move from one to another as necessary. Subsequently, the
similarity measures and the normalized similarity measures
are simultaneously obtained.

5.2. Three Examples.

Example 1. Let𝑋 be an r.v. corresponding to the exponential
distribution with mean 1/𝜆 and density function 𝑓(𝑥) =𝜆𝑒−𝜆𝑥. We obtain 𝐹(𝑥) = ∫∞

𝑥
𝑓(𝑡)𝑑𝑡 = 𝑒−𝜆𝑥, and

H (𝑋) = 1𝜆 ,
R𝛼 (𝑋) = 1𝛼 − 1 log 𝜆𝛼,
T𝛼 (𝑋) = 1𝜆𝛼 ,
E𝛼 (𝑋) = (𝜆𝛼)1/(𝛼−1) .

(68)

The survival Shannon entropy, survival Rényi entropy,
survival Tsallis entropy, and survival exponential entropy of
r.v.𝑋 are plotted in Figure 1(a) with 0.5 ≤ 𝛼 ≤ 0.9 and𝜆 = 1.1.

If 𝜆 = 1, then 𝐹(𝑥) = 𝑒−𝑥 = 𝑓(𝑥). Hence, the sur-
vival entropies become the corresponding density entropies.
Figure 1(b) shows Shannon entropy, Rényi entropy, Tsallis
entropy, and the exponential entropy of an r.v. 𝑋 with 0.5 ≤𝛼 ≤ 1.5. We can see that some properties, such as concavity
and monotonicity, may be changed when we generalize
entropies by extending their definitions from the density
function to the survival function.

Example 2. Many literatures have pointed out that Shannon
entropy has drawbacks: each frequency of the occurrence
event contributes equally in summation or integral of its
functional and, simultaneously, the spatial information is
neglected. In fact, those entropies that are defined on density
functions have similar drawbacks to Shannon entropy. How-
ever, the survival entropy can overcome this drawback. For
instance, as shown in Figure 2, Lena is used as a fixed image
with size of 256 × 256. We exchange those pixels with the
same occurrence frequency in Figure 2(a) and then generate
the negative image as shown in Figure 2(b). Images (c) and
(d) are their histograms, respectively.Thereby images (a) and
(b) share the same occurrence frequency but specified to
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Table 3: The values acquired from different types of entropy for testing images.

Image SE RE TE SSE SRE STE
(a) 5.1418 5.1755 9.0768 51.0285 22.9235 58.8816
(b) 5.1418 5.1755 9.0768 46.9452 25.9032 51.0613

(a) (b)
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Figure 2: Testing images ((a) and (b)) and their histograms ((c) and (d)) accordingly.

different pixel values or, equivalently, to different random
variables.

The values of entropies of SE, RE, TE, SSE, SRE, and STE
for Figures 2(a) and 2(b) are shown in Table 3, respectively,
where 𝛼 = 0.8. We can see that density entropies provide
the same values, whereas survival entropies provide different
values for these two images. In other words, these two
images contain the same information in the view of the
density entropy. But, to the survival entropy, the amount
of information there is different. It is demonstrated that
the survival entropy is capable of distinguishing the two
images, whereas the density entropy is not. The reason is that
spatial information is taken into account in survival entropy
formulas.

Example 3. We use a computerized tomography (CT) of
brain slice as a testing image to evaluate the properties of
similarity measures and normalized similarity measures.The
density of CT ranges from 0 to 255 with the mean of 92.683
and size of 256 × 256. It is originally fixed and viewed as
a template. A series of rotation transformations are applied
to it so as to obtain floating images for comparison with
the template. The range of rotation angle is set as [−𝜋, 𝜋].
We calculate the values of SMI, RMI, TMI, CSSE, CSRE,
and CSTE between the template and floating images, as
shown in Figure 3(a). Accordingly, as shown in Figure 3(b),
the values of the normalized similarity measures of NSMI,
NRMI, NTMI, NCSSE, NCSRE, and NCSTE acquired from
the template and floating images in this experiment are also
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Figure 3: The values of similarity measures (a) and normalized similarity measures (b) for image rotation transformations with angle range[−𝜋, 𝜋].
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calculated with the same parameter settings, 𝛼 = 0.8, as
Figure 3(a).

Figure 3 demonstrates that when the rotation angle is
zero or, equivalently, the template and the floating image are
perfectly aligned, all the values of the considered similarity
metrics reach their maximums. In other words, they all can
be adopted as similarity metrics in image processing.

Generally, the similarity measures defined on survival
function are more regular than those defined on density
function, since the density is computed as the derivative of
the survival function [19]. Therefore, the similarity measures
defined on survival function are more robust in matching
problems.

A kernel problem arising from matching problem is the
choice of similarity metrics. In Table 2, sixteen different types
of similarity measures and normalized similarity measures
are provided with unifying presentations by (64) and (65).
Their symmetric versions are given by (66) and (67) simul-
taneously. The proposed similarity measures are capable of
developing the means of matching in signal processing to
some extent.

6. Conclusions

This research is conducted in two dimensions. On one hand,
we extend KN averages to 𝑞-generalized KN averages to rede-
fine the existing classical entropies and to define the survival
Rényi entropy and survival Tsallis entropy on the survival
function. On the other hand, for each type of entropies
discussed, a similarity measure and a normalized similarity
measure are proposed accordingly. Some properties of the
information measures are researched.

We make an inventory of sixteen types of entropies, sim-
ilarity measures, and normalized similarity measures which
exhibit diversity and unity. This leads to the proposition of
the unifying frameworks for information measures. There-
fore, our work addresses a broad spectrum of information
measures as a whole through the unifying frameworks.
Undoubtedly, some of them will be conceptual if they are not
adapted for applications. More applications of the proposed
information measures will dominate our research in the near
future.
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