A. Appendices
A.1. Details of ADMM Solution
We use the Alternating Direction Method of Multipliers (ADMM) [4]. First, the problem (1) is split as follows:
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Second, the augmented Lagrangian and iterative scheme are introduced:
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where Z; and Z, are the lagrange multipliers (dual variables) and k is the iteration index.

In order to update the primal variables L, S and W we consider the definition of proximity operator [7]. Let f € T'o(RY),
where I'o(RY) is the class of lower semi-continuous convex functions from R¥ to | — oo, +00] such that domain of f # &.
Then, for every z € RY, the following minimization problem admits a unique solution which is known as the proximity
operator of f denoted by prox;.

pros (x) = argmin f(y) + _ & — o3
yeERN

Using this definition, the updates for L, S and W at (k + 1)*t iteration using the previous iterates L*, Sk Wk ZF 7k
can be made using the proximity operators.

Update L

Keeping only the terms with L in Eq. (2) we get
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where HY = X — S* + ZF /ry and HY = W* + Z§ /ro. Let Q, : RY — R¥ denote the element-wise soft-thresholding
operator Q. (z) = sgn(z) max(|z| — 7,0), then we can define D,(A4) = PQ.(X)Q7 as the singular value thresholding

operator for matrix A, where A = PX.Q7 is any singular value decomposition of A. Let A = % andr = (ry+rz)/2
then
LK = D1 (A) = PQ.(2)QT. 5)

r

Update S
Following a similar procedure, we can write the update for .S as.
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Update W
By keeping only the terms with W in eq. (2) we get

ZEN |2
W = argmin y tr(WOW7T) + EHW - (Lk"rl - —2) H

which is a smooth function in W, so we can use the optimality condition to find a closed form solution for .

Zk
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Projected Conjugate Gradient method was used to update .

A.2. Algorithm

Algorithm 1 ADMM algorithm for Robust PCA on Graphs

1: procedure ROBUST PCA GRAPHS(X € RP*™ & € ST, A, 7) > inputs
2: k<0 > iteration index k
3 LF < rand(n, p), W* < rand(n, p), Sk « rand(n, p) > Initialize primal variables
4: r1 1, ro < 1

5: Z¥ + X — LF - S*, A L > Initialize dual variables
6 PF « ||LF., P}« X|S¥]|1, PF 'ytr(Lk'tbLkT) > Initialize primal objective

k+1 k2 k+1 k2 k+1 k2 k+1 k12 k+1 k2

7 while Wpegtle s o o Ipmile s o ¢ Ipille s o o Bpale > o ¢ 2l > cdo
8 Update L**" using eq. 5

9: Update S**! using eq. 6
10: Update W**+! using eq. 7
11: Update Zf“ using eq. 2
12: Update Z5 ! using eq. 3

13: Update P!, PF*1 and P! using step 6.
14: k+—Fk+1
15: end while
16: return LF+1, GF+1

17: end procedure

A.3. Convergence Analysis & Computational Complexity

Algorithm 1 is a special case of Alternating Directions method [23], [4]. These methods are a subset of more general class
of methods known as Augmented Lagrange Multiplier methods. The convergence of these algorithms is well-studied [4],
[14], [12]. This algorithm has been reported to perform reasonably well on a wide range of problems and small number of
iterations are enough to achieve a good accuracy [6]. The complexity of nuclear norm proximal computation is O(np? + p3)
for n > p and the computational complexity of the Conjugate Gradient method for updating W is O(np), per iteration. Thus,
the dominant cost of each iteration corresponds to the computation of nuclear proximal operator. Our future work will be
dedicated to reduce this cost by utilizing a partial SVD or an approximate SVD, as suggested in [9]. Further improvements
can be made by using randomized algorithms for SVD [21] and exploiting the parallel processing capabilities [18]. Please
refer to Section A.12 for a detailed comparison of computation time of this algorithm with other models considered in this
work.



A.4. Properties of Various Models & Datasets

Table 2: A summary of the datasets used for the evaluation of various models. As NMF & GNMF require non-negative data
so they are not evaluated for USPS, MFeat and BCI datasets.

Image / Data Datasets Evaluated
non-image Type Models
Image Faces CMU PIE (no pose changes) all
ORL (pose changes)
YALE (facial expressions)
Objects COIL20 (pose changes)
Digits MNIST (rotation)
USPS
non- features | BCI (Brain Computer Interface) all except
image MFeat (handwritten numerals) NMF & GNMF

A summary of all the models evaluated in this work
—> Dimensionality reduction
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Figure 8: A venn diagram summarizing the properties of all the models evaluated in this work.
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Figure 9: Sample images from CMU PIE dataset corrupted with occlusions (first row) and missing pixels (2nd row).



A.5. Evaluation Scheme and Parameter Selection for all Models

Input data

.

Model to be evaluated

No Yes
A4
AV4
Ncuts, LE, PCA,

GLPCA, RGLPCA. Robust PCA on Graph
MMF, NMF, GNMF v P
Repeat for each tuple of Repeat for each tuple of
the parameter grid the parameter grid
Run the model 10 times Run the model once

Cluster over Determine Q’
Q using k-means via SVD of low-rank
10 times matrix L

- -

Note the minimum error
over 10 runs of k-means

Cluster over
Q’ using k-means

10 times
Note the minimum error Note the minimum error
over 10 runs of model over 10 runs of k-means
Note the minimum error Note the minimum error
over whole parameter grid over whole parameter grid

Figure 10: A flow chart describing the evaluation and parameter selection procedure for each of the models considered in this
work. Each model has several parameters as described in Table 3. To perform a fair evaluation between all the models, they
are run over the entire parameter range and the minimum error is reported. Further, the non-convex models are run 10 times
(to determine a good local minimum) for every tuple of the parameter range and the minimum error is reported. The k-means
clustering procedure for each of the models is also evaluated 10 times to avoid the bias introduced by its non-convexity.
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A.6. Adjacency Matrix Construction from Corrupted & Uncorrupted Data

occlusions Random missing pixels
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Figure 11: A procedure for the construction of Adjacency matrix A from clean and corrupted samples X. We assume that
the block occlusions can be detected and the mask can be extended to the other image of the pair to remove the effect of
occlusion in the calculation of Euclidean distance. The case of random missing pixels can be handled by using inpainting
techniques, such as Total Variation denoising.



A.7. Clustering Results on all Databases

Table 4: A comparison of clustering error of our model with various dimensionality reduction models using the procedure
of Fig. 10. The image data sets include: 1) ORL 2) CMU PIE 3) YALE and 4) COIL20. The compared models are: 1)
k-means 2) Normalized Cuts (NCuts) 3) Laplacian Eigenmaps (LE) [2] 4) Standard Principal Component Analysis (PCA)
5) Graph Laplacian PCA (GLPCA) [10] 6) Robust Graph Laplacian PCA (RGLPCA) [10] 7) Manifold Regularized Matrix
Factorization (MMF) [24] 8) Non-negative Matrix Factorization [13] 9) Graph Regularized Non-negative Matrix Factoriza-
tion (GNMF) [5] and 10) Robust PCA (RPCA) [6]. Two types of full and partial corruptions were introduced in the data: 1)
Block occlusions and 2) Random missing values. The best results are highlighted in bold. This table provides the numerical
errors for the bar plots shown in Fig. 1.

Data Set Model No Sample specific corruptions Full Corruptions
Corruptions Occlusions Missing values Occlusions Missing
(25% of data) (25% of data) (% of image size) (% of image pixels)
25% image size | 25% image pixels || 15% | 25% | 40% 15% | 25% | 35% | 50%
CMU PIE! k-means 722 72.5 73.4 785 | 794 | 81.0 72.3 | 76.1 75.7 | 80.3
(faces) NCuts 41.7 36.0 40.0 42.0 | 40.0 | 44.0 350 | 413 | 40.7 | 46.7
LE 41.7 40.0 433 493 | 540 | 513 463 | 46.0 | 483 | 55.0
PCA 13.0 25.7 34.0 427 | 450 | 61.0 350 | 500 | 56.3 | 63.7
GLPCA 29.8 27.7 383 38.0 | 402 | 413 393 | 375 | 42.7 | 482
RGLPCA 28.0 28.3 31.7 350 | 41.3 | 39.0 343 | 337 | 28.7 | 420
MMF 53.7 50.0 55.0 540 | 58.0 | 60.7 59.7 | 60.3 | 60.3 | 62.7
NMF 49.0 68.0 70.3 76.0 | 80.0 | 79.3 49.0 | 76.0 | 80.0 | 79.3
GNMF 52.7 66.0 68.3 713 | 750 | 753 527 | 713 | 75.0 | 753
RPCA 33 4.3 11.0 6.7 13.3 | 233 9.7 8.3 17.0 | 373
Our model 0.0 4.7 6.9 5.0 7.7 17.7 7.7 7.5 157 | 34.0
ORL? k-means 354 57.6 50.8 643 | 684 | 715 360 | 424 | 494 | 57.1
(faces) NCuts 47.0 35.7 43.0 423 | 53.0 | 61.0 49.7 | 457 | 427 | 46.7
LE 453 38.0 34.7 39.0 | 453 | 543 4277 | 45.0 | 440 | 427
PCA 28.0 46.0 37.3 537 | 650 | 72.6 343 | 39.0 | 403 | 40.0
GLPCA 27.6 28.3 29.7 336 | 34.1 443 303 | 279 | 276 | 333
RGLPCA 28.3 28.7 29.0 283 | 363 | 373 260 | 293 | 26.7 | 263
MMF 20.3 29.7 243 300 | 347 | 383 247 | 283 | 283 | 273
NMF 29.0 31.7 27.7 780 | 79.0 | 81.3 29.7 | 39.3 | 50.3 | 533
GNMF 22.7 29.0 253 350 | 37.0 | 393 253 | 26.7 | 28.0 | 26.7
RPCA 18.6 27.7 20.3 260 | 350 | 714 247 | 260 | 27.0 | 36.0
Our model 15.7 20.0 14.3 23.7 | 247 | 31.7 20.0 | 183 | 20.3 | 21.0
YALE? k-means 534 54.9 64.5 71.6 | 734 | 73.1 543 | 564 | 589 | 63.5
(faces) NCuts 54.5 57.6 64.4 66.7 | 642 | 68.5 564 | 569 | 612 | 61.8
LE 57.6 57.0 61.8 63.6 | 68.5 | 69.1 57.8 | 594 | 60.6 | 66.7
PCA 539 49.7 58.8 61.8 | 66.1 70.9 55.7 | 55.1 624 | 61.2
GLPCA 49.1 50.9 53.9 545 | 612 | 582 509 | 52.7 | 485 | 56.9
RGLPCA 48.5 50.0 50.9 545 | 552 | 58.8 50.3 | 539 | 49.7 | 509
MMF 38.8 37.6 46.7 557 | 552 | 539 382 | 382 | 442 | 49.1
NMF 63.0 63.6 70.3 72.1 71.5 | 72.1 648 | 612 | 61.8 | 66.7
GNMF 56.9 55.8 57.6 60.6 | 64.8 | 60.6 569 | 569 | 582 | 594
RPCA 394 40.6 45.5 61.8 | 679 | 63.0 424 | 394 | 43.6 | 63.6
Our model 35.1 35.8 40.0 43.6 | 46.1 | 50.9 352 | 358 | 394 | 50.3
COIL20 * k-means 32.0 55.2 30.2 349 | 458 | 57.8 363 | 348 | 37.8 | 428
(objects) NCuts 44.5 30.5 39.5 38.5 | 38.5 | 435 38.0 | 50.0 | 48.0 | 475
LE 38.0 31.5 27.0 345 | 36.5 | 40.0 31.0 | 37.5 | 40.0 | 39.0
PCA 30.5 43.5 28.5 28.0 | 37.0 | 50.0 240 | 30.0 | 335 | 31.0
GLPCA 20.5 22.0 17.0 250 | 255 | 253 21.7 | 215 | 21.5 | 233
RGLPCA 18.5 23.5 17.5 20.5 | 220 | 235 220 | 20.0 | 22.0 | 21.0
MMF 18.0 19.0 11.5 19.0 18.0 | 25.0 19.0 18.0 19.0 18.5
NMF 20.0 30.0 19.0 325 | 470 | 60.5 17.5 260 | 240 | 26.0
GNMF 15.5 18.5 9.5 20.0 19.5 | 30.0 14.5 135 11.0 17.0
RPCA 19.0 33.0 13.5 19.0 | 28.0 | 50.5 15.0 16.0 16.5 | 27.0
Our model 15.5 18.0 9.0 180 | 175 | 195 8.5 12.0 16.5 15.0




Table 5: A comparison of clustering error of our model with various dimensionality reduction models. The image data sets
include: 1) MNIST and 2) USPS. The compared models are: 1) k-means 2) Normalized Cuts (NCuts) [19] 3) Laplacian
Eigenmaps (LE) [2] 4) Standard Principal Component Analysis (PCA) 5) Graph Laplacian PCA (GLPCA) [10] 6) Robust
Graph Laplacian PCA (RGLPCA) [10] 7) Manifold Regularized Matrix Factorization (MMF) [24] 8) Non-negative Matrix
Factorization [13] 9) Graph Regularized Non-negative Matrix Factorization (GNMF) [5] and 10) Robust PCA (RPCA) [6].
Two types of full and partial corruptions were introduced in the data: 1) Block occlusions and 2) Random missing values.
The best results are highlighted in bold.

Data Set Model No Sample specific corruptions Full Corruptions
Corruptions Occlusions Missing values Occlusions Missing
(25% of data) (25% of data) (% of image size) (% of image pixels)
25% image size | 25% image pixels || 15% | 25% | 40% 15% | 25% | 35% | 50%
MNIST® k-means 62.2 71.2 59.6 682 | 792 | 825 62.0 | 60.5 | 60.6 | 65.9
(digits) NCuts 69.3 86.7 59.0 853 | 873 | 86.0 777 | 787 | 837 | 86.7
LE 71.0 88.0 553 88.0 | 893 | 89.0 68.7 | 553 | 863 | 89.3
PCA 52.0 60.0 51.3 683 | 77.0 | 773 46.0 | 57.3 | 61.0 | 57.0
GLPCA 493 63.7 447 593 | 717 | 79.0 453 | 51.7 | 563 | 57.1
RGLPCA 46.3 64.7 51.0 553 | 653 | 73.7 527 | 53.0 | 53.7 | 443
MMF 45.7 65.7 45.0 527 | 653 | 773 527 | 447 | 533 | 55.7
NMF 46.3 67.3 337 60.0 | 723 | 72.0 520 | 477 | 49.7 | 47.0
GNMF 49.7 72.7 353 517 | 71.0 | 83.7 50.7 | 427 | 447 | 40.7
RPCA 39.0 53.3 43.0 647 | 737 | 78.0 447 | 447 | 527 | 70.7
Our model 31.7 46.0 32.3 53.0 | 62.7 | 69.7 29.7 | 337 | 353 | 37.7
USPS k-means 51.0 453 54.0 554 | 662 | 73.8 412 | 41.7 | 40.1 389
(digits) NCuts 54.0 49.3 61.3 683 | 72.7 | 75.7 53.0 | 477 | 557 | 553
LE 64.7 52.7 67.7 743 | 81.7 | 83.0 650 | 71.7 | 66.0 | 63.3
PCA 49.7 42.0 50.3 550 | 66.0 | 71.7 433 | 36.0 | 393 | 48.0
GLPCA 45.8 26.7 45.0 469 | 56.7 | 68.9 39.7 | 383 | 335 | 325
RGLPCA 42.0 333 46.7 450 | 59.0 | 63.7 333 | 267 | 357 | 370
MMF 33.0 223 40.7 377 | 503 | 62.6 215 | 21.6 | 20.7 | 20.7
RPCA 28.3 29.0 46.7 56.0 | 67.7 | 69.7 29.0 | 323 | 32.6 | 38.0
Our model 21.3 21.7 353 420 | 48.0 | 56.0 215 | 21.3 | 205 | 273

Table 6: A comparison of clustering error of PCA models and simple k-means for MFeat and BCI data sets. Each of the data
sets was corrupted with two types of outliers: 1) Block occlusions and 2) Missing values. Block occlusions in non-image
databases correspond to an unrealistic assumption so such experiments were no performed for these datasets. Furthermore,
NMF and GNMF were not evaluated because they require non-negative data whereas these datasets are negative as well. The
best results are highlighted in bold.

Data Model No Sample specific Full Corruptions
Set Corruptions Missing values Missing values
(25% of data) (% features per sample)
25% features per sample | 15% | 25% | 35% | 50%
MFeat ® k-means 324 30.8 255 | 299 | 322 | 339
NCuts 39.8 47.0 263 | 283 | 335 | 378
LE 38.0 47.3 353 | 33.0 | 33,5 | 508
PCA 73 73 10.0 11.8 9.0 13.8
GLPCA 6.0 12.5 6.0 7.8 8.0 10.0
RGLPCA 9.5 15.0 15.0 17.3 8.3 14.8
MMF 7.3 6.3 6.0 53 7.0 7.0
RPCA 5.0 43 3.8 6.3 9.5 15.0
Our model 33 2.0 35 4.3 6.8 7.0
BCI’ k-means 47.8 47.2 47.8 47.8 48.0 48.2
NCuts 47.0 47.0 473 | 475 | 473 | 483
LE 46.5 49.7 49.8 | 498 | 49.8 | 458
PCA 453 452 420 | 43.0 | 43.0 | 455
GLPCA 46.5 46.0 45.8 | 458 | 465 | 450
RGLPCA 45.5 43.7 46.5 443 43.8 42.8
MMF 47.25 47.2 470 | 475 | 473 | 483
RPCA 39.8 43.0 40.0 | 428 | 435 | 430
Our model 40.3 37.7 39.0 | 423 | 42.0 | 41.0




A.8. A Comparison of the Principal Directions U Learned with Low-Rank and Principal Components Graph
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Figure 12: A comparison of the principal directions U learned with low-rank graph tr(L®L”) and principal components
graph regularizationtr (Q®QT) for the CMU PIE dataset. Each row shows the 1% two principal directions U and the cor-
responding singular values for each of the PCA models evaluated in this work. For the factorized models (PCA, GLPCA,
RGLPCA and MMF) the principal directions U are explicitly learned. For RPCA and our model, U is obtained by singular
value decomposition of the low-rank matrix L, i.e. L = UXQ'. The low-rank graph for our model clearly helps in learning
a corruption free U. Even though the 2"¢ principal direction for our model has a large effect of occlusion, we note that the
corresponding singular value (27¢ bar) is much smaller as compared to the 1°¢. For all the other models, each of the two
principal directions are affected by occlusions and the corresponding singular values are significant. This explains why a
low-rank graph helps in an enhanced low-rank recovery and a lower clustering error in low dimensional space than
the principal components graph.



A.9. Additional Low-Rank Recovery Results on CMU PIE Dataset

Low Rank recovery of occluded images of CMU PIE dataset with the best visual results highlighted in red
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Figure 13: A comparison of the clean low-rank recovered images of the CMU PIE data set corresponding to each of the PCA
models considered in this work. For this experiment, the images of one person are corrupted by block occlusions occupying
10% of the image. Each row corresponds to a different image of the same person occluded at a random position. 1¢ figure in
each row shows the actual occluded image. 2" and 3"¢ figures show the whitened occluded and un-occluded images. Since
PCA requires whitening, the recovered low-rank images in figures 4 to 8 using GLPCA, RGLPCA, MMF, RPCA and our
model resemble the un-occluded whitened image. The best recovered low-rank representations (via a visual inspection) are
highlighted with a red box.



A.10. Additional Results for Background Separation from Videos

Robust PCA
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(c) Shopping mall lobby. All the moving people are removed in both the middle and right figures.

Figure 14: Static background separation from three different videos. a) restaurant food counter, b) airport hallway and c)
shopping mall lobby. In each of the cases: the leftmost figure shows one actual frame of the video, the middle figure shows
the recovered static background using Robust PCA [6] with A = 1/4/max(n, p) and the rightmost figure shows the recovered
background using our model with A = 1/4/max(n,p) and v = 10. The effect of graph can be appreciated in the first two
cases. In a) the changes in the illumination (which are not a part of static background) are more visible in the Robust PCA
model than our model. In b) the moving person is more obvious in Robust PCA recovered background than our model. For c)
the two models perform equally well. Please note that depending on the video, some tuning of parameter A might be needed
[8]. We recommend a range of A € [1,2]/+/max(n, p) as shown in our low-rank recovery experiments for artificial datasets
in Fig. 16. However, for the three videos used in this work A = 1/4/max(n, p) was found as the best parameter



A.11. Parameter Selection for the Proposed Model

A.11.1 Parameter Selection for Clustering

Parameter Selection for Clustering
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Figure 15: Variation of clustering error over (A, ) grid for different size, classes and occlusions in the CMU PIE data set.
x-axis shows the variation with increasing occlusion size and y-axis with increasing size of the data matrix n and number of
classes k. The horizontal red lines show a range of A € [1,2]/+/max(n, p). The clustering error always attains a minimum
value within this range of A irrespective of the size of the data matrix, occlusions or the number of classes. Furthermore, a
wide range of ~ values attain a minimum clustering error in the region between the red lines. Thus, a simple rule can be
used to choose a set of good parameters: Fix A € [1,2]/\/max(n, p) and then perform a cross-validation over a coarse
range of v values. In fact X\ = 1/+/max(n,p) is always a good choice for the images which have no occlusions and are only
affected by shadows and illumination changes. Bach strip on the left of (), ) plot shows the variation of clustering error
with A (y-axis) for v = 0 (Robust PCA). Clearly, the use of a graph increases the range the possible A values which attain a

minimum clustering error.



A.11.2 Parameter Selection for Low-Rank Recovery

Parameter Selection for Exact Low Rank Recovery
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Figure 16: Variation of low-rank normalized reconstruction error over (A, ~y) grid for different ranks and errors (corruptions)
in the artificially generated dataset with Bernoulli support and random sign scheme for sparse errors (Section 8.1). x-axis
shows the variation with increasing fraction of errors and y-axis with increasing rank of the data matrix X. The horizontal
red lines show a range of A € [1,2]/y/max(n, p). The clustering error always attains a minimum value within this range of
A irrespective of the size of the (rank, error) setting. Furthermore, a wide range of + values attain a minimum clustering
error in the region between the red lines. Thus, the same simple rule as clustering can be used to choose a set of good
parameters: Fix \ € [1,2]/\/max(n,p) and then perform a cross-validation over a coarse range of ~y values. Similar to

our observation for clustering error, A\ = 1/4/max(n, p) is always a good choice for the datasets with low fraction of errors.



A.12. Comparison of Computation Times

Table 7: A comparison of computational times (in secs) for one run of each model with increasing size of data matrix. For
this experiment, different size of the CMU PIE dataset (n = 300, 600 and 1200) is corrupted with 20% occlusions and the
computation time and accuracy is computed for one run of each model. To perform a fair comparison between the models,
the parameter tuple for each model is chosen using the procedure of Section A.5. The non-convex models are run 10 times
and the computational time and accuracy of the run with the minimum clustering error are reported. The convex models
are run only once. Clearly, RGLPCA has the highest computation time, followed by our proposed model. However, the
trade-off between the clustering error and computational time is worth observing. Our model takes more time to converge but
attains the minimum clustering error. This large computation time is dominated by the expensive SVD step in every iteration.
Our future work will be focused on reducing the complexity of this model by exploiting the distributed and parallel
computation techniques.

Model n =300 n =600 n = 1200
Time (secs) | Clustering error (%) | Time (secs) | Clustering error (%) | Time (secs) | Clustering error (%)
1 NCuts 0.24 47.2 0.72 48.3 1.31 49.0
2 LE 0.24 48.1 0.70 50.2 1.24 52.7
3 PCA 0.11 34.3 0.17 35.9 0.20 38.3
4 GLPCA 0.12 37.5 0.43 36.1 1.60 37.2
5 RGLPCA 150.4 34.8 356.6 353 1187.6 37.2
6 MMF 0.13 36.7 0.32 37.5 1.52 38.9
7 NMF 0.15 43.9 0.62 45.6 1.30 47.4
8 GNMF 1.20 41.2 0.62 40.3 1.30 459
9 RPCA 59.8 10.5 159.3 12.6 678.3 14.9
10 | Our model 69.7 8.4 169.6 10.9 869.8 13.8




