
A. Appendices
A.1. Details of ADMM Solution

We use the Alternating Direction Method of Multipliers (ADMM) [4]. First, the problem (1) is split as follows:

min

L,S,W
kLk⇤ + �kSk1 + � tr(W�WT

)

s.t. X = L + S, L = W.

Second, the augmented Lagrangian and iterative scheme are introduced:

(Lk+1, Sk+1, W k+1
) = argmin

L,S,W
kLk⇤ + �kSk1 + � tr(W�WT

) + hZk
1 , X � L� Si +

r1

2

kX � L� Sk2F

+ hZk
2 , W � Li+ r2

2

kW � Lk2F , (2)

Zk+1
1 = Zk

1 + r1(X � Lk+1 � Sk+1
), (3)

Zk+1
2 = Zk

2 + r2(W
k+1 � Lk+1

), (4)

where Z1 and Z2 are the lagrange multipliers (dual variables) and k is the iteration index.
In order to update the primal variables L, S and W we consider the definition of proximity operator [7]. Let f 2 �0(RN

),
where �0(RN

) is the class of lower semi-continuous convex functions from RN to ] �1, +1] such that domain of f 6= ?.
Then, for every x 2 RN , the following minimization problem admits a unique solution which is known as the proximity
operator of f denoted by proxf .

proxf (x) = argmin

y2RN

f(y) +

1

2

kx� yk22.

Using this definition, the updates for L, S and W at (k + 1)

st iteration using the previous iterates Lk, Sk, W k, Zk
1 , Zk

2

can be made using the proximity operators.
Update L
Keeping only the terms with L in Eq. (2) we get

Lk+1
= argmin

L
kLk⇤ + hZk

1 , X � L� Ski +

r1

2

kX � L� Skk2F + hZk
2 , W k � Li+ r2

2

kW k � Lk2F

= argmin

L
kLk⇤ +

r1

2

���L�
�
X � Sk
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Zk
1

r1

����
2

F
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r2

2

���L�
�
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2

r2

����
2

F

= argmin

L
kLk⇤ +

r1 + r2

2

���L� r1Hk
1 + r2Hk

2

r1 + r2

���
2

F

= prox

1
(r1+r2)kLk⇤

⇣r1Hk
1 + r2Hk

2

r1 + r2

⌘
,

where Hk
1 = X � Sk

+ Zk
1 /r1 and Hk

2 = W k
+ Zk

2 /r2. Let ⌦⌧ : RN �! RN denote the element-wise soft-thresholding
operator ⌦⌧ (x) = sgn(x) max(|x| � ⌧, 0), then we can define D⌧ (A) = P⌦⌧ (⌃)QT as the singular value thresholding
operator for matrix A, where A = P⌃QT is any singular value decomposition of A. Let A =

r1Hk
1 +r2Hk

2
r1+r2

and r = (r1+r2)/2

then
Lk+1

= D 1
r
(A) = P⌦

1
r
(⌃)QT . (5)

Update S
Following a similar procedure, we can write the update for S as.

Sk+1
= prox �

r1
kSk1

⇣
X � Lk+1

+

Zk
1

r1

⌘

= ⌦ �
r1

⇣
X � Lk+1

+

Zk
1

r1

⌘
(6)



Update W
By keeping only the terms with W in eq. (2) we get

W k+1
= argmin

W
� tr(W�WT

) +

r2

2

���W �
⇣
Lk+1 � Zk

2

2

⌘���
2

F

which is a smooth function in W , so we can use the optimality condition to find a closed form solution for W .

W k+1
= r2(�� + r2I)

�1
⇣
Lk+1 � Zk

2

r2

⌘
(7)

Projected Conjugate Gradient method was used to update W .

A.2. Algorithm

Algorithm 1 ADMM algorithm for Robust PCA on Graphs

1: procedure ROBUST PCA GRAPHS(X 2 Rp⇥n, � 2 Sn
+, �, �) . inputs

2: k  0 . iteration index k
3: Lk  rand(n, p), W k  rand(n, p), Sk  rand(n, p) . Initialize primal variables
4: r1  1, r2  1

5: Zk
1  X � Lk � Sk, Zk

2  W k � Lk . Initialize dual variables
6: P k

1  kLkk⇤, P k
2  �kSkk1, P k

3  � tr(Lk
�LkT

) . Initialize primal objective
7: while kPk+1

1 �Pk
1 k2

F

kPk
1 k2

F
> ✏ &

kPk+1
2 �Pk

2 k2
F

kPk
2 k2

F
> ✏ &

kPk+1
3 �Pk

3 k2
F

kPk
3 k2

F
> ✏ &

kZk+1
1 �Zk

1 k2
F

kZk
1 k2

F
> ✏ &

kZk+1
2 �Zk

2 k2
F

kZk
2 k2

F
> ✏ do

8: Update Lk+1 using eq. 5
9: Update Sk+1 using eq. 6

10: Update W k+1 using eq. 7
11: Update Zk+1

1 using eq. 2
12: Update Zk+1

2 using eq. 3
13: Update P k+1

1 , P k+1
2 and P k+1

3 using step 6.
14: k  k + 1

15: end while
16: return Lk+1, Sk+1

17: end procedure

A.3. Convergence Analysis & Computational Complexity

Algorithm 1 is a special case of Alternating Directions method [23], [4]. These methods are a subset of more general class
of methods known as Augmented Lagrange Multiplier methods. The convergence of these algorithms is well-studied [4],
[14], [12]. This algorithm has been reported to perform reasonably well on a wide range of problems and small number of
iterations are enough to achieve a good accuracy [6]. The complexity of nuclear norm proximal computation is O(np2

+ p3
)

for n > p and the computational complexity of the Conjugate Gradient method for updating W is O(np), per iteration. Thus,
the dominant cost of each iteration corresponds to the computation of nuclear proximal operator. Our future work will be
dedicated to reduce this cost by utilizing a partial SVD or an approximate SVD, as suggested in [9]. Further improvements
can be made by using randomized algorithms for SVD [21] and exploiting the parallel processing capabilities [18]. Please
refer to Section A.12 for a detailed comparison of computation time of this algorithm with other models considered in this
work.



A.4. Properties of Various Models & Datasets

Table 2: A summary of the datasets used for the evaluation of various models. As NMF & GNMF require non-negative data
so they are not evaluated for USPS, MFeat and BCI datasets.

Image / Data Datasets Evaluated
non-image Type Models

Image Faces CMU PIE (no pose changes) all
ORL (pose changes)

YALE (facial expressions)
Objects COIL20 (pose changes)
Digits MNIST (rotation)

USPS
non- features BCI (Brain Computer Interface) all except

image MFeat (handwritten numerals) NMF & GNMF

Dimensionality reduction 

Factorized models 

Principal 
components graph 

Principal 
Component 

Analysis based 
models 

Low rank graph 

Non-negative Matrix 
Factorization (NMF) 

Graph Regularized Non-negative 

Matrix Factorization (GNMF) 

Matrix Manifold Factorization 
(MMF) 

Graph Laplacian PCA (GLPCA) 

Robust Graph Laplacian PCA 
(RGLPCA) 

Robust PCA on 
Graphs (our 

model) 

Classical 
PCA 

A summary of all the models evaluated in this work 

Figure 8: A venn diagram summarizing the properties of all the models evaluated in this work.
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Figure 9: Sample images from CMU PIE dataset corrupted with occlusions (first row) and missing pixels (2nd row).



A.5. Evaluation Scheme and Parameter Selection for all Models

Input data  

Model to be evaluated 

Convex
? 

Ncuts, LE, PCA, 
GLPCA, RGLPCA, 
MMF, NMF, GNMF 

RPCA, 
Robust PCA on Graph 

Repeat for each tuple of  
the parameter grid 

Run the model 10 times 

Cluster over  
Q using k-means 

10 times  

Note the minimum error 
over 10 runs of k-means 

Note the minimum error 
over 10 runs of model 

Note the minimum error 
over whole parameter grid 

Repeat for each tuple of 
the parameter grid 

Run the model once 

Cluster over  
Q’ using k-means 

10 times  

Note the minimum error 
over 10 runs of k-means 

Determine Q’ 
via SVD of low-rank  

matrix L 

Note the minimum error 
over whole parameter grid 

No Yes 

Figure 10: A flow chart describing the evaluation and parameter selection procedure for each of the models considered in this
work. Each model has several parameters as described in Table 3. To perform a fair evaluation between all the models, they
are run over the entire parameter range and the minimum error is reported. Further, the non-convex models are run 10 times
(to determine a good local minimum) for every tuple of the parameter range and the minimum error is reported. The k-means
clustering procedure for each of the models is also evaluated 10 times to avoid the bias introduced by its non-convexity.
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A.6. Adjacency Matrix Construction from Corrupted & Uncorrupted Data

Input images 

Detect occlusions 

Form pairs of all the images 

x1 x2

Determine the Euclidean distance  

Corruptions
? 

clean 

occlusions Random missing pixels 

Total Variation denoising 

⌦12 ⌦13⌦23

Extend the mask in 
case of occlusion 

Extend the mask in 
case of occlusion 

x3

!min = min(⌦12, ⌦13, ⌦23)

Compute edge weights for Adjacency matrix  

A23 = exp

⇣
� (⌦23 � !min)

2
2

�2

⌘
A12 = exp

⇣
� (⌦12 � !min)

2
2

�2

⌘
A13 = exp

⇣
� (⌦13 � !min)

2
2

�2

⌘

Figure 11: A procedure for the construction of Adjacency matrix A from clean and corrupted samples X . We assume that
the block occlusions can be detected and the mask can be extended to the other image of the pair to remove the effect of
occlusion in the calculation of Euclidean distance. The case of random missing pixels can be handled by using inpainting
techniques, such as Total Variation denoising.



A.7. Clustering Results on all Databases

Table 4: A comparison of clustering error of our model with various dimensionality reduction models using the procedure
of Fig. 10. The image data sets include: 1) ORL 2) CMU PIE 3) YALE and 4) COIL20. The compared models are: 1)
k-means 2) Normalized Cuts (NCuts) 3) Laplacian Eigenmaps (LE) [2] 4) Standard Principal Component Analysis (PCA)
5) Graph Laplacian PCA (GLPCA) [10] 6) Robust Graph Laplacian PCA (RGLPCA) [10] 7) Manifold Regularized Matrix
Factorization (MMF) [24] 8) Non-negative Matrix Factorization [13] 9) Graph Regularized Non-negative Matrix Factoriza-
tion (GNMF) [5] and 10) Robust PCA (RPCA) [6]. Two types of full and partial corruptions were introduced in the data: 1)
Block occlusions and 2) Random missing values. The best results are highlighted in bold. This table provides the numerical
errors for the bar plots shown in Fig. 1.

Data Set Model No Sample specific corruptions Full Corruptions
Corruptions Occlusions Missing values Occlusions Missing

(25% of data) (25% of data) (% of image size) (% of image pixels)
25% image size 25% image pixels 15% 25% 40% 15% 25% 35% 50%

CMU PIE 1 k-means 72.2 72.5 73.4 78.5 79.4 81.0 72.3 76.1 75.7 80.3
(faces) NCuts 41.7 36.0 40.0 42.0 40.0 44.0 35.0 41.3 40.7 46.7

LE 41.7 40.0 43.3 49.3 54.0 51.3 46.3 46.0 48.3 55.0
PCA 13.0 25.7 34.0 42.7 45.0 61.0 35.0 50.0 56.3 63.7

GLPCA 29.8 27.7 38.3 38.0 40.2 41.3 39.3 37.5 42.7 48.2
RGLPCA 28.0 28.3 31.7 35.0 41.3 39.0 34.3 33.7 28.7 42.0

MMF 53.7 50.0 55.0 54.0 58.0 60.7 59.7 60.3 60.3 62.7
NMF 49.0 68.0 70.3 76.0 80.0 79.3 49.0 76.0 80.0 79.3

GNMF 52.7 66.0 68.3 71.3 75.0 75.3 52.7 71.3 75.0 75.3
RPCA 3.3 4.3 11.0 6.7 13.3 23.3 9.7 8.3 17.0 37.3

Our model 0.0 4.7 6.9 5.0 7.7 17.7 7.7 7.5 15.7 34.0
ORL2 k-means 35.4 57.6 50.8 64.3 68.4 77.5 36.0 42.4 49.4 57.1
(faces) NCuts 47.0 35.7 43.0 42.3 53.0 61.0 49.7 45.7 42.7 46.7

LE 45.3 38.0 34.7 39.0 45.3 54.3 42.7 45.0 44.0 42.7
PCA 28.0 46.0 37.3 53.7 65.0 72.6 34.3 39.0 40.3 40.0

GLPCA 27.6 28.3 29.7 33.6 34.1 44.3 30.3 27.9 27.6 33.3
RGLPCA 28.3 28.7 29.0 28.3 36.3 37.3 26.0 29.3 26.7 26.3

MMF 20.3 29.7 24.3 30.0 34.7 38.3 24.7 28.3 28.3 27.3
NMF 29.0 31.7 27.7 78.0 79.0 81.3 29.7 39.3 50.3 53.3

GNMF 22.7 29.0 25.3 35.0 37.0 39.3 25.3 26.7 28.0 26.7
RPCA 18.6 27.7 20.3 26.0 35.0 71.4 24.7 26.0 27.0 36.0

Our model 15.7 20.0 14.3 23.7 24.7 31.7 20.0 18.3 20.3 21.0
YALE 3 k-means 53.4 54.9 64.5 71.6 73.4 73.1 54.3 56.4 58.9 63.5
(faces) NCuts 54.5 57.6 64.4 66.7 64.2 68.5 56.4 56.9 61.2 61.8

LE 57.6 57.0 61.8 63.6 68.5 69.1 57.8 59.4 60.6 66.7
PCA 53.9 49.7 58.8 61.8 66.1 70.9 55.7 55.1 62.4 61.2

GLPCA 49.1 50.9 53.9 54.5 61.2 58.2 50.9 52.7 48.5 56.9
RGLPCA 48.5 50.0 50.9 54.5 55.2 58.8 50.3 53.9 49.7 50.9

MMF 38.8 37.6 46.7 55.7 55.2 53.9 38.2 38.2 44.2 49.1
NMF 63.0 63.6 70.3 72.1 71.5 72.1 64.8 61.2 61.8 66.7

GNMF 56.9 55.8 57.6 60.6 64.8 60.6 56.9 56.9 58.2 59.4
RPCA 39.4 40.6 45.5 61.8 67.9 63.0 42.4 39.4 43.6 63.6

Our model 35.1 35.8 40.0 43.6 46.1 50.9 35.2 35.8 39.4 50.3
COIL20 4 k-means 32.0 55.2 30.2 34.9 45.8 57.8 36.3 34.8 37.8 42.8
(objects) NCuts 44.5 30.5 39.5 38.5 38.5 43.5 38.0 50.0 48.0 47.5

LE 38.0 31.5 27.0 34.5 36.5 40.0 31.0 37.5 40.0 39.0
PCA 30.5 43.5 28.5 28.0 37.0 50.0 24.0 30.0 33.5 31.0

GLPCA 20.5 22.0 17.0 25.0 25.5 25.3 21.7 21.5 21.5 23.3
RGLPCA 18.5 23.5 17.5 20.5 22.0 23.5 22.0 20.0 22.0 21.0

MMF 18.0 19.0 11.5 19.0 18.0 25.0 19.0 18.0 19.0 18.5
NMF 20.0 30.0 19.0 32.5 47.0 60.5 17.5 26.0 24.0 26.0

GNMF 15.5 18.5 9.5 20.0 19.5 30.0 14.5 13.5 11.0 17.0
RPCA 19.0 33.0 13.5 19.0 28.0 50.5 15.0 16.0 16.5 27.0

Our model 15.5 18.0 9.0 18.0 17.5 19.5 8.5 12.0 16.5 15.0



Table 5: A comparison of clustering error of our model with various dimensionality reduction models. The image data sets
include: 1) MNIST and 2) USPS. The compared models are: 1) k-means 2) Normalized Cuts (NCuts) [19] 3) Laplacian
Eigenmaps (LE) [2] 4) Standard Principal Component Analysis (PCA) 5) Graph Laplacian PCA (GLPCA) [10] 6) Robust
Graph Laplacian PCA (RGLPCA) [10] 7) Manifold Regularized Matrix Factorization (MMF) [24] 8) Non-negative Matrix
Factorization [13] 9) Graph Regularized Non-negative Matrix Factorization (GNMF) [5] and 10) Robust PCA (RPCA) [6].
Two types of full and partial corruptions were introduced in the data: 1) Block occlusions and 2) Random missing values.
The best results are highlighted in bold.

Data Set Model No Sample specific corruptions Full Corruptions
Corruptions Occlusions Missing values Occlusions Missing

(25% of data) (25% of data) (% of image size) (% of image pixels)
25% image size 25% image pixels 15% 25% 40% 15% 25% 35% 50%

MNIST5 k-means 62.2 71.2 59.6 68.2 79.2 82.5 62.0 60.5 60.6 65.9
(digits) NCuts 69.3 86.7 59.0 85.3 87.3 86.0 77.7 78.7 83.7 86.7

LE 71.0 88.0 55.3 88.0 89.3 89.0 68.7 55.3 86.3 89.3
PCA 52.0 60.0 51.3 68.3 77.0 77.3 46.0 57.3 61.0 57.0

GLPCA 49.3 63.7 44.7 59.3 71.7 79.0 45.3 51.7 56.3 57.1
RGLPCA 46.3 64.7 51.0 55.3 65.3 73.7 52.7 53.0 53.7 44.3

MMF 45.7 65.7 45.0 52.7 65.3 77.3 52.7 44.7 53.3 55.7
NMF 46.3 67.3 33.7 60.0 72.3 72.0 52.0 47.7 49.7 47.0

GNMF 49.7 72.7 35.3 51.7 71.0 83.7 50.7 42.7 44.7 40.7
RPCA 39.0 53.3 43.0 64.7 73.7 78.0 44.7 44.7 52.7 70.7

Our model 31.7 46.0 32.3 53.0 62.7 69.7 29.7 33.7 35.3 37.7
USPS k-means 51.0 45.3 54.0 55.4 66.2 73.8 41.2 41.7 40.1 38.9
(digits) NCuts 54.0 49.3 61.3 68.3 72.7 75.7 53.0 47.7 55.7 55.3

LE 64.7 52.7 67.7 74.3 81.7 83.0 65.0 71.7 66.0 63.3
PCA 49.7 42.0 50.3 55.0 66.0 71.7 43.3 36.0 39.3 48.0

GLPCA 45.8 26.7 45.0 46.9 56.7 68.9 39.7 38.3 33.5 32.5
RGLPCA 42.0 33.3 46.7 45.0 59.0 63.7 33.3 26.7 35.7 37.0

MMF 33.0 22.3 40.7 37.7 50.3 62.6 21.5 21.6 20.7 20.7
RPCA 28.3 29.0 46.7 56.0 67.7 69.7 29.0 32.3 32.6 38.0

Our model 21.3 21.7 35.3 42.0 48.0 56.0 21.5 21.3 20.5 27.3

Table 6: A comparison of clustering error of PCA models and simple k-means for MFeat and BCI data sets. Each of the data
sets was corrupted with two types of outliers: 1) Block occlusions and 2) Missing values. Block occlusions in non-image
databases correspond to an unrealistic assumption so such experiments were no performed for these datasets. Furthermore,
NMF and GNMF were not evaluated because they require non-negative data whereas these datasets are negative as well. The
best results are highlighted in bold.

Data Model No Sample specific Full Corruptions
Set Corruptions Missing values Missing values

(25% of data) (% features per sample)
25% features per sample 15% 25% 35% 50%

MFeat 6 k-means 32.4 30.8 25.5 29.9 32.2 33.9
NCuts 39.8 47.0 26.3 28.3 33.5 37.8

LE 38.0 47.3 35.3 33.0 33.5 50.8
PCA 7.3 7.3 10.0 11.8 9.0 13.8

GLPCA 6.0 12.5 6.0 7.8 8.0 10.0
RGLPCA 9.5 15.0 15.0 17.3 8.3 14.8

MMF 7.3 6.3 6.0 5.3 7.0 7.0
RPCA 5.0 4.3 3.8 6.3 9.5 15.0

Our model 3.3 2.0 3.5 4.3 6.8 7.0
BCI 7 k-means 47.8 47.2 47.8 47.8 48.0 48.2

NCuts 47.0 47.0 47.3 47.5 47.3 48.3
LE 46.5 49.7 49.8 49.8 49.8 45.8

PCA 45.3 45.2 42.0 43.0 43.0 45.5
GLPCA 46.5 46.0 45.8 45.8 46.5 45.0

RGLPCA 45.5 43.7 46.5 44.3 43.8 42.8
MMF 47.25 47.2 47.0 47.5 47.3 48.3
RPCA 39.8 43.0 40.0 42.8 43.5 43.0

Our model 40.3 37.7 39.0 42.3 42.0 41.0



A.8. A Comparison of the Principal Directions U Learned with Low-Rank and Principal Components Graph
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Figure 12: A comparison of the principal directions U learned with low-rank graph tr(L�LT
) and principal components

graph regularizationtr(Q�QT
) for the CMU PIE dataset. Each row shows the 1

st two principal directions U and the cor-
responding singular values for each of the PCA models evaluated in this work. For the factorized models (PCA, GLPCA,
RGLPCA and MMF) the principal directions U are explicitly learned. For RPCA and our model, U is obtained by singular
value decomposition of the low-rank matrix L, i.e. L = U⌃Q

0
. The low-rank graph for our model clearly helps in learning

a corruption free U . Even though the 2

nd principal direction for our model has a large effect of occlusion, we note that the
corresponding singular value (2nd bar) is much smaller as compared to the 1

st. For all the other models, each of the two
principal directions are affected by occlusions and the corresponding singular values are significant. This explains why a
low-rank graph helps in an enhanced low-rank recovery and a lower clustering error in low dimensional space than
the principal components graph.



A.9. Additional Low-Rank Recovery Results on CMU PIE Dataset
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Low Rank recovery of occluded images of CMU PIE dataset with the best visual results highlighted in red  

Figure 13: A comparison of the clean low-rank recovered images of the CMU PIE data set corresponding to each of the PCA
models considered in this work. For this experiment, the images of one person are corrupted by block occlusions occupying
10% of the image. Each row corresponds to a different image of the same person occluded at a random position. 1

st figure in
each row shows the actual occluded image. 2

nd and 3

rd figures show the whitened occluded and un-occluded images. Since
PCA requires whitening, the recovered low-rank images in figures 4 to 8 using GLPCA, RGLPCA, MMF, RPCA and our
model resemble the un-occluded whitened image. The best recovered low-rank representations (via a visual inspection) are
highlighted with a red box.



A.10. Additional Results for Background Separation from Videos

(a) Restaurant food counter. The lightning effect (not static) is less visible in right figure than the middle one.

(b) Airport hallway. The moving person (not a part of static background) is less visible in the right figure than the middle one.

(c) Shopping mall lobby. All the moving people are removed in both the middle and right figures.

Figure 14: Static background separation from three different videos. a) restaurant food counter, b) airport hallway and c)
shopping mall lobby. In each of the cases: the leftmost figure shows one actual frame of the video, the middle figure shows
the recovered static background using Robust PCA [6] with � = 1/

p
max(n, p) and the rightmost figure shows the recovered

background using our model with � = 1/
p

max(n, p) and � = 10. The effect of graph can be appreciated in the first two
cases. In a) the changes in the illumination (which are not a part of static background) are more visible in the Robust PCA
model than our model. In b) the moving person is more obvious in Robust PCA recovered background than our model. For c)
the two models perform equally well. Please note that depending on the video, some tuning of parameter � might be needed
[8]. We recommend a range of � 2 [1, 2]/

p
max(n, p) as shown in our low-rank recovery experiments for artificial datasets

in Fig. 16. However, for the three videos used in this work � = 1/
p

max(n, p) was found as the best parameter
.



A.11. Parameter Selection for the Proposed Model

A.11.1 Parameter Selection for Clustering

       2 classes, No occlusions        2 classes, 40% occlusions 

       10 classes, No occlusions        10 classes, 40% occlusions 

Without graph Without graph 

Without graph Without graph 

Increasing occlusions 

Parameter Selection for Clustering  

Figure 15: Variation of clustering error over (�, �) grid for different size, classes and occlusions in the CMU PIE data set.
x-axis shows the variation with increasing occlusion size and y-axis with increasing size of the data matrix n and number of
classes k. The horizontal red lines show a range of � 2 [1, 2]/

p
max(n, p). The clustering error always attains a minimum

value within this range of � irrespective of the size of the data matrix, occlusions or the number of classes. Furthermore, a
wide range of � values attain a minimum clustering error in the region between the red lines. Thus, a simple rule can be
used to choose a set of good parameters: Fix � 2 [1, 2]/

p
max(n, p) and then perform a cross-validation over a coarse

range of � values. In fact � = 1/
p

max(n, p) is always a good choice for the images which have no occlusions and are only
affected by shadows and illumination changes. Each strip on the left of (�, �) plot shows the variation of clustering error
with � (y-axis) for � = 0 (Robust PCA). Clearly, the use of a graph increases the range the possible � values which attain a
minimum clustering error.



A.11.2 Parameter Selection for Low-Rank Recovery

Increasing error 

Parameter Selection for Exact Low Rank Recovery 

Rank = 0.1n, Error = 6% Rank = 0.1n, Error = 14%

Rank = 0.02n, Error = 14%Rank = 0.02n, Error = 6%

Figure 16: Variation of low-rank normalized reconstruction error over (�, �) grid for different ranks and errors (corruptions)
in the artificially generated dataset with Bernoulli support and random sign scheme for sparse errors (Section 8.1). x-axis
shows the variation with increasing fraction of errors and y-axis with increasing rank of the data matrix X . The horizontal
red lines show a range of � 2 [1, 2]/

p
max(n, p). The clustering error always attains a minimum value within this range of

� irrespective of the size of the (rank, error) setting. Furthermore, a wide range of � values attain a minimum clustering
error in the region between the red lines. Thus, the same simple rule as clustering can be used to choose a set of good
parameters: Fix � 2 [1, 2]/

p
max(n, p) and then perform a cross-validation over a coarse range of � values. Similar to

our observation for clustering error, � = 1/
p

max(n, p) is always a good choice for the datasets with low fraction of errors.



A.12. Comparison of Computation Times

Table 7: A comparison of computational times (in secs) for one run of each model with increasing size of data matrix. For
this experiment, different size of the CMU PIE dataset (n = 300, 600 and 1200) is corrupted with 20% occlusions and the
computation time and accuracy is computed for one run of each model. To perform a fair comparison between the models,
the parameter tuple for each model is chosen using the procedure of Section A.5. The non-convex models are run 10 times
and the computational time and accuracy of the run with the minimum clustering error are reported. The convex models
are run only once. Clearly, RGLPCA has the highest computation time, followed by our proposed model. However, the
trade-off between the clustering error and computational time is worth observing. Our model takes more time to converge but
attains the minimum clustering error. This large computation time is dominated by the expensive SVD step in every iteration.
Our future work will be focused on reducing the complexity of this model by exploiting the distributed and parallel
computation techniques.

Model n = 300 n = 600 n = 1200
Time (secs) Clustering error (%) Time (secs) Clustering error (%) Time (secs) Clustering error (%)

1 NCuts 0.24 47.2 0.72 48.3 1.31 49.0
2 LE 0.24 48.1 0.70 50.2 1.24 52.7
3 PCA 0.11 34.3 0.17 35.9 0.20 38.3
4 GLPCA 0.12 37.5 0.43 36.1 1.60 37.2
5 RGLPCA 150.4 34.8 356.6 35.3 1187.6 37.2
6 MMF 0.13 36.7 0.32 37.5 1.52 38.9
7 NMF 0.15 43.9 0.62 45.6 1.30 47.4
8 GNMF 1.20 41.2 0.62 40.3 1.30 45.9
9 RPCA 59.8 10.5 159.3 12.6 678.3 14.9
10 Our model 69.7 8.4 169.6 10.9 869.8 13.8


