Principal Component Analysis (PCA) is the most widely used tool for linear
dimensionality reduction and clustering. Still it is highly sensitive to
outliers and does not scale well with respect to the number of data samples.
Robust PCA solves the first issue with a sparse penalty term. The second issue
can be handled with the matrix factorization model, which is however
non-convex. Besides, PCA based clustering can also be enhanced by using a graph
of data similarity. In this article, we introduce a new model called "Robust
PCA on Graphs" which incorporates spectral graph regularization into the Robust
PCA framework. Our proposed model benefits from 1) the robustness of principal
components to occlusions and missing values, 2) enhanced low-rank recovery, 3)
improved clustering property due to the graph smoothness assumption on the
low-rank matrix, and 4) convexity of the resulting optimization problem.
Extensive experiments on 8 benchmark, 3 video and 2 artificial datasets with
corruptions clearly reveal that our model outperforms 10 other state-of-the-art
models in its clustering and low-rank recovery tasks