2 research outputs found

    Memristor MOS Content Addressable Memory (MCAM): Hybrid Architecture for Future High Performance Search Engines

    Full text link
    Large-capacity Content Addressable Memory (CAM) is a key element in a wide variety of applications. The inevitable complexities of scaling MOS transistors introduce a major challenge in the realization of such systems. Convergence of disparate technologies, which are compatible with CMOS processing, may allow extension of Moore's Law for a few more years. This paper provides a new approach towards the design and modeling of Memristor (Memory resistor) based Content Addressable Memory (MCAM) using a combination of memristor MOS devices to form the core of a memory/compare logic cell that forms the building block of the CAM architecture. The non-volatile characteristic and the nanoscale geometry together with compatibility of the memristor with CMOS processing technology increases the packing density, provides for new approaches towards power management through disabling CAM blocks without loss of stored data, reduces power dissipation, and has scope for speed improvement as the technology matures.Comment: 10 pages, 11 figure

    VNToR: Network Virtualization at the Top-of-Rack Switch

    Get PDF
    Cloud providers typically implement abstractions for net- work virtualization on the server, within the operating sys- tem that hosts the tenant virtual machines or containers. Despite being flexible and convenient, this approach has funda- mental problems: incompatibility with bare-metal support, unnecessary performance overhead, and susceptibility to hypervisor breakouts. To solve these, we propose to offload the implementation of network-virtualization abstractions to the top-of-rack switch (ToR). To show that this is feasible and beneficial, we present VNToR, a ToR that takes over the implementation of the security-group abstraction. Our prototype combines commodity switching hardware with a custom software stack and is integrated in OpenStack Neutron. We show that VNToR can store tens of thousands of access rules, adapts to traffic-pattern changes in less than a millisecond, and significantly outperforms the state of the art
    corecore