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ABSTRACT
In-memory computing (IMC) has emerged as a new computing paradigm able to alleviate or suppress the memory bottleneck, which is
the major concern for energy efficiency and latency in modern digital computing. While the IMC concept is simple and promising, the
details of its implementation cover a broad range of problems and solutions, including various memory technologies, circuit topologies,
and programming/processing algorithms. This Perspective aims at providing an orientation map across the wide topic of IMC. First, the
memory technologies will be presented, including both conventional complementary metal-oxide-semiconductor-based and emerging resis-
tive/memristive devices. Then, circuit architectures will be considered, describing their aim and application. Circuits include both popular
crosspoint arrays and other more advanced structures, such as closed-loop memory arrays and ternary content-addressable memory. The
same circuit might serve completely different applications, e.g., a crosspoint array can be used for accelerating matrix-vector multiplication
for forward propagation in a neural network and outer product for backpropagation training. The different algorithms and memory prop-
erties to enable such diversification of circuit functions will be discussed. Finally, the main challenges and opportunities for IMC will be
presented.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0136403

I. INTRODUCTION
Data-intensive computing tasks, such as data analytics,

machine learning, and artificial intelligence (AI), require frequent
access to the memory to exchange data input, output, and com-
mands. Since the high-density memory is generally off-chip with
respect to the central processing unit (CPU), data movement rep-
resents a significant overhead in the computation, largely exceeding
the energy required for on-chip digital data processing.1,2 There are
two possible directions to tackle this memory bottleneck: one is
the optimization of the data throughput in a multi-chip approach,
such as the high bandwidth memory (HBM)3 or the hybrid mem-
ory cube (HMC).4 The second approach is to radically change the
computing paradigm by enabling in situ computation of data within
the memory, which goes by the name of in-memory computing
(IMC).5–8

Various concepts of IMC have been proposed depending on
the degree of integration of memory and processing, as illus-
trated in Fig. 1. On the one hand, a conventional von Neumann

architecture depicted in Fig. 1(a) has physically separate memory
and computing unit sitting on distinct chips, where the move-
ment of input/output/instructions causes significant latency and
excess energy consumption. One solution to mitigate these issues
is the concept of near-memory computing (NMC) shown in
Fig. 1(b), where the embedded nonvolatile memory (eNVM) is inte-
grated on the same chip as the computing unit to minimize the
latency.9,10 Note that eNVM serves as pure data storage for para-
meters and instructions in NMC, while the static random access
memory (SRAM) is used as a cache memory storing intermediate
input/output data. A further degree of integration consists of the
true IMC approach shown in Fig. 1(c), where the SRAM is used
directly as a computational engine, e.g., to accelerate matrix-vector
multiplication (MVM).8 An additional overhead is the need to move
the computational parameters from the local eNVM [or an off-chip
dynamic random access memory (DRAM)] to the volatile SRAM
every time the computation is needed. To mitigate this drawback,
the ultimate concept to maximize the integration of memory and
processing is IMC within the eNVM, as shown in Fig. 1(d).7 This
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FIG. 1. Various degrees of integration between memory and computing units. (a)
von Neumann architecture for computing systems, where the central process-
ing unit and the memory unit are physically separated and connected through a
data bus. (b) Near-memory computing architecture, where the processing unit is
complemented with an eNVM unit to store commands and parameters. (c) SRAM-
based in-memory computing architecture, where computation is performed directly
within the SRAM unit via dedicated peripherals, while eNVM serves as storage for
computational parameters. (d) eNVM-based in-memory computing architecture,
where eNVM provides both the nonvolatile storage of computational parameters
and the computation.

approach appears as the most promising concept to minimize the
data movement, hence energy consumption and latency, although
there are significant challenges and trade-offs in terms of through-
put, energy efficiency, and accuracy of the processing. Emerging
memories represent a promising approach for eNVM in IMC, given
several attractive properties of scaling, 3D integration of back-end
processing, and nonvolatile storage of computing parameters. The
interplay of device technologies, circuit engineering, and algorithms
thus requires a strong effort in terms of co-design across multiple
disciplines.11

This Perspective provides an overview of IMC, including
the status of the memory device technologies and the circuit
architectures for a broad portfolio of applications. Section II
describes the state-of-the-art memory devices for IMC, including
both two-terminal and three-terminal emerging memory technolo-
gies. Section III presents the concept of analog IMC, highlight-
ing the main challenges from a memory array point of view.
Section IV addresses matrix-vector multiplication, which is a fun-
damental computing primitive at the basis of most IMC applica-
tions. Section V reviews the state-of-the-art of closed-loop IMC,
which enables highly complex algebraic operations with reduced
complexity. Section VI presents an overview of the field of content-
addressable memories. Section VII focuses on accelerators for the
training of neural networks based on in-memory outer product.
Section VIII addresses brain-inspired neuromorphic computing
leveraging device physics to reproduce neurobiological processes of
sensing and learning. Finally, Sec. IX provides an outlook on the next
urgent challenges and opportunities that need to be addressed.

II. EMERGING MEMORY TECHNOLOGIES
Charge-storage memories based on the complementary metal-

oxide-semiconductor (CMOS) technology provide the mainstream

FIG. 2. Schematic illustration of the memory hierarchy in traditional CMOS-based
computing systems. Registers and cache memories have relatively fast access
and low capacity. Moving away from the CPU (top), memories increasingly display
slower access and larger capacity. The storage class memory can bridge the gap
between high-performance working memory and low-cost storage devices.

memory technology for digital computing systems. Figure 2 illus-
trates the memory hierarchy of CMOS-based computing systems,
including (from top to bottom) on-chip registers and static ran-
dom access memory (SRAM), followed by off-chip dynamic random
access memory (DRAM) and nonvolatile Flash storage. While per-
formance (e.g., access time) decreases from top to bottom, the area
density and cost decrease from bottom to top, with NAND flash rep-
resenting the highest density thanks to 3D integration.12,13 Within
this scenario, emerging memories based on material storage have
been developed in an effort to provide a better trade-off between per-
formance, area, and cost. In particular, emerging memory devices
show unique storage principles relying on the physics of the active
materials and offer advantages in terms of scalability,14 integration
in 3D structures,15,16 and energy efficiency. These properties are
also attractive for application as embedded memories in systems-
on-chip, where flash memory faces additional integration difficulties
due to the high-κ/metal-gate process of the silicon front-end cir-
cuits.17 Emerging memories have also attracted a considerable inter-
est for IMC applications thanks to the nonvolatile storage of com-
puting weights, high density, and fast programming/read. Figure 3
shows a summary of the main emerging memories, including two-
terminal and three-terminal devices. Table I shows a summary of
the properties of emerging memories compared to other nonvolatile
memory technologies.18

A. Resistive switching memory (RRAM)
Figure 3(a) schematically shows the resistive random-access

memory (RRAM), consisting of a metal–insulator–metal (MIM)
stack where the insulating layer serves as the active switching mate-
rial. The bottom electrode (BE) typically consists of a relatively inert
metal, such as Pt or TiN, while the top electrode (TE) is generally a
more reactive metal, such as Ti or Ta.19–21 In most cases, the switch-
ing layer is made of a metal oxide22 although also other materials
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FIG. 3. Schematic illustration of the emerging memory technologies considered for IMC, including both two-terminal and three-terminal devices. (a) Resistive random access
memory (RRAM). (b) Phase change memory (PCM). (c) Ferroelectric resistive random access memory (FeRAM). (d) Spin-transfer torque magnetic random-access memory
(STT-MRAM). (e) Ferroelectric field-effect transistor (FeFET). (f) Spin–orbit torque magnetic random-access memory (SOT-MRAM). (g) Electro-chemical random access
memory (ECRAM). (h) Memtransistor based on the MoS2 channel.

TABLE I. Comparison of different memory technologies suited for in-memory computing. Reproduced with permission from D. Ielmini and S. Ambrogio, Nanotechnology 31(9),
092001 (2020). Copyright 2020 Author(s), licensed under a Creative Commons Attribution 4.0 License.

Technology
NOR
flash

NAND
flash RRAM PCM

STT-
MRAM FeRAM FeFET

SOT-
MRAM Li-ion

On/off ratio 104 104 10–102 102–104 1.5–2 102–103 5–50 1.5–2 40–103

Multilevel operation 2 bit 4 bit 2 bit 2 bit 1 bit 1 bit 5 bit 1 bit 10 bit
Write voltage (V) <10 10 <3 <3 <1.5 <3 <5 <1.5 <1
Write time 1–10 μs 0.1–1 ms <10 ns ∼50 ns <10 ns ∼30 ns ∼10 ns <10 ns <10 ns
Read time ∼50 ns ∼10 μs <10 ns <10 ns <10 ns <10 ns ∼10 ns <10 ns <10 ns
Stand-by power Low Low Low Low Low Low Low Low Low
Write energy [J/bit] ∼100 pJ ∼10 fJ 0.1–1 pJ 10 pJ ∼100 fJ ∼100 fJ <1 fJ <100 fJ ∼100 fJ
Linearity Low Low Low Low None None Low None High
Drift No No Weak Yes No No No No No
Integration density High Very high High High High Low High High Low
Retention Long Long Medium Long Medium Long Long Medium ⋅ ⋅ ⋅
Endurance 105 104 105–108 106–109 1015 1010 >105 >1015 >105

Suitability for DNN training No No No No No No Moderate No Yes
Suitability for DNN inference Yes Yes Moderate Yes No No Yes No Yes
Suitability for SNN applications Yes No Yes Yes Moderate Yes Yes Moderate Moderate

have been used, such as nitrides,23 ternary oxides,24 chalcogenides,25

or 2D materials.26,27 Organic materials have been also explored,
taking advantage of the low switching energies, wide-range of tun-
ability, and facile ion-migration.28–30 However, limitations in the
writing speed, scaling, and reliability remain open challenges. The
forming operation generates a conductive filament (CF) across the
switching layer. The CF resistance is changed by electrically induced
chemical redox reactions, where the set operation causes the tran-
sition to the low-resistance state (LRS), while the reset operation
causes the transition to the high-resistance state (HRS). These tran-
sitions can occur either by operating the device under the same
polarity in unipolar RRAM31 or by alternating polarities in bipolar

RRAM.32 Uniform switching RRAM where the resistance can
change without any forming operation has also been proposed.33

B. Phase change memory (PCM)
Figure 3(b) schematically shows the phase change memory

(PCM), which is based on the ability of specific phase change
materials to switch reversibly between the amorphous and the
crystalline phases exhibiting different electrical resistivity.34–36 The
phase change material typically consists of chalcogenides, such
as Ge2Sb2Te5

37 where phase transition can be triggered by the
applied voltage pulse via Joule heating. The PCM offers the ability
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to store intermediate states by modulating the crystalline fraction
within the active material38 although the stability of the mem-
ory state is potentially affected by temperature-dependent reten-
tion, caused by the recrystallization of the amorphous region,39

and drift, caused by the structural relaxation of the amorphous
structure.40 These issues can be handled by materials engineering
to improve the high-temperature stability41 and device engineer-
ing to reduce the resistance drift.42 The PCM technology has also
been demonstrated in relatively advanced technology nodes, such
as 2843 and 18 nm.44 The very high maturity level of develop-
ment and the higher endurance compared to other non-volatile
memory devices45 make PCM an ideal candidate for in-memory
computing.

C. Ferroelectric random-access memory (FeRAM)
Figure 3(c) schematically shows a ferroelectric random access

memory (FeRAM) device based on the ability of a ferroelectric
layer to display a remnant electric polarization after the applica-
tion of voltage pulses.46 The most typical ferroelectric materials
include perovskites with structure ABO3, where A and B are cations,
e.g., BaTiO3 (BTO)47 and PbZrxTi1−xO3 (PZT).48 Most recently,
FeRAM has seen a revival since ferroelectricity was reported in pure
and doped hafnium oxides HfO2 with an orthorhombic structure.49

While being a CMOS-compatible oxide, HfO2 has a lower dielec-
tric constant compared to perovskite materials, thus enabling the
development of ferroelectric layers with a small thickness between
5 and 30 nm, which is suitable for memory device scaling and 3D
integration.50,51 However, a topic of intense research remains the
realization of ferroelectric layer thickness well below 10 nm with
good uniformity.52 FeRAM is probed by measuring the displace-
ment current during ferroelectric switching and thus is a destructive
operation that is not always practical for in-memory computing
applications. To solve this issue, the ferroelectric tunnel junction
(FTJ) has been developed in which the ferroelectric polarization
is reflected by the device resistance thanks to bilayer stack device
engineering.53

D. Spin-transfer torque magnetic random access
memory (STT-MRAM)

Figure 3(d) schematically shows the spin-transfer torque mag-
netic random access memory (STT-MRAM), consisting of a mag-
netic tunnel junction (MTJ) composed of a thin insulator sand-
wiched between two ferromagnetic (FM) layers. In one of the two
FM layers, the ferromagnetic polarization is pinned by the presence
of adjacent magnetic layers, such as a synthetic antiferromagnetic
stack,54,55 thus acting as a reference for the polarization. The other
layer is free and can change its polarization via electrical pulses.
The free layer magnetization can thus be programmed by apply-
ing a current pulse directly across the MTJ via spin torque.56,57 Two
STT-MRAM states can thus be obtained, namely, a parallel state
with relatively low resistance and an antiparallel state with relatively
high resistance for equal and opposite directions, respectively, of the
magnetic polarization in the pinned and free layers. STT-MRAM
features fast switching and good cycling endurance.58 On the other
hand, the resistance window is generally quite limited (less than a
factor 2) and multilevel operation is hard to achieve.59

E. Ferroelectric field-effect transistor (FeFET)
In addition to two-terminal FeRAM and FTJ, a three-terminal

ferroelectric device has been proposed, namely, the ferroelectric
field-effect transistor (FeFET) in Fig. 3(e). The FeFET consists of
a field-effect transistor where the gate dielectric is a ferroelectric
layer.60,61 The ferroelectric polarization thus affects the threshold
voltage VT , which can be used as a monitor of the memory state,
similar to a floating-gate memory. Contrary to FeRAM devices,
the reading operation of the FeFET device is non-destructive,
which is highly favorable for IMC. In addition, FeFET can be
integrated in vertical 3D architectures62 and can display multi-
level operation by multilayered stack engineering.63 An impor-
tant challenge is the limited cycling endurance of FeFET, which
is typically in the range of 105 cycles, too small for most of
applications.

F. Spin–orbit transfer magnetic random access
memory (SOT-MRAM)

Figure 3(f) schematically shows the spin–orbit torque magnetic
random access memory (SOT-MRAM). Similar to the STT-MRAM
device, SOT-MRAM consists of an MTJ structure deposited on top
of a metallic line made of a heavy metal, such as Pt or Ta.64,65 To
program the SOT-MRAM device, a current pulse is applied along
the heavy metal line, causing a polarity-dependent accumulation of
spin-polarized electrons, thus inducing the magnetization switch-
ing in the free layer.65 The read operation is conducted by probing
the MTJ resistance, similar to STT-MRAM. The separation between
programming and reading paths allows minimizing the MTJ degra-
dation, thus improving the cycling endurance with respect to
STT-MRAM devices. Recently, the integration of SOT-MRAM with
the CMOS technology has been demonstrated.66 Similar to MTJ
devices, STT-MRAM suffers from a relatively small resistance win-
dow and difficult multilevel operation. Another potential issue is the
need for an external magnetic field to support the free-layer switch-
ing, which can be overcome by advanced structures with built-in
magnetic fields.67

G. Electrochemical random-access memory (ECRAM)
Figure 3(g) schematically shows the electro-chemical random

access memory (ECRAM), where the conductivity of a metal-
oxide transistor channel can be changed by ionized defects injec-
tion across the vertical stack, consisting of a reservoir layer and
a solid-state electrolyte layer.68–70 Defects might consist of oxy-
gen vacancies,71 Li ions,72 or protons.73 Organic materials have
also been explored,74,75 demonstrating various synaptic and neu-
ronal functionalities. Similar to SOT-MRAM, the three-terminal
ECRAM structure allows decoupling the read and write paths,
thus improving cycling endurance and reducing energy consump-
tion thanks to the extremely low conductivity of the metal oxide
channel, e.g., WO3.69 Controllable and linear potentiation character-
istics were reported, which makes ECRAM a promising technology
for synaptic devices in neuromorphic devices capable of learning
and training.70 3D vertical ECRAM has also been demonstrated,76

paving the way for ECRAM-based high-density cross-point
arrays.
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H. Memtransistor
Memtransistor devices combine the three-terminal transistor

structure with the memristor-like ability to change the channel con-
ductance by the application of an in-plane drain–source voltage.77–79

Typical memtransistors consist of a FET with a 2D semiconduc-
tor channel, such as MoS2. The memory behavior is obtained by
applying large source–drain voltages, which can induce the resis-
tance change by various physical mechanisms, such as field-induced
dislocation migration in the polycrystalline MoS2 channel,77,78 the
dynamic tuning of the Schottky barrier at the metal–semiconductor
contact,80 or the direct cation migration from the electrodes on
the surface of a 2D semiconductor.79,81 Other implementations of
memtransistors exploit the optical properties of the 2D material
(typically, a transition metal dichalcogenide) to develop devices with
neural properties.82,83 Similar neuromorphic devices were obtained
exploiting the ionic diffusion on amorphous oxides, such as ZnO
or indium tungsten oxide (IWO).84–86 The major advantage of the
memtransistor is the three-terminal structure, the atomically thin
channel, and the 3D integration in the back end. However, com-
pared to all the other reported technologies, memtransistors are still
in their early stage of development, with significant challenges on
materials, device structures, and reliability.

III. IN-MEMORY COMPUTING

IMC development has achieved significant progress in the last
10 years, ranging from novel theoretical approaches to experimental
IMC hardware demonstrations in silicon-verified test vehicles. The
range of applications where IMC can offer improved energy effi-
ciency, performance, and scaling opportunities can be divided into
the two macro-categories of static and dynamic IMC, as shown in
Fig. 4(a).

Static IMC, schematically shown in Fig. 4(b), consists of a phys-
ical computing concept where the emerging memories are used to
store data and perform computation without changing or updat-
ing their programmed state.6 Generally, memory devices in static
IMC are first programmed to a desired state to encode pre-trained
computing parameters in the form of conductance levels. Random
states can also be used in some applications, such as the physical
unclonable function (PUF)87 and reservoir computing (RC) where
the stochastic conductance resulting from the fabrication process
is directly used in the computation.88 The programmed memory
arrays are then used as physical matrices to execute in situ vectorial
operations with high parallelism, such as matrix-vector multiplica-
tion (MVM).89 Low voltages are applied to prevent any perturbation

FIG. 4. IMC macro-categories and corresponding applications. (a) Schematic current–voltage (I–V) curve of an emerging memory device, highlighting the low-voltage and
high-voltage/switching regimes, corresponding to static and dynamic IMC, respectively. (b) Examples of static IMC, where the memory stores pre-trained data and executes
the computation, e.g., MVM. (c) Examples of dynamic IMC, in which the switching regime allows reproducing dynamic features, such as adaptation and learning.
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to the conductive states during computation,90 thus resulting in a
low power consumption, which is attractive for decentralized com-
puting architectures, such as edge91 and fog92 computing. The high
degree of parallelism allows reducing the number of operations
needed to carry out a given task, thus achieving O(1) computational
complexity.93,94 Examples of static IMC include matrix-vector-
multiplication (MVM, Sec. IV), inverse-matrix-vector multiplica-
tion (IMVM, Sec. V), and content-addressable memories (CAMs,
Sec. VI).

Dynamic IMC, schematically shown in Fig. 4(c), generally
combines all the opportunities of static IMC with the additional
strength of enabling controlled switching of the memory devices to
reproduce additional functions, such as neuron activation,95 stateful
Boolean logic,96,97 and learning in supervised/unsupervised neural
networks.98–101 A wide range of physical mechanisms can be used
for the controlled switching, such as filament plasticity in RRAM
devices,102 gradual crystallization in PCM devices,95 charge trapping
in MoS2 memtransistors,103 and magnetic polarization for true-
random number generation (TRNG).104 Dynamic IMC provides a
promising avenue for reducing latency, energy, and circuit area by
leveraging the intrinsic device physics of the device instead of emu-
lating the desired characteristics via the analog/digital design of
CMOS-based networks.105 Dynamic and static IMC are generally
combined in the same platform to provide energy-efficient comput-
ing systems capable of learning and adaptation.95,106 Applications of
dynamic IMC include outer product accelerators for neural network
training (Sec. VII) and neuromorphic systems for brain-inspired
computing (Sec. VIII).

IV. MATRIX-VECTOR MULTIPLICATION
A. Concepts and implementation

MVM can be executed in a crosspoint memory array by uni-
versal circuit laws, such as Kirchhoff’s current law for summation
and Ohm’s law for multiplication.7,107 The crosspoint array con-
sists of a matrix of programmable memory elements whose top and
bottom electrodes are, respectively, tied to common columns and
rows, as shown in Fig. 5(a).108,109 According to the IMC concept, the
crosspoint array acts as a physical matrix mapping computational

parameters, e.g., synaptic weights in a neural network, to compute
the MVM physically in the analog domain. This is schematically
shown in Fig. 5(a), where the application of a voltage V j at the jth
column results in a current at the ith row, connected to ground,
given by

Ii =
N

∑
j

Gi,j ⋅ Vj, (1)

where Gi,j is the conductance of the memory element at position
i, j and N is the number of rows and columns.7,107 Equation (1)
can be written in the compact matrix form i = Gv, thus evidenc-
ing the multiplication of the conductance matrix G with the voltage
vector v.

The MVM operation of Fig. 5(a) is carried out without moving
the matrix parameters, in line with in situ processing paradigm of
IMC. In addition, the operation is performed in just one step, thus
minimizing the latency and maximizing the throughput thanks to
a computational complexity of O(1). Such a massive parallelism of
MVM allows for achieving outstanding area and energy efficiency,
compared to traditional digital multiply-and-accumulate (MAC)
operations. Finally, the crosspoint array is generally integrated in
the back end of the line (BEOL) of the CMOS process, thus tak-
ing advantage of 3D stacking and of a small cell area of only 4F2/N,
where F is the lithographic feature size and N is the number stacked
layers.110 Despite the advantages of parallelism, density, and latency,
the MVM concept is an analog computing process that is critically
sensitive to device variability,111,112 noise,113 drift of conductance,40

and parasitic IR drop along wires,114 all affecting the accuracy of
computation. To deal with these parasitic effects, several mitiga-
tion and compensation techniques have been proposed at device,115

algorithm,114,116–120 and architectural levels.121,122

The MVM concept can be extended to virtually all types of
memory devices and cell structures in the array. The one-resistance
(1R) structure of Fig. 5(a) is affected by crosstalk and sneak path
issues during programming and reading.123 These issues can be pre-
vented by adding a selector device in series to the memory element,
resulting in the one-selector/one-resistor (1S1R) structure124–126 or
the one-transistor/one-resistor (1T1R) structure,127–129 illustrated
in Figs. 5(b) and 5(c), respectively. The 1S1R configuration avoids

FIG. 5. Various cell structures for crosspoint array circuits. (a) One-resistor (1R) structure where the cell consists of a passive resistive device. (b) One-selector/one-resistor
(1S1R) structure where the sneak path problem is circumvented by a non-linear selector device without affecting the integration density. (c) One-transistor/one-resistor
(1T1R) structure allows for the selection of individual cells during programming and reading at the cost of a lower integration density. (d) One-capacitor (1C) structure, which
prevents static leakage during MVM.
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sneak path currents during the programming phase by introduc-
ing a highly non-linear two-terminal device109,130,131 that suppresses
the current of unselected and half-selected cells in the array while
maintaining the small 4F2 area of the 1R cell structure.109 The 1T1R
structure ensures tight control of the programming current while
allowing sophisticated program/verify algorithms132 at the cost of
a larger cell area and a higher complexity introduced by the third
terminal. In addition to resistive memory cells, where the compu-
tation parameter is stored in the conductance, capacitive memories
can be adopted with the one capacitance (1C) structure in Fig. 5(d).
Here, the small-signal capacitance can be tuned133 and used in MVM
operations via the charge-voltage capacitor law Q = CV .

From the computational viewpoint, MVM requires the input
vector to be encoded in voltage amplitudes, usually by means of a
digital-to-analog converter (DAC). The output analog current can
be sensed by using a transimpedance amplifier (TIA)134,135 and then
converted by using an analog-to-digital converter (ADC) for fur-
ther processing in the digital domain. Alternatively, the input vector
can be encoded as the time duration tj by pulse-width modula-
tion (PWM).136 This approach is typically implemented in the 1T1R

array, where the time-encoded signal can be applied to the transis-
tors gates, while a constant read voltage Vread is applied across the
cells. PWM requires that the analog current at each row is integrated
to yield the charge Qi according to

Qi =
N

∑
j

VreadGi,j ⋅ tj, (2)

thus providing an alternate MVM operation yielding vector
q = VreadGt similar to Eq. (1).

Note that, while MVM is strongly accelerated thanks to the
array parallelism, memory programming might require a relatively
long time, especially when a high equivalent-bit precision is needed.
However, the programming time can be generally amortized for
applications where the computational parameters remain fixed for
most of the MVM operations. This is the case for discrete cosine
transform (DCT) for extracting frequency components from a data
sequence.137 DCT is routinely applied for image compression, thus
providing an ideal application for IMC.134

FIG. 6. MVM for neural network accelerators. (a) Sketch of a fully connected DNN for image classification. (b) Multi-core architecture where each tile performs MVM between
activation and synaptic weights. (c) Individual core consisting of a crosspoint array with peripheral circuits for input/output communication and conversion. (d) Correlation
plot of energy efficiency as a function of throughput for different hardware accelerators of DNN inference, including eNVM-based, SRAM-based IMC, and a fully digital
approach. Reproduced with permission from Seo et al., IEEE Solid-State Circuits Mag. 14(3), 65–79 (2022). Copyright 2022 IEEE.
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B. Application to neural network inference
Another application where computational parameters remain

constant throughout computation is the forward propagation dur-
ing the inference phase in a deep neural network (DNN).138,139

Figure 6(a) shows a sketch of a fully connected neural network
(FCNN) for image classification with three synaptic layers. Each
synaptic layer can be viewed as a MVM where synaptic weights are
mapped in the conductance matrix, while activations are used as
the input vector. The inference operation can thus be mapped in
several MVMs occurring in distinct crosspoint arrays, each map-
ping a different synaptic layer or a region of the DNN. Figure 6(b)
shows a possible multi-core IMC architecture where each compu-
tational unit performs the assigned computation independently, as
illustrated in Fig. 6(c), while a logic unit collects output data from
the cores and submits activation signals to them. Given the sequen-
tial operation of DNN inference, the architecture and computational
cores can be optimized to maximize the data throughput.

Inference accelerators have been proposed with a variety of
implementations, differing by the adopted memory tech-
nologies;98,127,140 the number of quantized levels of input, weight,
and output;141,142 the peripheral circuits;136,143 the amount of pos-
sible reconfiguration;143 and the possibility of implementing back-
propagation training in addition to forward-propagation
inference.99,144 Similar to FCNN layers, IMC has been shown
to accelerate convolutional layers99,127 and recurrent neural
networks145 by changing the MVM partition and computation
technique.146

IMC can largely improve the energy efficiency and the through-
put of MVM for DNN inference. Figure 6(d) shows the power
efficiency and throughput of the state-of-the-art IMC accelerators
based on nonvolatile memories compared to IMC based on static
random access memory (SRAM) or fully digital accelerators.147

SRAMs feature faster access time and better robustness to variabil-
ity and disturbs thanks to their digital nature and fully silicon-based
CMOS technology. However, SRAM has a larger cell area due to the
6T or 8T bit-cell structure, cannot implement multilevel operations,
and cannot provide nonvolatile storage, thus requiring the upload of
computational parameters at the power-on phase. The latter issue is

a significant drawback in applications where the neural accelerator
frequently switches between stand-by and computing phase, which
is typical in low-power edge-computing applications.

C. Application to combinatorial optimization
MVM represents the core operation of combinatorial optimiza-

tion tasks.148 Here, emerging memories can provide both the MVM
operation via the crosspoint array and the stochastic physical noise,
which is generally needed to navigate among the local minima of the
cost function. Indeed, metaheuristic optimization techniques, such
as chaotic simulated annealing or stochastic simulated annealing,
require massive MVM and tunable sources of noise. These comput-
ing strategies typically rely on recurrent stochastic networks, such
as the Hopfield neural network, sketched in Fig. 7(a),95,106,149 or
restricted Boltzmann machine (RBM).150–152 In these approaches,
the network is characterized by a certain energy (or cost) function E
that depends on the state of the neurons, which in turn depends on
the synaptic spike stimulations and the injected noise. By properly
tuning the injected noise, it is possible to control the ability of the
neurons to escape from local minima of E, as depicted in Fig. 7(b).
By gradually decreasing the injected noise, the search takes the shape
of a simulated annealing algorithm, where the effective temperature
is slowly decreased in analogy with the cooling phase of physical
annealing. This is shown in Fig. 7(c), where the network manages to
find thermal equilibrium at the global minimum of E, thus solving
the optimization task.145 This approach finds application in several
key workloads in logistics, scheduling, and other NP-hard problems,
such as the traveling salesperson problem.

D. Application to stochastic computing and security
Programming variability is a major issue in deterministic

DNNs by affecting the weight precision, hence the accuracy of
inference. On the other hand, programming variation can pro-
vide a source of stochasticity for specific computing applications,
such as stochastic computing and hardware security. For instance,
Bayesian inference relies on neural networks where the model para-
meters are probability distributions. In this scenario, transferring the

FIG. 7. MVM for combinatorial optimization. (a) Sketch of a Hopfield-type recurrent neural network, characterized by a system energy E. (b) System energy E and iterative
search of the global minimum, representing the optimal solution of the combinatorial task. The decreasing noise allows for reaching the global minimum by escaping local
minima. (c) Evolution of the average energy of a RRAM-based Hopfield RNN for various optimization strategies. Reprinted with permission from Mahmoodi et al., 2019
International Electron Devices Meeting (IEDM) (IEEE, 2019), pp. 14.7.1–14.7.4. Copyright 2019 IEEE.
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FIG. 8. MVM for stochastic computing. (a) Sketch of a Bayesian neural network where synapses and neurons are represented by probability distributions. Reproduced
with permission from Dalgaty et al., Adv. Intell. Syst. 3(8), 2000103 (2021). Copyright 2021 Author(s), licensed under a Creative Commons Attribution 4.0 License. (b)
RRAM-based realization of the Bayesian neural network, where each column describes the distribution of a synaptic parameter. Reproduced with permission from Dalgaty
et al., Adv. Intell. Syst. 3(8), 2000103 (2021). Copyright 2021 Author(s), licensed under a Creative Commons Attribution 4.0 License. (c) NVM-based PUF circuit based on
a passive crosspoint array of stochastic memory devices for the generation of a response as the input of a submitted challenge. Reproduced with permission from M. R.
Mahmoodi, D. B. Strukov, and O. Kavehei, IEEE Trans. Electron Devices 66(12), 5050–5059 (2019). Copyright 2019 IEEE.

ex-situ trained model to the hardware network is less critical since
a probability distribution can be naturally modeled by the physical
distribution of conductance states.153 Figure 8(a) shows the con-
ceptual scheme of an RRAM-based Bayesian network where each
synaptic weight belongs to a certain distribution. Figure 8(b) shows
a possible implementation in an N x M array of RRAM synapses with
1T1R structures.153 Here, the distribution of a synaptic parameter is
modeled by the distribution of conductance states of N devices in
a column, while the input voltages to each column are the outputs
generated by M neurons in the previous layer. By applying a voltage
vector across M columns, each row yields a current that flows into
a neuron circuit, resulting in a distribution of N neuron activation
voltages, namely, the output distribution of the neuron. Based on

the same approach, Monte Carlo Markov chain (MCMC) networks
have been demonstrated with stochastic RRAM arrays.154

The stochastic properties of emerging memories can also pro-
vide the foundation for developing novel security primitive cir-
cuits.104 Figure 8(c) shows the conceptual idea for implementing a
memory-based physical unclonable function (PUF) for chip authen-
tication.87 An input challenge encodes the information to select
specific rows and columns of the crosspoint memory array, thus
generating a single-bit unique response by current comparison. A
1R crosspoint array is adopted to take advantage of circulating
sneak path currents, enabling the participation and interaction of all
memory devices in the array, thus increasing the complexity of the
solution and robustness to external attacks.87

FIG. 9. Closed-loop IMC circuits for IMVM. (a) Circuit for the solution of linear systems155 of the form Ax = b. (b) Circuit for the eigenvector computation, i.e., for the solution
of the secular equation156 Ax = λx. (c) Pseudoinverse matrix computing circuit for the solution of the linear regression problems157,158 of the form Xβ + ε = y.
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V. INVERSE MATRIX-VECTOR MULTIPLICATION
Crosspoint memory arrays with closed-loop circuit topology

can accelerate inverse-matrix vector multiplication (IMVM), such
as linear system solution, matrix inversion, and linear/regularized
regression.155,157,158 Figure 9(a) shows a typical IMVM circuit for
the solution of a linear system, where the array is complemented
with an array of operational amplifiers (OAs). In this circuit, cur-
rents are provided as row input, while the voltages that satisfy Eq. (1)
are automatically established by the OAs via the closed-loop feed-
back connection, thus allowing for the solution for the set of linear
equations by

v = −G−1i. (3)

Similar to open-loop MVM of Sec. IV, closed-loop IMC (CL-IMC)
can achieve the O(1) solution of algebra problems with polynomial
complexity O(nα), where n is the number of linear equations and
α is between 2 and 3.156 CL-IMC appears thus as one of the most
promising candidates for accelerating complex linear algebra tasks
via IMC.

Figure 10(a) shows the experimental output of a hardware
implementation of the circuit in Fig. 9(a) to yield the elements of
a 3 × 3 inverse matrix A−1 as a function of the analytical solution.155

In-memory matrix inversion might find application in a number
of machine learning tasks, such as Markov chain159 and numeri-
cal solution of differential equations.155 With errors as low as 3%,
feedback-based crossbar circuits can provide a viable alternative to
bulky digital processors for linear system solution tasks, serving as a
potential cornerstone of IMC-based analog processing units.

A. Application to ranking algorithms
The CL-IMC prototype topology of Fig. 9(a) can be extended

to eigenvector computation by the circuit of Fig. 9(b).155 Here, the
output is directly fed as input after sign inversion, thus resulting in
a self-sustaining architecture. OAs are used in the transimpedance
amplifier (TIA) configuration, where the feedback conductance Gλ

encodes the principal matrix eigenvalue λ. Kirchhoff’s law at the
virtual ground nodes thus reads

Gv = Gλv, (4)

which electrically matches the secular equation Av = λv. For neg-
ative λ, the analog inversion buffers are removed and the absolute
value ∣λ∣ is encoded as the conductance Gλ. Differently from the lin-
ear system solver in Fig. 9(a), the eigenvector circuit operates in a
positive feedback regime, thus allowing for self-sustaining operation.
Due to the positive feedback, only the eigenvectors of the largest pos-
itive and negative eigenvalues can be solved. In addition, Gλ should
slightly deviate from the ideal λ to initiate the self-sustained dynamic
response.160 Figure 10(b) shows the results of a website ranking task
according to Google’s PageRank algorithm, which is a typical appli-
cation of eigenvector computation,156 together with similar ranking
algorithms.161 It has been estimated that the solution of PageRank
with CL-IMC can provide up to 100× throughput improvement with
respect to a digital computer.156

B. Application to data regression
The CL-IMC concept can be further extended to non-square

matrices as in the computation of the Moore–Penrose inverse or
pseudoinverse.156 Figure 9(c) shows the CL-IMC circuit for matrix
pseudoinverse computation or linear regression. The circuit features
two m × n crosspoint memory arrays, each encoding a given matrix
dataset, and two OA arrays. A simple analysis shows that, by inject-
ing the input current at the virtual grounds of the first m OAs, the
output voltages at the second array of OAs are given by

v = −(GTG)−1GT i = −G+i. (5)

Figure 10(c) shows experimental results for a two-dimensional lin-
ear regression problem on a relatively small scale.156 Note that this
circuit also eliminates the stability constraints of the linear system
solver in Fig. 9(a),90,158 which is limited to positive-definite matrices
only as a requirement for ensuring poles to lie in the left-half-plane.
Furthermore, by using a matrix F instead of simple local-feedback

FIG. 10. Results of closed-loop IMC for IMVM problems. (a) Correlation plot of the experimental results of the inversion of a 3 × 3 matrix as a function of ideal analytical
results. Reproduced with permission from Sun et al., Proc. Natl. Acad. Sci. U. S. A. 116(10), 4123–4128 (2019). Copyright 2019 National Academy of Sciences. (b)
Correlation plot of the circuit output for a PageRank algorithm of the Harvard 500 dataset as a function of the ideal analytical results. Reproduced with permission from Sun
et al., IEEE Trans. Electron Devices 67(4), 1466–1470 (2020). Copyright 2020 IEEE. (c) Experimental demonstration of linear regression on RRAM devices. Reproduced
with permission from Sun et al., Sci. Adv. 6(5), eaay2378 (2020). Copyright 2020 Author(s), licensed under a Creative Commons Attribution 4.0 License.
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conductance for the first m OAs, the same circuit can execute a
generalized regression according to

v = −(GTF−1G)−1GTF−1i = −G+F i, (6)

where F is a generalization matrix for the given dataset.158 Among
the applications of the Moore–Penrose inverse are linear/logistic
regression and prediction, which play an important role in data
analytics and machine learning.157

C. Discussion
CL-IMC allows for the acceleration of several IMVM opera-

tions with reduced complexity, which is attractive for large-scale
general-purpose machine learning accelerators. On the other hand,
CL-IMC also faces considerable challenges, such as the reduced
precision with respect to a floating-point computers, owing to
the increased sensitivity of the analog domain.159 Circuit non-
ideality affecting the computing accuracy includes the parasitic
interconnect resistances,114 electronic noise from circuit compo-
nents,90 and conductance variations.158 The effect of non-ideality
can be mitigated by compensation schemes, array tiling, signal range

increase, and fine-tuned programming algorithms, thus resulting in
a complex trade-off with the overall throughput, area, and energy
consumption.90,122,162 On the other hand, error-tolerant applica-
tions, such as massive multiple-input/multiple-output (MIMO)
decoding in 6G networks, allow for better robustness to circuit
non-ideality.163 Finally, the medium-precision solution obtained
by analog IMC might be used as a seed for high-precision digi-
tal solvers,164 allowing for orders-of-magnitude improvements in
energy consumption and execution time.

VI. COMPUTING WITH CONTENT ADDRESSABLE
MEMORY

The content-addressable memory (CAM) is a specialized mem-
ory structure where stored data are accessed by inputting the desired
data content and extracting their address as the output, which is
the opposite compared to conventional memories.165 Figure 11(a)
shows a schematic structure of a typical ternary content address-
able memory (TCAM), where the third option don’t care or “X” is
available in addition to binary 0 and 1 values in the memory array.
Here, an input pattern presented to the CAM from data lines (DLs)

FIG. 11. Content-addressable memory based on emerging memories. (a) Schematic of a digital TCAM, where binary data are matched against patterns stored in a ternary
array. Reproduced with permission from Pedretti et al., Nat. Commun. 12(1), 5806 (2021). Copyright 2015 Author(s), licensed under a Creative Commons Attribution 4.0
License. (b) RRAM-based TCAM cell, where memory devices M1, M2 store the ternary value as a suitable combination of HRS and LRS states. (c) Memristor-based analog
CAM cell, where the analog input pattern is encoded as the voltage amplitude on the Data Line (DL). Reproduced with permission from Li et al., Nat. Commun. 11(1),
1638 (2020). Copyright 2015 Author(s), licensed under a Creative Commons Attribution 4.0 License. (d) Decision tree for the Iris dataset classification. Reproduced with
permission from Pedretti et al., Nat. Commun. 12(1), 5806 (2021). Copyright 2015 Author(s), licensed under a Creative Commons Attribution 4.0 License. (e) Analog-CAM
implementation of the decision tree in (d), where each root-to-leaf path corresponds to a row of the memory array. Reproduced with permission from Pedretti et al., Nat.
Commun. 12(1), 5806 (2021). Copyright 2015 Author(s), licensed under a Creative Commons Attribution 4.0 License.
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is compared with the stored data and the corresponding match
line (ML) is asserted if a match is found. Due to its inherently
high parallelism, CAM/TCAM is naturally suited to accelerate pat-
tern matching,166,167 branch prediction,168 and lookup operations169

in situ within the memory, thus minimizing data movement.
TCAM parallelism comes at the expense of relatively large area

and power consumption as every memory cell must be equipped
with a dedicated comparison circuit. When implemented using
SRAM memories, a single CAM cell may use up to 16 transistors,165

thus adding significant area, latency, and power overhead for the
search operation and preventing large-scale integration. By replac-
ing conventional SRAM with emerging memories, leakage power
can be reduced and cell density can be improved. Figure 11(b) shows
a differential RRAM-based CAM cell, where memory devices M1
and M2 are programmed to either state LRS/HRS or HRS/LRS to
reproduce values “1” or “0,” respectively.167 State “X” is instead
obtained by programming both RRAM devices to either HRS or
LRS. Depending on the relative ratio of the two conductances (stored
data) and the voltage at the wordline (WL) (input data), the match-
line ML is either asserted low or left high, thus realizing CAM
operation. RRAM-based TCAMs were shown to accelerate regu-
lar expression matching and genomic sequencing with up to 25×
improvement in energy efficiency.167

The analog tunability of emerging memories allows for realiz-
ing analog CAMs capable of analog pattern matching with stored
data. Figure 11(c) shows an analog CAM cell170 where value inter-
vals, rather than binary values, can be stored and compared with
analog input patterns. In this case, the match line is asserted when
all values of the input pattern fall within the ranges stored in
the corresponding row of the memory array. Analog memory-
based CAMs are naturally suited to accelerate more-than-binary
tree-based algorithms, which represent the foundation of many
machine learning tasks. Figure 11(d) shows a proposed implemen-
tation171 of tree-based inference applied to the classification of
the Iris dataset. By mapping each root-to-leaf path into a corre-
sponding row of the memory array, input data can be instantly

classified by coupling the analog CAM to a label array, as shown
in Fig. 11(e), with a ×103 throughput improvement with respect to
digital implementations.171

VII. ONLINE TRAINING BY IN-MEMORY OUTER
PRODUCT

While MVM can efficiently accelerate forward propagation for
DNN inference, it only partially supports the execution of the train-
ing process. In fact, DNN training is by far the most energy- and
time-consuming operation in a DNN.172 The most typical train-
ing methodology relies on the gradient-descent algorithm, such as
the backpropagation approach, which requires a multiple synaptic
weight update and data transferring.138 DNN training requires sev-
eral days/weeks of iterations in multicore supercomputers, such as
the graphical processing unit (GPU) or the tensor processing unit
(TPU), to update billions of synaptic parameters in the network. This
is mainly because all data and synaptic parameters must be trans-
ferred between the memory and the processing unit, which results in
a major memory bottleneck. Figure 12(a) shows a DNN with the typ-
ical training approach, including (i) forward propagation of data for
generating an output neuron, (ii) calculation of the error δj between
the jth neuron current output and the ideal output also known as the
label, and (iii) backpropagation of the error for the weight update
according to

Δwij = ηxiδj, (7)

where Δwij is the weight update, η is the learning rate, and xi is
the input of the pre-synaptic neuron. The operation in Eq. (7) is an
outer product, where the input vectors x and δ generate a matrix of
weight update ΔW to be applied to the whole synaptic layer. The
vector–vector outer product ΔW = x ⊗ y can be accelerated within
the crosspoint array, as shown in Fig. 12(b), where x is mapped as
the pulse-width of the row voltage pulses, while y is mapped as the
amplitude of the column voltage pulses.173

FIG. 12. IMC training by an outer product. (a) Schematic representation of an artificial neural network, where backpropagation training relies on the weight update according
to an outer product of the error δj and the signal xi . (b) Crosspoint implementation of the outer product. The weight wij is updated by a value Δwij = xi ⋅ y j . The multiplicative
effect is obtained by encoding xi as the pulse width of the row voltage pulse and y j as the amplitude of the column voltage pulse. From Agarwal et al., 2016 International Joint
Conference on Neural Networks (IJCNN). Copyright 2016 IEEE. Reproduced with permission from IEEE.
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FIG. 13. Experimental weight-update characteristics by pulses of equal amplitude and pulse-width for potentiation and depression. (a) Update characteristics of TaOx /TiO2
RRAM. Reprinted with permission from Yu et al., 2015 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), pp. 17.3.1–17.3.4. Copyright 2015 IEEE. (b) Update
characteristics of Li-based ECRAM. Reprinted with permission from Tang et al., 2018 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2018), pp. 13.1.1–13.1.4.
Copyright 2018 IEEE. (c) Update characteristics of MoS2-based CTM. Reprinted with permission from Farronato et al., 2022 IEEE 4th International Conference on Artificial
Intelligence Circuits and Systems (AICAS) (IEEE, 2022), pp. 1–4. Copyright 2022 IEEE. (d) Correlation plot of the non-linearity factor ν and normalized conductance window
(Gmax − Gmin)/Gmin for various synaptic devices. Reprinted with permission from Farronato et al., 2022 IEEE 4th International Conference on Artificial Intelligence Circuits
and Systems (AICAS) (IEEE, 2022), pp. 1–4. Copyright 2022 IEEE.

The key requirement for the in-memory outer product of
Fig. 12(b) is the linearity of the conductance change with both pulse
voltage and time or at least one of the two. Conductance update can
be physically obtained by potentiation or depression of the memory
conductance by applying suitable pulses to the devices. The lin-
ear update must be obtained by an open-loop operation, where the
same conductance change is achieved at a given voltage and pulse-
width, irrespective of the initial state. Unfortunately, potentiation
and depression of emerging memories are generally non-linear with
applied voltage as a result of the exponential time–voltage relation-
ship of ion migration, tunneling, and other fundamental physical
processes of set/reset.128

To support the linearity of potentiation/depression with time,
Fig. 13 shows measured conductance update characteristics for
emerging memory devices. The RRAM device in Fig. 13(a) dis-
plays a non-linear increase with the number of pulses, or equiva-
lently time, with an initially steep change followed by a saturation
regime.15,174 Figure 13(b) shows the weight update characteristics
for an ECRAM device, where an improved linearity can be seen
thanks to the three-terminal structure separating the read and pro-
gram paths.69 Figure 13(c) shows the potentiation characteristic for
a MoS2 charge trap memory (CTM) under drain voltage pulses of
equal amplitude.103,175 The conductance update characteristics can
be described by the empirical formula as follows:

G = Gmin + (Gmax −Gmin)(1 − e−νp), (8)

where Gmax and Gmin are the initial and final conductance values, p is
the normalized number of pulses, and ν is a shape factor describing
the linearity of the weight update.

Figure 13(d) summarizes the metrics for synaptic mem-
ory devices, reporting the normalized conductance window
(Gmax −Gmin)/Gmin, describing the full-scale range of the synaptic
weight as a function of the shape factor ν, and describing linear-
ity for various synaptic devices.15,69,175–179 Among all the memory
technologies, the CTM device combines excellent linearity of the
weight update curve with a large conductance window. Note that
the CTM device has a unidirectional characteristic, i.e., depression

is spontaneous and generally non-linear. However, this limitation is
mitigated by a differential synapse scheme where two CTM devices
are combined in the same synapse to map positive and negative
weights.18 CTM also offers extremely low conductance thanks to
the sub-threshold operation, which is useful to suppress the IR drop
and enable the training of large synaptic arrays. MoS2 also displays
excellent scaling properties thanks to the atomically thin 2D semi-
conductor and the capability of 3D integration, thus providing a
promising avenue for high-density 3D crosspoint arrays for training
accelerators.180

VIII. NEUROMORPHIC COMPUTING
Neuromorphic engineering aims at developing computing sys-

tems by using design principles that are based on those of the
biological nervous systems.105,181 By mimicking the human brain,
the objective is to achieve a high energy efficiency, large parallelism,
and the capacity to solve cognitive tasks, such as object recog-
nition, association, adaptation, and learning.18 Most importantly,
the brain provides a blueprint for non-von Neumann computa-
tion, where information and memory are co-located in the same
neurobiological network.182 The neuromorphic term and concept
were originally introduced in the early 1990s181 and later revived
in the early 2000s,183 when the fast growth of online generated
data started to spur the investigation of alternative computing
paradigms. Recently, the neuromorphic engineering topic has seen
a new wave of research interest in view of the added poten-
tial to embrace emerging memories as an enabling technology to
implement brain-inspired processes.184–186

Figure 14 shows a summary of the main neurobiological fea-
tures that can be implemented in a neuromorphic system, includ-
ing synapses and neurons, the latter composed of a soma, an
axon, and several dendrites.187,188 Information is exchanged among
neurons in the form of temporal spikes, which are weighted by
synaptic connections and collected by the neuron soma. Synapses
display synaptic plasticity, where the synaptic weight is changed
upon spiking stimulation. Both long-term plasticity189,190 and
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FIG. 14. Schematical illustration of
the main neuro-biological processes
involved in neuromorphic brain-inspired
computing, including neuron summation,
integration and fire, dendritic filtering,
and synaptic long- and short-term plas-
ticity. Reproduced with permission from
Ielmini et al., APL Mater. 9(5), 050702
(2021). Copyright 2021 AIP Publishing
LLC.

short-term plasticity191 have been evidenced by experiments. Over
the years, several plasticity rules have been proposed, including
paired-pulse facilitation (PPF),192,193 spike-timing dependent plas-
ticity (STDP),191,194–196 triplet-based plasticity,197,198 and spike-rate
dependent plasticity (SRDP).199,200 The hardware implementation
of each element in Fig. 14 in CMOS technology generally requires
complicated transistor-based circuits and large-area capacitors to

match the dynamic temporal evolution of the brain processes. From
this standpoint, emerging memories offer a technology platform
for providing nonvolatile synaptic weights capable of short- and
long-term plasticity, increasing the area density of synapses and
featuring unique dynamic properties with neuro-plausible time con-
stant by the physical device mechanism.187,188 For instance, synap-
tic long-term plasticity by STDP has been demonstrated in both

FIG. 15. Long-term plasticity in memory-based artificial synapses. (a) Structure of an STDP synapse based on RRAM with the 1T1R structure. Reproduced with permission
from Ambrogio et al., IEEE Trans. Electron Devices 63(4), 1508–1515 (2016).Copyright 2016 Author(s), licensed under a Creative Commons Attribution 4.0 License. (b)
Typical overlapping gate and TE voltages applied to the synapse for the case of synaptic potentiation with Δt > 0. Reproduced with permission from Ambrogio et al., IEEE
Trans. Electron Devices 63(4), 1508–1515 (2016).Copyright 2016 Author(s), licensed under a Creative Commons Attribution 4.0 License. (c) Conceptual scheme of the
STDP via non-overlapping spikes in a second-order memristor based on Ta2O5−x /TaOy . Reproduced with permission from Kim et al., Nano Lett. 15(3), 2203–2211 (2015).
Copyright 2015 American Chemical Society. (d) Schematic illustration of a perceptron-like neuromorphic network capable of unsupervised learning via STDP in memory-
based synapses. Reproduced with permission from Pedretti et al., IEEE J. Emerging Sel. Top. Circuits Syst. 8(1), 77–85 (2017). Copyright 2017 Author(s), licensed under
a Creative Commons Attribution 4.0 License. (e) Measured synaptic weights 1/R as a function of spike number (epoch) for the perceptron in (d), indicating potentiation of
stimulated synapses and depression of non-stimulated synapses. Reproduced with permission from Pedretti et al., Sci. Rep. 7(1), 5288 (2017). Copyright 2015 Author(s),
licensed under a Creative Commons Attribution 4.0 License.
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PCM201,202 and RRAM.177,203–205 Learning was shown to occur both
by properly overlapping the pre- and post-synaptic spikes across
the memory element205,206 or by the physical interaction between
thermal and electrical stimulations in the so-called second-order
memristors.207 Figures 15(a) and 15(b) show the 1 T1R synapse
circuit with the typical pulses applied to the gate and TE. This
circuit demonstrated both the synaptic weight update according
to STDP and the communication between the PRE- and POST-
neurons. Figure 15(c) shows instead the programming pulses and
pre/post-spikes for STDP in a Ta2O5−x/TaOy second-order mem-
ristor. By applying the pre- and post-spikes at the TE and BE,
the interaction between the applied electric field and the local
temperature leads to a Δt-dependent conductance change. Multi-
synaptic circuits with 1T1R RRAM devices capable of STDP were
shown to display unsupervised learning,101,208 which is extremely
promising for the development of the perceptron-like network
capable of autonomous learning and adaptation [Figs. 15(d) and
15(e)].

A. Brain-inspired computing with volatile memories
Volatile memory devices, while lacking a clear application

in digital systems due to insufficient retention, provide an ideal

technology for reproducing short-term memory (STM) behavior
in neuromorphic systems.193 Volatile switching can be displayed
in a class of filamentary RRAM devices where Ag or Cu are
used as TE materials20,209 or dispersed in the switching layer.210

Figure 16(a) shows the typical I–V characteristics of a volatile
RRAM device based on Ag nanodots.211 The volatile behavior is
generally attributed to the filamentary switching and spontaneous
rediffusion of Ag atoms to minimize the total energy of the fila-
ment.209 Volatile RRAMs were initially proposed as selector ele-
ments in crosspoint memory arrays thanks to their large on/off ratio
and low leakage current.212–214 Later, these devices attracted interest
from the neuromorphic community in view of their relatively long
retention time similar to the biological time constants for STM.193,215

For instance, Fig. 16(b) shows a typical pulsed characteristic of an
Ag-based RRAM, stimulated by a triangular pulse. After the pulse,
the current persists for a retention time of about 150 μs, revealing
the time decay of the filamentary path within the active material.
Volatile switching of RRAM devices can be used as the fire function
in an integrate-and-fire neuron circuit, thus avoiding the use of area-
consuming amplifiers and pulse generators.216 Volatile RRAMs have
also been used for replicating PPF induced by paired spikes, where
the pulsed-induced potentiation of the synaptic weight is enhanced
by the application of two identical stimuli.217,218 Most importantly,

FIG. 16. Short-term memory in artificial synapses based on volatile memories. (a) Measured I–V characteristics of an RRAM device based on Ag nanodots, indicating the
set transition to the on-state at V th and spontaneous decay to the off-state at Vhold . Reproduced with permission from Li et al., Adv. Sci. 7(22), 2002251 (2020). Copyright
2020 Author(s), licensed under a Creative Commons Attribution 4.0 License. (b) Pulsed characteristic of a volatile RRAM device, indicating the spontaneous decay to
the off-state after spiking stimulation with a retention time of about 150 μs. Reproduced with permission from Covi et al., IEEE Trans. Electron Devices 68(9), 4335–4341
(2021). Copyright 2021 Author(s), licensed under a Creative Commons Attribution 4.0 License. (c) Schematic circuit for spatiotemporal recognition, where the EPSC is
obtained as the comparison of excitatory and inhibitory synaptic currents. Reproduced with permission from Wang et al., Adv. Intell. Syst. 3(4), 2000224 (2020). Copyright
2020 Author(s), licensed under a Creative Commons Attribution 4.0 License. (d) Measured EPSC for the case of preferred sequence A–B in (c), resulting in a positive
current. Reproduced with permission from Wang et al., Adv. Intell. Syst. 3(4), 2000224 (2020). Copyright 2020 Author(s), licensed under a Creative Commons Attribution
4.0 License. (e) Measured EPSC for the case of non-preferred sequence B–A in (c), resulting in a negative current. Reproduced with permission from Wang et al., Adv.
Intell. Syst. 3(4), 2000224 (2020). Copyright 2020 Author(s), licensed under a Creative Commons Attribution 4.0 License.

APL Mach. Learn. 1, 010902 (2023); doi: 10.1063/5.0136403 1, 010902-15

© Author(s) 2023

https://scitation.org/journal/aml


APL Machine Learning PERSPECTIVE scitation.org/journal/aml

the dynamic STM effect can be useful to mimic sensing, learning,
and processing of spatiotemporal patterns, such as audio and video
sequences.

Figure 16(c) shows an example of spatiotemporal pattern
recognition via volatile RRAM.219 Two volatile synapses, serving
as excitatory and inhibitory synapses, respectively, are stimulated
by spikes A and B. Each synapse consists of several Ag-based
volatile RRAM devices, where the spike stimulation and the per-
sistent current cause an overall exponentially decaying response
of each synapse as a result of Kirchhoff’s law summation of each
RRAM current contribution. The excitatory current Iexc and the
inhibitory current Iinh are subtracted from each other to yield the
excitatory postsynaptic current (EPSC) given by IEPSC = Iexc − Iinh.
Figures 16(d) and 16(e) show the synaptic currents and the EPSC
for the case of the preferred sequence, namely, A–B, and the non-
preferred sequence, namely, B-A. Due to the delay between the
synaptic currents, the preferred sequence yields a positive EPSC,
while the non-preferred sequence yields a negative EPSC. By com-
paring the EPSC with a threshold current, e.g., Ith = 2.5 μA in
Figs. 16(d) and 16(e) allows us to easily discriminate between the
two patterns. This concept was applied to realize a retina-inspired
artificial vision system capable of motion detection. In the biologi-
cal retina, motion detection is achieved by direction-selective (DS)
ganglion cells,220 where excitatory and inhibitory synapses occupy

adjacent areas within the receptive field [Fig. 16(c)]. An image mov-
ing across the ganglion cell might stimulate the excitatory synapses
followed by the inhibitory synapses, or vice versa, depending on the
direction [Figs. 16(d) and 16(e)]. The EPSC of the ganglion cell thus
allows us to recognize the direction of the image. The same concept
can be extended to multiple directions by mimicking the starburst
amacrine cell (SAC) structure in the retina, thus enabling a fast,
low-power direction sensitivity in the analog domain.219,221

B. Reservoir computing with volatile memories
Reservoir computing (RC) is a modern machine learning tech-

nique, which is particularly suited to temporal/sequential informa-
tion processing.222 Figure 17(a) schematically shows the RC concept,
which was originally conceived as an alternative approach to recur-
rent neural network (RNN) design and training, such as liquid state
machines223 and echo state networks.224 In general, an RC network
transforms sequential input data into a high-dimensional dynami-
cal state via a reservoir layer. The output of the reservoir network is
then processed by a readout layer to provide recognition and classi-
fication. The reservoir layer generally features random weights and
connections, thus limiting the need for training to the readout layer
and overcoming the complexity of multi-layer gradient-descent
training techniques. Hardware RC networks are attracting interest

FIG. 17. Reservoir computing (RC) based on volatile memory devices. (a) Conceptual scheme of an RC system, composed of a random reservoir layer and a trained
readout layer. Adapted from the work of Tanaka et al., Neural Networks 115, 100–123 (2019). Copyright 2019 Author(s), licensed under a Creative Commons Attribution
4.0 License. (b) RC system for handwritten digit recognition. The image is converted into a spatiotemporal pattern fed to the memory-based reservoir layer. The readout
network processes the reservoir states for classification. Reproduced with permission from Du et al., Nat. Commun. 8(1), 2204 (2017). Copyright 2015 Author(s), licensed
under a Creative Commons Attribution 4.0 License. (c) Illustration of the MoS2-based charge trap memory (CTM). Reproduced with permission from Farronato et al., Adv.
Mater. (published online) (2022). Copyright 2022 Author(s), licensed under a Creative Commons Attribution 4.0 License. (d) Measured characteristics of a MoS2-based
CTM device showing pulse-induced potentiation followed by spontaneous decay. Reproduced with permission from Farronato et al., Adv. Mater. (published online) (2022).
Copyright 2022 Author(s), licensed under a Creative Commons Attribution 4.0 License. (e) Input patterns and corresponding reservoir states for a MoS2-based reservoir
layer. Reproduced with permission from Farronato et al., Adv. Mater. (published online) (2022). Copyright 2022 Author(s), licensed under a Creative Commons Attribution
4.0 License. (f) Confusion matrix for the MoS2-based RC system, demonstrating the classification results for digit images. Reproduced with permission from Farronato et al.,
Adv. Mater. (published online) (2022). Copyright 2022 Author(s), licensed under a Creative Commons Attribution 4.0 License.
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FIG. 18. In-materia neuromorphic computing. (a) Schematic of a general RC network with a random reservoir layer and a properly trained readout network for the recognition
of spatiotemporal patterns. Reproduced with permission from Milano et al., Nat. Mater. 21(2), 195–202 (2022). Copyright 2021 Springer Nature Limited. (b) SEM image of a
memristive nanowire network used as the reservoir layer. Scale bar is 2 μm. Reproduced with permission from Milano et al., Nat. Mater. 21(2), 195–202 (2022). Copyright
2021 Springer Nature Limited. (c) Atomic force microscopy (AFM) image of a single-walled carbon nanotube (SWCNT) within a SWCNT-based transistor. Reproduced with
permission from Tanaka et al., Nat. Commun. 9(1), 2693 (2018). Copyright 2015 Author(s), licensed under a Creative Commons Attribution 4.0 License. (d) Measured
response of a SWCNT transistor, including noisy and periodic dynamics. Reproduced with permission from Tanaka et al., Nat. Commun. 9(1), 2693 (2018). Copyright 2015
Author(s), licensed under a Creative Commons Attribution 4.0 License. (e) Schematic of a neurobiological model with two pre-synaptic spikes and integrate-and-fire neurons.
Reproduced with permission from Shen et al., ACS Nano 7(7), 6117–6122 (2013). Copyright 2013 American Chemical Society. (f) Synaptic transistor based on an SWCNT
network. Reproduced with permission from Shen et al., ACS Nano 7(7), 6117–6122 (2013). Copyright 2013 American Chemical Society. (g) AFM image of a random SWCNT
network in the transistor channel. Reproduced with permission from Shen et al., ACS Nano 7(7), 6117–6122 (2013). Copyright 2013 American Chemical Society.
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thanks to their potential in energy efficiency, high versatility, and
fast learning.225–227

Figure 17(b) schematically shows an IMC-based RC network
for image recognition.228 First, the input pattern, e.g., the image
of a handwritten digit, is converted into a spatiotemporal pattern,
where rows represent the sequential spikes and columns represent
the N input channels. The resulting spatiotemporal is fed to N
volatile RRAM devices where the STM response provides a physical
reservoir layer. The dynamic reservoir layer yields a unique output
response, e.g., the output transient current, to each input pattern,
which can then be classified by the readout layer, consisting of a
properly trained fully connected network.

RC was demonstrated by using charge-trap memory (CTM)
devices based on a MoS2-based channel.103 Figure 17(c) shows the
device structure with source/drain contacts deposited on a MoS2
channel, where inversion and depletion were controlled by a back
gate. In this device, a positive or negative gate voltage results in the
trapping of electrons or holes, respectively, at the interface between
MoS2 and SiO2, the latter serving as gate dielectric layer. Elec-
tron/hole trappings cause a shift of threshold voltage, thus resulting
in a change in the channel conductivity. This is shown in Fig. 17(d),
where a train of negative gate pulses leads to an increase in con-
ductance, which spontaneously decays at the end of the stimulation.
The dynamic response in Fig. 17(d) was used as a physical reser-
voir process in an RC network for image recognition with 5 CTM
devices as the reservoir layer.103 Figure 17(e) shows examples of the
reservoir output, indicating potentiation and spontaneous decay as
a result of the spatiotemporal stimulation. After training the read-
out layer by the logistic regression,157 a good classification accuracy
was achieved, as shown by the confusion diagram in Fig. 17(f). Com-
pared to DNNs, RC networks employ fewer devices by leveraging the
rich analog, dynamic response of the CTM device, thus resulting in
a significantly smaller classification network.229 In addition, power
consumption can be minimized in the RC layer by operating the
CTM device in the subthreshold regime.103 Similar spatiotemporal
RC networks were used for solving second-order nonlinear equa-
tions,228 spoken-digit recognition,229 and autonomous chaotic time-
series forecasting,229 thus supporting the wide application scenario
for RC-based IMC circuits.

C. In-materia computing
The principle of using device physics to achieve smart comput-

ing functions is further extended from devices to materials in the so-
called in-materia computing.230,231 In-materia computing relies on
the ability of certain materials, such nanoparticles, nanostructures,
or even randomly-doped semiconductors, to act as a distributed,
random network of physical dynamical nodes for computation.232

In-materia computing systems include nanostructures based on car-
bon nanotubes (CNTs),233,234 nanowires (NWs),235–237 and metallic
nanoparticles.238 Indeed, programming, stimulating, and control-
ling the individual nodes in the computing materials are a challeng-
ing task since the materials can exhibit dynamic fluctuations.239,240

However, nanostructures are ideally suited to serve as the randomly
connected reservoir layer of an RC network.225,236 Figure 18(a)
shows a fully memristive RC system where the RC layer is made of a
network of silver nanowires (NWs), which is shown in Fig. 18(b).236

The electrical stimulation of the NW network induces a change

in the NW cross-point junctions,235 thus resulting in a dynamic
potentiation of the local connection, hence the local effective con-
ductance. The output of the reservoir, i.e., the output current or
the node potential of the NW network, is then processed by the
readout layer, e.g., a fully connected network of RRAM devices. By
properly training the readout network, tasks such as image recog-
nition and spatiotemporal pattern prediction can be carried out.236

This approach to computation has distinct advantages in terms of
scaling and easy manufacturing thanks to the bottom-up technol-
ogy for developing the physical NW network. Figure 18(c) shows a
neuromorphic device composed of a single-walled carbon nanotube
(SWCNT) complexed with polyoxometalate (POM).234,241 When
arranged in a network, SWCNT can spontaneously generate spikes
and noise thanks to multi-redox activities at the crossing points.242

Both periodic and aperiodic current spikes are generated under
a constant-voltage bias, as shown in Fig. 18(d). The applied bias
causes the conductance to switch between POMs and SWCNTs, thus
mimicking the potentiation behavior of a neurobiological synapse.
Chemical reaction phenomena, such as aggregation and dissociation
of counter-cations, play an additional role, thus leading to spike gen-
eration. Similar to the NW network of Fig. 18(b), the POM/SWCNT
network can serve as a reservoir layer in an RC system thanks to its
nonlinear dynamic.234

SWCNT networks were also used as analog synapses in the
neuromorphic module of Fig. 18(e).233 The module consists of
a single neuron connected with other neurons through synapses.
The synapses are emulated by transistors based on a random CNT
network, while the axon in the neuron is realized by Si-based tran-
sistors. Figure 18(f) shows the CNTs-based synaptic transistor, with
the random SWCNT network in the inset. Electron trapping in
the dielectric layer due to the application of gate pulses results in
an increase of current in the p-type SWCNT channel. Potentia-
tion is followed by decay due to the tunneling of electrons out
from the dielectric layer. The SWCNT-based synapse also shows
inhibitory characteristics under the negative voltage of the gate.
Potentiation/depression allows for the emulation of biological STDP
and PPF, which is promising for the development of in-materia
neuromorphic computing systems.

IX. OUTLOOK
The main enablers of IMC are emerging memory devices,

whose distinct advantages, such as nonvolatile behavior, make
them more appealing than SRAM243 or DRAM244 although at the
expense of increased programming energy and times.245,246 For
tasks where computational parameters must be frequently updated,
such as stateful Boolean logic circuits,96,97 the programming over-
head may overshadow the advantages of IMC. Moreover, given
the fundamentally different characteristics of emerging memories
in terms of linearity, power consumption, conductance window,
noise, and CMOS compatibility,245,247,248 it is difficult to identify a
best-in-class technology with universal applicability across all IMC
applications.100,134,170,249–253 As an example, combinatorial optimiza-
tion tasks254–256 inherently require controllable, device-level ran-
domness148 as an enabling feature for simulated annealing.106 On
the other hand, scientific computing applications show extremely
narrow tolerance to perturbation and noise,257 relying on high-
precision data storage to provide high-quality results.249 The search
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for a universal memory, capable of satisfying the requirements of
many applications at the same time, is thus still open. One of the
main pathways for the implementation of in-memory computing
is the reduction of the power consumption of memory devices to
allow for the operation of extremely large arrays with an affordable
cost. Another key challenge is the improvement of reliability, e.g., the
realization of self-selecting, multilevel memory devices with a large
endurance and low variability. At the present time, these require-
ments can be partially solved by proper programming approaches
(program and verify algorithms) or device implementation (1T1R
structures, etc.) at the cost of operation slowness and decrease of
integration density.

Many of the advantages of IMC derive from the collective
behavior of densely packed memory cells in an array configura-
tion. Common parasitics, such as line resistance and capacitance,258

can limit the accuracy of both write and read operations, thus
affecting the reliability of IMC.114,259 While selector devices alle-
viate the issue during the programming phase, they have limited
impact during computation as all cells are simultaneously selected.
Schemes for parasitic compensation164,260,261 may help mitigate the
issue at the expense of increased pre-processing overhead and
reduced effectiveness for large array size. For error-tolerant or adap-
tive applications, optimization frameworks can be developed262,263

with negligible loss of accuracy. Another approach is to use three-
terminal devices with ultra-low conductance, such as ECRAM and
MoS2 CTM devices,175 to minimize both the IR drop and the line
capacitances of the array. However, large-scale crosspoint arrays
of two-terminal devices have been exhaustively demonstrated in
academia and industry,264–268 whereas the same maturity level is
currently lacking for arrays of three-terminal emerging memory
devices.76,80

Power consumption is another key consideration imposing
constraints on the individual array size.122,269,270 Power can be han-
dled by arranging the IMC system with tiled architecture7 where
multiple replicas of a fundamental computing macro, or core, work
in parallel for the execution of a computing task. Core archi-
tecture design is another open quest in the field of IMC, where
computational efficiency and robustness must be balanced with
analog-to-digital and digital-to-analog conversion overheads.248 On
the one hand, IMC-specific conversion front-ends271,272 should bal-
ance accuracy, latency, energy, and area consumption. On the other
hand, various approaches to data encoding, such as amplitude
modulation134,273 or pulse-width modulation,136 require conversion
circuits to be flexible and reconfigurable. Finally, proper design
of the inter-core communication is crucial to maintain the IMC
advantage and allow for the solution of large-scale problems.274 Co-
optimization of the device, architecture, and application seems to be
the most promising concept to fully unleash the IMC potential in
overcoming the von Neumann bottleneck.269,275

Finally, to allow for widespread IMC adoption, it is essential
to bridge the gap between hardware and software by implement-
ing an electronic design automation (EDA) toolchain. On the one
hand, IMC-specific design tools276 are useful for system designers
and engineers to develop large-scale, highly accurate IMC hard-
ware and software systems. On the other hand, end users operating
at a higher level of abstraction need a software stack capable of
transparently compiling a given problem for a target IMC archi-
tecture optimization.277–279 This challenge should be tackled by the

codesign and co-development of a full set of hardware and software
tools to elevate the maturity of IMC for real-life applications.

X. CONCLUSIONS
This Perspective provides a review of the status and out-

look of IMC with emerging memory devices. The candidate alter-
natives to the conventional von Neumann architecture are pre-
sented and compared in terms of their degree of integration
between memory and computing units. Two-terminal and three-
terminal emerging memory devices are reviewed. By distinguishing
two general operating regimes of emerging devices, low-voltage
static IMC and high-voltage dynamic IMC are identified as the
main IMC macro-categories. Correspondingly, the most relevant
computing primitives are explored in view of their real-world
applications. For static IMC, MVM and IMVM accelerators, as
well as TCAMs, are presented together with their applications
in machine learning, hardware security, and data classification.
Similarly, for dynamic IMC, outer-product accelerators for neural
network training and brain-inspired systems for reservoir com-
puting are discussed. Finally, challenges for the in silico imple-
mentation of an IMC architecture are outlined. Owing to the
overarching nature of IMC, encompassing device, computing core,
and the EDA toolchain, a strongly multidisciplinary approach is
needed to co-optimize all components and fully unleash the IMC
potential.
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