3 research outputs found

    Exploring Tradeoffs in Models for Low-latency Speech Enhancement

    Full text link
    We explore a variety of neural networks configurations for one- and two-channel spectrogram-mask-based speech enhancement. Our best model improves on previous state-of-the-art performance on the CHiME2 speech enhancement task by 0.4 decibels in signal-to-distortion ratio (SDR). We examine trade-offs such as non-causal look-ahead, computation, and parameter count versus enhancement performance and find that zero-look-ahead models can achieve, on average, within 0.03 dB SDR of our best bidirectional model. Further, we find that 200 milliseconds of look-ahead is sufficient to achieve equivalent performance to our best bidirectional model

    Data augmentation and loss normalization for deep noise suppression

    Full text link
    Speech enhancement using neural networks is recently receiving large attention in research and being integrated in commercial devices and applications. In this work, we investigate data augmentation techniques for supervised deep learning-based speech enhancement. We show that not only augmenting SNR values to a broader range and a continuous distribution helps to regularize training, but also augmenting the spectral and dynamic level diversity. However, to not degrade training by level augmentation, we propose a modification to signal-based loss functions by applying sequence level normalization. We show in experiments that this normalization overcomes the degradation caused by training on sequences with imbalanced signal levels, when using a level-dependent loss function.Comment: to appear in Proc. 22nd International Conference on Speech and Computer (SPECOM), 202

    A consolidated view of loss functions for supervised deep learning-based speech enhancement

    Full text link
    Deep learning-based speech enhancement for real-time applications recently made large advancements. Due to the lack of a tractable perceptual optimization target, many myths around training losses emerged, whereas the contribution to success of the loss functions in many cases has not been investigated isolated from other factors such as network architecture, features, or training procedures. In this work, we investigate a wide variety of loss spectral functions for a recurrent neural network architecture suitable to operate in online frame-by-frame processing. We relate magnitude-only with phase-aware losses, ratios, correlation metrics, and compressed metrics. Our results reveal that combining magnitude-only with phase-aware objectives always leads to improvements, even when the phase is not enhanced. Furthermore, using compressed spectral values also yields a significant improvement. On the other hand, phase-sensitive improvement is best achieved by linear domain losses such as mean absolute error
    corecore