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Abstract

Silent Speech Interface (SSI ) is a technology able to synthesize speech in the absence of
any acoustic signal. It can be useful in cases like laryngectomy patients, noisy environments
or silent calls. This thesis explores the particular case of SSI using ultrasound images of
the tongue as input signals. A ’direct synthesis’ approach based on Deep Neural Networks
and Mel-generalized cepstral coefficients is proposed.

This document is an extension of Csapó et al. "DNN-based Ultrasound-to-Speech Con-
version for a Silent Speech Interface" [1] . Several deep learning models, such as the ba-
sic Feed-forward Neural Networks, Convolutional Neural Networks and Recurrent Neural
Networks are presented and discussed. A denoising pre-processing based on a Deep Convo-
lutional Autoencoder has also been studied. A considerable number of experiments using a
set of different deep learning architectures and an extensive hyperperameter optimization
study have been realized.

The different experiments have been testing and rating several objective and subjective
quality measures. According to the experiments, an architecture based on a CNN and
bidirectional LSTM layers has shown the best results in both objective and subjective
terms.
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Resum

Silent Speech Interface (SSI ) és una tecnologia capaç de sintetitzar veu partint únicament
de senyals no-acústiques. Pot tenir gran utilitat en casos com pacients de laringectomia,
ambients sorollosos o trucades silencioses. Aquesta tčsis explora el cas particular de SSI
utilitzant imatges de la llengua captades amb ultrasons com a senyals d’entrada. Es proposa
un enfocament de ’síntesis directa’ basat en Xarxes Neuronals Profundes i coeficients Mel-
generalized cepstral.

Aquest document és una extensió del treball de Csapó et al. "DNN-based Ultrasound-to-
Speech Conversion for a Silent Speech Interface"[1] . Diversos models de xarxes neuronals
són presentats i discutits, com les bŕsiques xarxes neuronals directes, xarxes neuronals con-
volucionals o xarxes neuronals recurrents. També s’ha estudiat un pre-processat reductor
de soroll basat en un Autoencoder convolucional profund. S’ha portat a terme un nombre
considerable d’experiments utilitzant diverses arquitectures de Deep Learning, així com un
extens estudi d’optimització d’hyperparŕmetres.

Els diferents experiments han estat evaluar i qualificar a partir de diferentes mesures
de qualitat objectives i subjectives. Els millors resultats, tant en termes objectius com
subjectius, els ha presentat una arquitectura basada en una CNN i capes bidireccionals de
LSTMs.

5



Introduction

Silent Speech Interface, or SSI, refers to a system enabling speech communication to take
place when an audible acoustic signal is unavailable [2]. This system must be able to
produce a digital representation of speech, which can be synthesized directly, by acquiring
non-acoustic data.

This technology is still in experimental stage but it has several potential applications.

• Persons who have undergone a laryngectomy. "Each year, thousands of persons world-
wide fall victim to a cancer of the larynx or a neurological problem leading to loss
of voice, constituting a serious social handicap. Current speech restoration methods
have not changed significantly for over 35 years and are unsatisfactory for many
people" [3].

• Older citizens for whom speaking requires a substantial effort.

• Noisy environments where auditive contact is problematic. The non-acoustic biosig-
nals are more robust against noise degradation than the speech signal.

• Silent calls in order to preserve privacy when making phone calls in public areas. Or
in situations where the user must not disturb bystanders (e.g in conferences, theatres,
or concerts).

• Military applications where confidentiality is fundamental.

The early idea of silent communication backed to a lip-reading computer HAL 9000 in 1968
in Stanley Kubrick science-fiction film 2001-A Space Odyssey. The first real SSI system
was introduced by Petajan in 1984 [4], it consisted of an automatic lip-reading system.
After that, as it is explained in [2], experimental SSI systems based on several types of
technology have been described in the literature:

• Real-time characterization of the vocal tract using ultrasound (US) and optical imag-
ing of the tongue and lips [5], [6].

• Non-audible murmur microphones, NAM, placed on the neck [7].

• Capture of the movement of fixed points on the articulators using Electromagnetic
Articulography (EMA) sensors [8].

• Analysis of glottal activity using electromagnetic or vibration sensors [9].
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• Surface electromyography (sEMG) of the articulator muscles or the larynx [10].

• Interpretation of signals from electro-encephalographic (EEG) sensors [11].

• Cortical implants for a "thought-driven" SSI [12].

This thesis is only focused in the first technology cited, ultrasound and optical imaging of
the tongue and lips. One of the first approaches of SSI based on ultrasound used a simple
neural network to predict spectral parameters, which can directly synthesize speech using
a vocoder (’direct synthesis’) [5]; but it didn’t succeed in achieving convincing results.
Other previous approaches consisted of ’recognition-and-synthesis’, dividing the process
in two steps; automatic speech recognition (ASR) based on tongue movement to identify
the words spoken, and then synthesizing speech by a text-to-speech (TTS) stage [13], [14].
Nevertheless, state-of-the-art systems use ’direct synthesis’ for several reasons. Firstly, it
has much lower latency. Studies on delayed auditory feedback [15] have shown that delays
over 50 ms can introduce mental stress and cause dysfluences in speech; ’direct synthesis’
can reach delays below 50 ms, while it is almost impossible in ASR and TTS. Secondly,
ASR and TTS depend on the language and lexicon, while ’direct synthesis’ does not, so it
can be easier to record more training data. Another important reason is that para-linguistic
aspects of speech (e.g. age, mood or gender) are normally lost after ASR but they could
be recovered via direct synthesis. Lastly, it has to be borne in mind that, when using two
different submodels (ASR and TTS) one followed by the other, the error adds up and could
distort much more the final speech signal output.

Deep neural networks have become very popular in signal processing since 2006 [16],
they have proved to produce accuracy comparable to human performance in several pat-
tern recognition tasks. In the area of SSI, some researchers have investigated deep learning.
Diener, Janke and Schultz used a DNN for surface electromyographic (EMG) speech syn-
thesis [10]. An objective and subjective improvement was found comparing their DNN
result with previous Gaussian mixture model (GMM) approaches. Gonzalez and his col-
leagues [8] investigated direct speech reconstruction using different techniques, Gaussian
mixture models (GMM) , DNNs and recurrent neural networks (RNNs). They were us-
ing articulator movement sensor data as input. They reached the best performance with
the RNN, in particular a bidirectional RNN, which makes use of both past and future
inputs for computing the outputs. Jaumard-Hakounet al. designed an approach focused
on singing using ultrasound tongue images and lip images [17]; a Deep Autoencoder was
used to reduce dimensionality and, after this, a deep neural network was used to predict
spectral features. In the literature some other approaches of SSI can be found, focused on
deep learning methods [18],[19], [20], but there are few relating to ultrasound technology.

The thesis is divided in 6 chapters. Chapter 1 talks about the characteristics of the input
data, the ultrasound tongue images. Chapter 2 explains the mathematical background of
the spectral coefficients and the vocoding process. In chapter 3 all the studied neural
network types and architectures are presented. Chapter 4 describes the hyperparameter
optimization process. In chapter 5 the objective and subjective results are shown. And the
last chapter is about the conclusions.
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Chapter 1

Input data

1.1 Ultrasound imaging

Ultrasound imaging, or sonography, has been used in medical applications since the 1940’s.
It is used to see internal body structures such as tendons, muscles, joints, blood vessels,
and internal organs. It can be useful too for the case of the tongue.

This technology involves the use of ultrasounds, those are ultra high frequency sound
waves, typically above 1 MHz. The sound is generated by a transducer made of a piezoelec-
tric (pressure electric) crystal, which converts electricity into mechanical vibrations and
vice versa. The crystal is heated to a very high temperature to create a dipolar molecular
alignment in which molecules align north to south magnetically. When a voltage is applied
to the crystal, the molecules first twist in one direction increasing the crystal’s thickness,
and then reverse direction decreasing the thickness. This mechanical vibration creates an
ultra-high frequency sound wave pulse at the resonant frequency of the crystal, which is
determined by the thickness of the crystal. [21]. The transducer acts subsequently as a
microphone capturing the echoes generated by the tissue along the path of the emitted
pulse. These echoes carry information about the acoustic properties of the tissue along the
path. [22].

Ultrasound imaging is based on this pulse-echo principle. The later an echo is received,
the deeper is the location of the structure giving rise to the echo. The larger the amplitude
of the echo received, the larger is the average specific acoustic impedance difference between
the structure and the tissue just above. An image is created by repeating this process. [22].
High frequency ultrasound waves have the same transmission properties as audible sound
waves, but they have very short wavelengths. Short wavelengths are useful to capture the
shapes of small objects and edges and, therefore, increasing spatial resolution. [21].

In the particular case of measuring the tongue, the transducer is placed beneath the chin.
The sound wave travels upward through the tongue body until it reaches and reflects back
downward from the upper tongue surface. The upper tongue surface interface is typically
with the palate bone or airway, both of which have very different densities from the tongue
and cause a strong echo. Within the tongue there are also weaker echoes between muscle,
fat and connective tissue interfaces.
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1.2 Tongue images

The recording environment of the database used as input data is explained in [23]. It
basically used a ’Micro’ ultrasound system (Articulate Instruments Ltd.) with a 2-4 MHz,
64 element 20mm radius convex ultrasound transducer at 80-100 fps. The resulting images
have a spatial resolution of 842x64 pixels. Due to the fact that the vertical resolution is
higher than the horizontal, in order to reduce redundancy and dimensionality, the images
have been decimated in the vertical axis by a factor of 8. Therefore, the resulting image
size is 106x64 pixels. Besides that, considering that the lower part of the images is useless
for the prediction, the images have been cut and the final size is 96x64 pixels.

The figure 1.1 shows a sequence of eight subsequent ultrasound tongue images. As it
can be seen, these images are composed of speckled areas and edges. The tongue can be
detected as a bright and narrow line situated above a darker area. The thickness of the
line is irrelevant because the tongue surface is the gradient from white to black at the
lower edge. Even though, these images have a lot of noise and are far to be clear. Because
of the particularities of ultrasound acoustic signals, the noise is multiplicative (Speckle
noise), making it much harder to clean the images with any standard image processing
technique. A lot of research about cleaning these type of images has been done, [24],
[25], [26]. In the literature some research can be found about the field of tongue tracking

Figure 1.1Sequence of eight subsequent ultrasound tongue images

using active contours or other kinds of tracking algorithms [27], [28], [29]. Applying tongue
tracking would significantly reduce the number of parameters and increase the neural
network performance. Unfortunately there is no fully-automatic algorithm robust enough
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to be included in this approach, most of the algorithms require of manual initialization or
rectifying. Tongue tracking is actually a hard problem due to the different artifacts that
can appear on the images, according to [21] there are five distinguished artifacts.

• Double edges: When the tongue is grooved it has a lower edge at midline, and a
higher edge lateral to midline. Sometimes, both edges are visible in the ultrasound
image, especially if the transducer is slightly off midline.

• Discontinuities: These can be caused by a slight transducer rotation or a possible
asynchrony between the scan rate and the frame rate.

• Objects above the tongue surface: Reflections appearing above the tongue surface
are artifacts and should be ignored.

• Inconsistent transducer placement: A serious artifact is created by the erroneous
belief that two tongue images are in the same orientation, when they are not.

• Artifacts in swallowing: After swallowing the water-air interface produces a straight
white line that is quite bright and should not be confused with the tongue.

Due to the complexity of implementing an image cleaning preprocessing or tongue track-
ing and its lack of robustness, no preprocessing algorithm has been applied to the input
data. Even though an image denoiser based on a deep convolutional autoencoder has been
implemented and tested, it is explained in detail in section 3.4.

Looking at the sequence in figure 1.1, we can notice that there is a huge correlation
between one frame and the next. This correlation will be explored using the Recurrent
Neural Networks.
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Chapter 2

Target data

For this thesis, a ’direct synthesis’ approach has been chosen. That means that the neural
network, fed with the ultrasound images, predicts spectral coefficients which can be used
to directly synthesize speech through a vocoder. The coefficients used are Mel-Generalized
Cepstrum coefficients (MGC), but converted to Line Spectral Pair (LSP) representation.
In the following sections these coefficients and the vocoding process are explained. The
Speech Signal Processing Toolkit (SPTK) has been used to compute all the algorithms
explained hereunder.

2.1 Mel-Generalized Cepstral coefficients

Cepstral analysis is a widely used tool in speech processing tasks. A cepstrum c(n) of a
signal x(n) is defined as the inverse Fourier transform of the logarithmic spectrum.

X(ejω) = F [x(n)]

c(n) = F−1
[
logX(ejω)

]
(2.1)

The case of Mel-Cepstral coefficients represents the spectral envelope with coefficients
spaced from one another in the Mel scale, a perceptual scale of pitches judged by listeners
to be equal in distance from one another. Therefore, the spectrum is ’mapped’ with a
Mel-scale triangular overlapping filter bank before applying the natural logarithm, figure
2.1.

In 1994, Keiichi Tokuda and his colleagues proposed a unified approach to the cep-

0
Frequency (Hz)

Mel Filter Bank

1000 2000 3000 4000 5000 6000 7000 8000

Figure 2.1Example of Mel-frequency filter bank
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α=0 |α| <1

γ=-1 all-pole warped all-pole
γ=0 cepstral Mel-cepstral
γ=1 all-zero warped all-zero
-1 < γ < 1 generalized cepstral Mel-generalized cepstral

Table 2.1: Form of the coefficients depending on the parameters α and γ

stral method and the linear prediction method [30], the Mel-generalized cepstral analysis
(MGC). By varying two parameters, α and γ, it is possible to choose between the different
available features. These coefficients, instead of the natural logarithm, use the generalized
logarithmic function sγ(ω), defined as:

sγ(ω) =

{
(ωγ − 1)/γ, for 0 ≤ |γ| ≤ 1

logω, for γ = 0
(2.2)

The Mel-generalized cepstral coefficients (MGC) cα,γ(m) are defined as the inverse Fourier
transform of the generalized logarithmic spectrum calculated on a warped frequency scale
βα(ω).

sγ
(
X(ejω)

)
=

∞∑
m=−∞

cα,γ(m)e−jβα(ω)m (2.3)

The warped frequency scale is defined as the phase response of an all-pass system, Ψα(z).
It gives an approximation of the Mel-scale choosing the appropriate value of the parameter
α-

Ψα(z) =
z−1 − α
1− αz−1

∣∣∣∣∣
z=ejω

= e−jβα(ω) (2.4)

where

βα(ω) = tan−1
(1− α2) sinω

(1 + α2) cosω − 2α
(2.5)

In [30] it is admitted that the speech spectrum H
(
ejω
)
can be modeled by M + 1 Mel-

generalized cepstral coefficients as follows:

H(z) = s−1γ

(
M∑
m=0

cα,γ(m)Ψm
α (z)

)
(2.6)

Varying the parameters α and γ the model spectrum takes different forms as it can be seen
in the table 2.1

In this particular case, an order of M = 24, α = 0.42, γ = −0.33 have been chosen.

2.2 Line Spectral Pair

The MGC coefficients have been converted to Line Spectral Pair (LSP) representation,
because these have better interpolation properties and makes the coefficients more suitable
to be predicted by a Deep Neural Network.
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LSPs were originally minded for transforming LPC coefficients, but because, as explained
in the previous section, MGCs are a variant of LPCs characterized by the parameters α
and γ, Line Spectral Pair can be used to transform MGCs.

As explained in [31], two (M + 1)th ordered polynomials P (z) and Q(z) are defined.

P (z) = H(z)− z−(M+1)H(z−1) (2.7)

Q(z) = H(z) + z−(M+1)H(z−1) (2.8)

H(z) =
P (z) +Q(z)

2
(2.9)

Being H(z) the z-transform of the MGC coefficients.
The LSP parameters are expressed as the zeroes (or roots) of P (z) and Q(z). If we

denote the set of complex roots as θk, then the LSPs in radians ωk are determined from
2.7 and 2.8:

ωk = tan−1
(
Re(θk)
Im(θk)

)
(2.10)

2.3 Vocoder

For the synthesis phase, we assumed that the pitch cannot be estimated. However, a recent
study by Hungarian researchers, including the supervisor of this thesis [32], has proven that
F0 can be predicted from the ultrasound images using DNNs with convincing results. In
this work, for simplicity reasons and because the main objective is to estimate the spectral
parameters, the original F0 is used. A pulse excitation function is generated according to
the pitch period, and when the pitch is not existent (marked as 0) a white Gaussian noise
excitation is generated.

The MGC-LSP coefficients are firstly transformed to simple MGC coefficients, those
coefficients are normalized in order to avoid any kind of issue. From the MGC coefficients,
is derived a Mel-Generalized Log Spectral Approximation digital filter (MGLSA), this is
used to filter the excitation signal previously generated.

The block diagram of the vocoder is represented in 2.2, it must be noticed that the gain
parameter is the first LSP coefficient ω0.

F0

ω0

ωk

Impulse generator

White noise generator

LSP to MGC

Speech signal

MGLSA filter

Figure 2.2Block diagram of the vocoder
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Chapter 3

Deep Learning Architectures

Throughout this thesis, several different deep learning architectures have been tested. This
chapter shows the basic concepts about how they are structured, the types of layers they
have and how they work.

3.1 Deep Feed-forward Neural Network

Deep Feed-forward Neural Networks, or Fully connected Neural Networks, or Multilayer
Perceptrons are the most classic deep learning models. "The goal of a feed-forward network
is to approximate some function f , it defines a mapping c = f(x; θ) and learns the value
of the parameters θ that result in the best function approximation"[33]. In our particular
case of SSI the network must be able to find the best function that maps the ultrasound
images x to the MGC-LSP coefficients c.

Those networks are composed of basic units called perceptrons, or neurons. The structure
of a perceptron is represented in figure 3.1. A perceptron is nothing else than a linear
classifier, each one has several inputs xn escalated by some weights ωn. All the weighted
inputs are added and the result is mapped through an activation function g. Different
functions are used for this purpose, the most common are tanh, sigmoid, softsign, identity
or ReLu. In our experiments, the Rectified Linear Unit (ReLu) function has been applied
in almost all the layers, the shape of this function is shown in figure 3.2.

x2 w2 Σ g

Activation
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 3.1Structure of a basic perceptron unit
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Figure 3.2Plot of the Rectified Linear Unit function

(a) Standard Neural Network (b) After applying dropout

Figure 3.3Representation of Dropout regularization. Figures extracted from
[35]

In a Fully Connected Neural Network all neurons are grouped in layers. The input layer
has the input data as inputs, and the output layer has the predictions as outputs, between
these two layers there are one or more hidden layers. All the perceptrons are connected in
a way that every output of each neuron in one layer is used as input for each neuron in
the consecutive layer.

As mentioned earlier, the goal of neural networks is to learn the value of the set of
parameters θ that result in the best function approximation. In these kind of networks,
the set θ consists on all the weights wi,jk and biases bi,j from every i neuron in every j

layer. These parameters are computed in the training process using the back-propagation
algorithm [34].

One common problem in Deep Learning is overfitting. This word references the scene
when the neural network has fitted too much to the training dataset and, when it is
evaluated with a different dataset, the results are worse than expected. One method used in
this thesis to prevent overfitting is called Dropout [35]. This method consists in ’dropping
out units’ from hidden and visible layers in a random way. Figure 3.3 shows a visual
representation of what dropout regularization does.

The architecture of the neural network for this SSI application consists of one input
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layer with all the images reshaped as a one-dimensional array, four hidden layers with 500,
1000, 1000 and 1000 neurons respectively and the output layer with 25 outputs. All those
hyperparameters have been optimized as it is explained in section 4.1. A diagram of this
network is shown in figure 3.4. Even though it is not shown in the figure, dropout has been
applied after each hidden layer, the probabilities are p = 0.1 in each layer.

x1

x2

x3

x4

x5

xk

Input Hidden Layers
64x96 samples 500 n. 1000 n. 1000 n. 1000 n. 25 coefficients

c1

c2

ck

Output

Figure 3.4Diagram of the deep feed-forward neural network

3.2 Convolutional Neural Network

Convolutional Neural Networks are a kind of neural networks for processing data that
have a known grid-like topology. "Convolutional networks are simply neural networks that
use convolution in place of general matrix multiplication in at least one of their layers"
[33]. Those networks have become very successful in analyzing visual imagery applications.
They have a two or three dimensional input data followed by a combination of convolutional
layers and pooling layers; after that, these networks have some fully-connected layers at
the end.

The main part of a Convolutional Neural Network are the convolutional layers. The
idea behind these layers is to apply a filter-bank to the data. Each layer is composed on k
three-dimensional kernels (or filters) with an mxn pre-defined size and a depth d, the value
of the depth d has to be the same as the depth of the input. The computation is based on
multi-dimensional convolutions between the input image and all the k kernels in the layer.

One important factor is how does the network lead with the convolution in the borders.
One option is using padding (e.g. zero padding, mirroring), this way the resulting image
would have the same size as the input. The other option is the stride, this means that the
borders are not computed, so the resulting image will be slightly smaller. Therefore, having
an input data of dimensions a× b× c and k kernels with size m× n× c, the total size of
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the output data would be a× b× k in case of padding or (a− 2)× (b− 2)× k using stride.
The parameters that the neural network would have to learn in one layer are the weights

of each of the k kernels, a total of k ×m × n × c parameters. This number is much less
than the number of parameters that would be needed if the same image was used as input
of a Fully Connected Neural Network.

Between convolutional layers, pooling layers are interleaved. These are used to reduce
the number of parameters and simplify the network. It is also referred to as a downsampling
layer. In this category, there are also several layer options, with maxpooling being the most
popular. MaxPool consists on taking only the maximum value from a fixed-length window,
figure 3.5 shows a graphical example.

12

12

12

20 100

15080

50

39

23

21 12

43 1 0

4

150

12

39

43

2x2 MaxPool

Figure 3.5Example of a 2x2 MaxPool operation

The architecture explored in this thesis consists in two convolutional layers, two pooling
layers and, after flattening the data, a 4-layer fully connected end (3 hidden layers and
the output layer). The CNN is represented in figure 3.6. All the hyperparameters of this
network have been optimized as will be explained in section 4.2.

Input:
64x96

8@64x96
3x3 conv.

32@22x32
6x6 conv.

8@22x32
3x3 pooling

32@11x16
2x2 pooling

5632 n.
flatten

1000 n.
dense

1000 n.
dense

2000 n.
dense

Output:
25 coef.

p=0.03p=0 p=0.05

p=0.53

p=0.03

Figure 3.6Diagram of the convolutional neural network. Blue layers represent
convolutional layers, red layers are pooling layers, the green layer
represents a flattening layer and the yellow ones are dense layers.
The discontinuous arrows mean that dropout has been applied on
that layer, the parameter p shows the dropout probability. The di-
mensions of the figure are not totally proportional to the real net-
work, but are meant to be indicative.
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Figure 3.7Structure of an LSTM unit

3.3 CNN-LSTM Recurrent Neural Network

Long Short-Therm Memory units (LSTMs) are a kind of units for Recurrent Neural Net-
works. "A recurrent neural network is a neural network that is specialized for processing a
sequence of values x1, ..., xτ" [33]. Recurrent Neural Networks allow the networks to have
temporal information. These are useful for many different applications, like image/video
captioning, word prediction, translation or image processing. They can be appropriate for
our particular case of SSI as well, making use of the correlation between image samples
can increase the accuracy of our system.

LSTMs where firstly introduced by Sepp Hochreiter and Jurgen Schmidhuber in 1997
[36]. They introduced an efficient recurrent architecture designed to overcome some back-
flow problems existent in previous RNN approaches. The structure of an LSTM unit is
represented in figure 3.7. An LSTM hidden layer consists of recurrently connected sub-nets,
called memory blocks. Each block contains a set of internal units or cells whose activation
is controlled by three multiplicative gates: the input gate, forget gate, and output gate.

The effect of the gates is to allow the cells to store and access information over long
periods of time. When the input gate remains closed (its activation is close to zero), the
activation of the cell will not be overwritten by the new inputs arriving in the network.
Similarly, the cell activation is only available to the rest of the network when the output
gate is open. The forget gate was designed later [37] to learn to reset memory blocks once
their contents are out of date and hence useless.

Our particular recurrent neural network architecture is shown in figure 3.8. It consists
of three distinguished sections: a CNN, an LSTM layer and a fully connected end. The
CNN part has two convolutional layers and two pooling layers. It is followed by an LSTM
layer in order to incorporate time information. After this, a fully connected feedforward
network with three hidden layers and the output is added. The input data is passed to
the network in batches of 32 frames, this number was chosen as a trade-off between the
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recurrent information imported to the network and its computational complexity which
affects the training time.

As will be explained in detail in section 4, only the hyperparameters of the LSTM and
fully connected sections have been optimized. The CNN section has the same architecture
as in figure 3.6.

CNN CNN CNN

LSTMLSTMLSTM

CNN

LSTM

xtxt−1xt−2xt−31

ct−31 ct−2 ct−1 ct

25 outputs
1100 n.
850 n.
700 n.

450 cells

Figure 3.8Diagram of the CNN-LSTM Neural Network

3.3.1 Bidirectional CNN-LSTM Recurrent Neural Network

An improvement to the CNN-LSTM network has been explored by adding bidirectional
information. That means that not only the past images are used for the prediction but
also the future images are used. This has been achieved using two LSTM layers in parallel,
concatenating their outputs and then using a fully-connected end as the previous network.
Figure 3.9 shows the architecture of this network, the CNN sections are the same as before
but all the hyperparameters relating to the LSTM layers and the Dense layers have been
to be optimized again. The main problem about this network is that it requires a higher
delay. This network uses batches of 32 frames, having a sampling frequency of 81.5 Hz,
it requires 32

Fs
= 392ms more than the others. Therefore, this may not be an appropriate

architecture for real time applications, but in other scenes where low delay is not required
it might have a better performance.
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Figure 3.9Diagram of the bidirectional CNN-LSTM Neural Network

3.4 Denoising Convolutional Autoencoder

An autoencoder is a neural network trained with objective of copying its input to its output.
The network can be split in two parts: encoding and decoding. The encoding produces a
code h = f(x) with much fewer coefficients than the inputs. The decoder produces a
reconstruction x̂ = g(h). In these networks, the input parameters are the same as the
outputs, so they can be classified as an unsupervised learning algorithm.

A convolutional autoencoder uses a convolutional neural network for the encoding and
decoding parts. The encoding is made of convolutional and pooling layers, while the de-
coding part is the symmetrical mirror of the encoding, made of convolutional layers and
up-sampling layers instead of pooling.

Autoencoders are often used for dimensionality reduction, in order to use the code h
as input for another neural network. In this SSI application, the autoencoder is using a
denoising algorithm, so it is not the code h what will be extracted but the reconstruction
image x̂. Because of the fact that the accuracy of the autoencoder is obviously not perfect,
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the reconstruction image x̂ is something like a simpler version of the original x. This means
that some of the noises and artifacts are lost in the denoising process but the tongue shape,
the important part of the images, is preserved. This way, we avoid ’distracting’ the neural
network with useless artifacts.

Figure 3.10 shows the diagram of the autoencoder implemented and a comparison be-
tween the input image and the reconstruction. The encoder consists of two convolutional
layers (colored in blue), both followed by a pooling layer (colored in red). The decoder
contains two convolutional layers with the same number of kernels and sizes as the en-
coder, both followed by up-sampling layers (colored in green) with the same sizes as the
poolings in the input. Just before the output, another convolution layer is added in purpose
to adapt the image dimensions. On the bottom are shown the input and output images
decimated by 8, due to the fact that the input of the posterior neural network will have
these dimensions.

As shown in the figure, the input images are not decimated by 8 as in the previous
networks, this decision was made in order to make a special use of the autoencoder for the
image resizing. In order to prevent possible aliasing issues, doing the decimation at the
reconstructing image is way more convenient than doing it in the original one. Considering
the image dimensions, bigger poolings are done in the vertical axis than in the horizontal,
this way a higher ’low-pass effect’ in the vertical axis appears in the resulting image.

Input:
64x768

4@64x768
7x7 conv.

32@32x192
6x6 conv.

32@16x32
6x6 conv.

4@32x192
7x7 conv.

1@64x768
5x5 conv.

4@32x194
2x4 pooling

32@16x32
2x6 pooling.

32@32x192
2x6 upsampling.

32@64x768
2x4 upsampling.

Output:
64x768

Input image decimated by 8 Denoised image decimated by 8

Figure 3.10Diagram of the denoising convolutional deep autoencoder
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Chapter 4

Hyperparameter optimization

Hyperparameter optimization is a must do task in any deep learning project. It consists
of finding the values for all the hyperparameters, parameters that have to be fixed before
the training process, in the way that maximizes the accuracy of the network.

The classic method to do it is by grid search, which is simply exhausting searching
along the entire hyperparameter space. This method is severely influenced by the curse
of dimensionality as the number of hyperparameters increase. The random search method
is an alternative of grid search to explore the randomly sampled hyperparameters in the
hyperparameter space. It can outperform Grid search, when only a small number of hy-
perparameters affects the final performance, but it is also time-consuming and inefficient.

Instead of these, Bayesian Optimization has been used. "Bayesian optimization con-
structs a probabilistic surrogate model to define the distribution over the unknown black
box function, and a proxy optimization is performed to seek the next location to evalu-
ate where the posterior distribution is developed based on conditioning on the previous
evaluations. Acquisition function is applied to the posterior mean and variance to express
the trade off between exploration and exploitation" [38]. Bayesian Optimization has been
implemented using the hyperas module in keras .

This chapter shows how hyperparameter optimization has been conducted for all the
different architectures presented in chapter 3.

4.1 Deep Feed-forward Neural Network

The first attempt to train a neural network has been the most basic, the fully-connected
Feed-forward Neural Network. It is also the most easy to train and the one with the least
hyperparameters. Table 4.1 shows all the hyperparameters validated and their optimal
values. It must be noticed that some of the hyperparameters have continuous values and
others are discretized. For example, the dropout probabilities can get any value between
0 and 1, but the number of neurons is restricted in a discrete space where the options are
limited (e.g. 250, 500, 750, 1000, etc.) .

In this experiment, a total of 895 evaluations have been executed. Figure 4.1 shows
how the validation accuracy has varied during the evaluations. To make this plot, all the
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Hyperparameter Optimal value

Number of hidden layers 4
Number of Neurons in the first layer 500
Number of Neurons in the second layer 1000
Number of Neurons in the third layer 1000
Number of Neurons in the fourth layer 1000
Dropout probability after the first hidden layer 0.09
Dropout probability after the second hidden layer 0.07
Dropout probability after the third hidden layer 0.15
Dropout probability after the fourth hidden layer 0.07
Optimizer adamax
Batch size 64
Validation accuracy 0.28

Table 4.1: Hyperparameters from the fully-connected Neural Network

accuracy values have been sorted in descending order. The horizontal axis shows the index
of the evaluation ordered from best to worse and the vertical shows its validation accuracy.
Looking at the plot, the Feed forward neural network is colored in blue and we can see
that there are only few evaluations that have reached good results (above 0.27).
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Figure 4.1Plot of the validation accuracy results in the the different neural
networks for all the evaluations sorted from best to worse
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4.2 Convolutional Neural Network

The convolutional neural network has been the second type of deep learning network to
explore. The structure of the network is shown in figure 3.6 in the previous chapter, it
combines convolutional and pooling layers and has a fully-connected ending.

This network needs way more hyperparameters to be validated, so a higher number of
evaluations is required, a total of 1394 evaluations have been executed. Despite this huge
number, the whole computing time had not been very long (less than two days), because
convolutional layers have few parameters to train and the training time is quite short.
Table 4.2 shows all the hyperparameters evaluated. As can be seen in the table all the
features of the dense layers have been to be evaluated again.

Hyperparameter Optimal value

Number of convolutional layers 2
Number of kernels in the first conv. layer 8
Number of kernels in the second conv. layer 32
Size of the kernels in the first conv. layer (3, 3)
Size of the kernels in the second conv. layer (6, 6)
Dropout after the first conv. layer 0
Dropout after the second conv. layer 0.05
Pooling window size in the first pooling layer (3, 3)
Pooling window size in the second pooling layer (2, 2)
Number of hidden dense layers 3
Number of Neurons in the first dense layer 1000
Number of Neurons in the second dense layer 1000
Number of Neurons in the third dense layer 2000
Dropout probability after the first hidden layer 0.03
Dropout probability after the second hidden layer 0.55
Dropout probability after the third hidden layer 0.03
Optimizer adam
Batch size 64
Validation accuracy 0.31

Table 4.2: Hyperparameters from the Convolutional Neural Network

The red plot in Figure 4.1 shows the validation accuracy variations in the same way
as in the previous case, sorting all the evaluations in descending order. Looking at the
figure, we can notice that the results are way better than in the fully-connected network.
The highest point is 0.31 while in the fully-connected was 0.28 and in general there are
many evaluations with relatively high accuracies (above 0.3). This may be caused because
changing some parameters as the number of kernels or the kernel sizes does not affect too
much the validation accuracy of the whole network. In this case, it could be said that there
is a lower intrinsic dimensionality in the hyperparameter space.
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4.3 CNN-LSTM Recurrent Neural Network

The Recurrent Neural Network explored is a combination of a CNN section followed by an
LSTM layer, being the outputs of the LSTM connected to a set of fully-connected layers
at the end. The diagram of the network is represented in figure 3.8.

Hyperparameter Optimal value

Number of neurons in the LSTM layer 450
Activation function in the LSTM layer tanh
Number of hidden dense layers 3
Number of Neurons in the first dense layer 700
Number of Neurons in the second dense layer 850
Number of Neurons in the third dense layer 1100
Dropout probability after the first hidden layer 0.05
Dropout probability after the second hidden layer 0.51
Dropout probability after the third hidden layer 0.45
Optimizer adamax
Batch size 2
Validation accuracy 0.33

Table 4.3: Hyperparameters from the CNN-LSTM Neural Network

The CNN section is the same one as the presented in section 4.2, with the same hy-
perparameters as its optimal result. So the hyperparameters evaluated have only been, as
shown in table 4.3, the ones referring to the LSTM layer and to the three hidden dense
layers.

In this experiment, 1167 evaluations have been executed. The LSTM layer has a sub-
stantial number of parameters to train, so this network needs more epochs to converge
than the others. Therefore, the hyperparameter optimization process has required way
more time than the others to have enough evaluations (between three and four days of
continuous training). The green plot in figure 4.1, as in the previous sections, shows the
accuracy in all the evaluations sorted from best to worse. In this case, the best result has
a higher accuracy than the CNN network, that means that adding temporal information
can slightly increase the performance of the SSI system. Looking at figure 4.1, it seems like
this network’s performance is worse than the CNN’s because most of the evaluations in the
mid-range of the plot have a worse accuracy. However, this conclusion is deceitful because
in this set of hyperparameters there are not many which contribution to the accuracy could
be considered redundant, while in the CNN some hyperparameters from the convolutional
layers could be considered like that. Therefore, the only important thing to consider when
comparing the accuracy plots are the best results.

4.3.1 Bidirectional CNN-LSTM Recurrent Neural Network

The bidirectional CNN-LSTM Recurrent Neural Network has required a hyperparameter
optimization similar than the simple CNN-LSTM. In this case, considering that it has two
LSTM layers, the number of parameters to train is even bigger, so the training is slower.
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Due to the high computational time, the number of evaluations is smaller (only 200). The
set of hyperparameters evaluated, as shown in table 4.4, is almost the same as before, the
only change is that now there are two LSTM layers and the number of neurons in both
must be evaluated.

Hyperparameter Optimal value

Number of neurons in the left LSTM layer 275
Number of neurons in the right LSTM layer 175
Activation function in the LSTM layer relu
Number of hidden dense layers 4
Number of Neurons in the first dense layer 950
Number of Neurons in the second dense layer 1750
Number of Neurons in the third dense layer 850
Number of Neurons in the fourth dense layer 1100
Dropout probability after the first hidden layer 0.19
Dropout probability after the second hidden layer 0.17
Dropout probability after the third hidden layer 0
Dropout probability after the fourth hidden layer 0
Optimizer rmsprop
Batch size 1
Validation accuracy 0.34

Table 4.4: Hyperparameters from the CNN-biLSTM Neural Network

The accuracy in all the evaluations is represented, as in the other cases, in figure 4.1
colored in yellow.

4.4 Denoising Convolutional Autoencoder

The autoencoder has been optimized as well as the other network but, being a network for
a different purpose, the hyperparameter optimization has been done in a special way.

This network, as can be seen in figure 3.10 only has convolutional, pooling and up-
sampling layers. The number of hyperparameters is not large because the decoding section
is the mirror of the encoding, so all the dimensions must be the same. The hyperparameters
chosen are shown in table 4.5.

Hyperparameter Optimal value

Number of convolutional layers 2
Number of kernels in the first conv. layer 4
Number of kernels in the second conv. layer 32
Size of the kernels in the first conv. layer (7, 7)
Size of the kernels in the second conv. layer (6, 6)
Size of the kernels in the last conv. layer (5, 5)
Pooling window sizes in both layers (2, 4) and (2,6)
Validation accuracy 0.18

Table 4.5: Hyperparameters from the Denoising Convolutional Autoencoder

26



Due to the fact that there is no hyperparameter that affects directly to the network per-
formance and it seems to converge appropriately with all the combinations, the validation
accuracy does not almost vary, as shown in figure 4.2, it remains in 0.18 in all the evalu-
ations. Because of the low number of parameters and the futility of this hyperparameter
optimization, it has not been necessary to execute a big number of evaluations, with only
37 has been enough. The architecture chosen has been the one that has a slightly better
performance, but the difference between this and the worst is insignificant.

10 20 30 40
0.18

0.18

0.18

index

va
lid

at
io
n
ac
cu

ra
cy

Validation accuracy in all the evaluations

Figure 4.2Plot of the validation accuracy results in the autoencoder for all the
evaluations sorted from best to worse

4.5 Optimization using the denoised images

After using the autoencoder, the images after the denoising process have different properties
than their original versions, so the neural networks used to decode them must be different.
Therefore, the optimal architecture of each neural network must be found again, another
hyperparameter optimization is required in all the cases. Tables 4.6, 4.7, 4.8, 4.9 show the
sets of hyperparameters and their optimal values.

Figure 4.3 shows the accuracy in all the evaluations in the same way as figure 4.1. Looking
at the figure, all the the plots have a very similar shape compared to the non-denoised case,
but they present slighlty better accuracy results.

Based on these hyperparameter optimizations, the potentially best systems are the CNN-
LSTM and CNN-biLSTM, both using the denoising autoencoder.
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Hyperparameter Optimal value

Number of hidden layers 4
Number of Neurons in the first layer 2000
Number of Neurons in the second layer 1000
Number of Neurons in the third layer 1000
Number of Neurons in the fourth layer 2000
Dropout probability after the first hidden layer 0.15
Dropout probability after the second hidden layer 0.35
Dropout probability after the third hidden layer 0.14
Dropout probability after the fourth hidden layer 0.39
Optimizer adamax
Batch size 64
Validation accuracy 0.30

Table 4.6: Hyperparameters from the fully-connected Neural Network using the denoising autoencoder

Hyperparameter Optimal value

Number of convolutional layers 2
Number of kernels in the first conv. layer 16
Number of kernels in the second conv. layer 16
Size of the kernels in the first conv. layer (4, 4)
Size of the kernels in the second conv. layer (5, 5)
Dropout after the first conv. layer 0.05
Dropout after the second conv. layer 0.01
Pooling window size in the first pooling layer (4, 4)
Pooling window size in the second pooling layer (2, 2)
Number of hidden dense layers 3
Number of Neurons in the first dense layer 1125
Number of Neurons in the second dense layer 1500
Number of Neurons in the third dense layer 875
Dropout probability after the first hidden layer 0.07
Dropout probability after the second hidden layer 0.03
Dropout probability after the third hidden layer 0.07
Optimizer adam
Batch size 64
Validation accuracy 0.33

Table 4.7: Hyperparameters from the Convolutional Neural Network using the denoising autoencoder
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Hyperparameter Optimal value

Number of neurons in the LSTM layer 450
Activation function in the LSTM layer tanh
Number of hidden dense layers 3
Number of Neurons in the first dense layer 900
Number of Neurons in the second dense layer 900
Number of Neurons in the third dense layer 1100
Dropout probability after the first hidden layer 0.04
Dropout probability after the second hidden layer 0.02
Dropout probability after the third hidden layer 0.18
Optimizer rmsprop
Batch size 1
Validation accuracy 0.35

Table 4.8: Hyperparameters from the CNN-LSTM Neural Network using the denoising autoencoder

Hyperparameter Optimal value

Number of neurons in the left LSTM layer 275
Number of neurons in the right LSTM layer 225
Activation function in the LSTM layers relu
Number of hidden dense layers 3
Number of Neurons in the first dense layer 1250
Number of Neurons in the second dense layer 1025
Number of Neurons in the third dense layer 1100
Dropout probability after the first hidden layer 0.35
Dropout probability after the second hidden layer 0.06
Dropout probability after the third hidden layer 0.05
Optimizer adam
Batch size 2
Validation accuracy 0.36

Table 4.9: Hyperparameters from the CNN-biLSTM Neural Network using the denoising autoencoder
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from best to worse
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Chapter 5

Results

This chapter shows the test results in the different Neural Network architectures previously
presented. After the hyperparameter optimization process, the hypothesis would be that,
using a different test database, the best results would appear in those networks that have
presented better validation accuracy metrics, which have been the CNN-LSTM and its
bidirectional version, both using the denoising autoencoder. This chapter shows objective
and subjective experimental results that will help to decide which could be the best choice
for a real SSI system.

5.1 Objective measurements

Firstly, an objective test has been executed, the metrics of this test are the loss and the
accuracy after predicting the spectral coefficients in the test database. The loss is the
Mean Square Error (MSE) between the target coefficients and the predicted ones, while
the accuracy is the precentage of well predicted coefficients. It must be noticed that these
results are calculated with the spectral parameters error, it would make no sense to compare
the speech signals in time domain because no phase information has been preserved during
the encoding. Table 5.1 shows the loss (mean square error) and accuracy for all the Neural
Networks.

The test database consists of nine different audios from a female Hungarian speaker. The
environment used to record these audios is the same as in the train/validation database.

Neural Network type loss (MSE) accuracy

Fully-Connected Feed-Forward NN 0.017 0.25
CNN 0.015 0.28
CNN-LSTM 0.013 0.31
CNN-biLSTM 0.013 0.33
Fully-Connected Feed-Forward NN using denoising autoencoder 0.016 0.28
CNN using denoising autoencoder 0.015 0.28
CNN-LSTM using denoising autoencoder 0.015 0.32
CNN-biLSTM using denoising autoencoder 0.013 0.34

Table 5.1: Objective test results for all the Neural Network types
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Figure 5.1Representation of an audio sample predicted by the different NNs.

Figures 5.1 and 5.2 show the time-domain signal and spectrum from an 1.3 s original audio
sample and the speech signals synthesized with the spectral coefficients predicted by the
studied Neural Networks. Figure 5.1 shows all the networks without any preprocessing
while figure 5.2 shows the results of the networks using the denoising autoencoder. It has
been necessary to test the networks with and without the denoiser because its usefulness
cannot be proven a priori.

Looking at figures 5.1 and 5.2 no definitive conclusion can be extracted, all waveform
envelopes look far from the original one, but seems like those networks with LSTM layers
can predict better the gain coefficient ω0 and their envelopes look closer to the natural
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Figure 5.2Representation of an audio sample predicted by the different NNs
using the denoising autoencoder.

speech. Paying attention at the spectograms it is hard to realize which network does the
best prediction of the formants, but seems like the LSTM networks have slightly better
results, specially in high frequencies. Considering the loss and accuracy results, the worst
network seems to be the basic fully-connected one, because it has the worst results in
both denoised and non-denoised cases. Therefore, this proves that adding convolutional
layers to the network increases the performance. Also CNN-LSTM networks have better
test performance, as it could be expected after the hyperparameter optimization process.
Comparing the results between using and non using the autoencoder, we can see that
the results are slightly better using the denoiser for all four cases. This certifies that
preprocessing and ’simplifying’ the images helps to increase the network performance.
The highest accuracy result, with a value of 0.34, belongs to the CNN-biLSTM network
with preprocessing which is the most complex network of the list.
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5.2 Listening subjective tests

In order to have a subjective opinion of the results, a MUSHRA (MUlti-Stimulous test with
Hidden Reference and Anchor) listening test has been conducted [39]. This test contains
the nine sentences from the test database and lets the listeners rate the naturalness of the
speech. The test should not be ’exhausting’ for the listeners, so it has been unfeasible to
include all eight different audio samples in the test, instead of that, a smaller selection has
been chosen. Due to the fact that the objective results have been better in the tests with
the denoising autoencoder, the listening test includes only the audios of the four networks
with preprocessing.

The advantage of using MUSHRA, instead of MOS (Mean Opinion Square), is that it
requires fewer participants to obtain statistically significant results. This is because all four
different systems are presented at the same time, altogether with the original sentence and
a dummy version of it (with constant F0 and distorded spectrum), in order to add higher
and lower references. This way, the test can be exposed to only trained listeners who know
what typical artifacts sound like. In the test, the listeners have to rate the naturalness of
each sample in a randomized order, from 0 (highly unnatural) to 100 (highly natural). The
same process is repeated for all the nine sentences in the test database. Altogether, the
listeners have to rate a total of 54 samples (6 types × 9 sentences).
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Figure 5.3Graph of the listening test scores. The higher the number, the more
natural the system was found. The error bars show the 95% confi-
dence intervals.

Altogether 13 listeners participated in the listening test, being 4 of them speech re-
searchers and 7 of them university students. The test took, on average, 11 minutes to
complete. Figure 5.3 plots the results in a bar graph, showing the mean and the 95%
confidence intervals. As it can be seen, all four Neural Networks have very similar results
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(around 30%). The CNN-biLSTM was rated as the most natural, followed by the CNN-
LSTM. These results show a substantial improvement compared to the fully-connected
NN (26%) and CNN (27%). As the averages show, the listeneres were able to notice the
differences between the four systems.
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Chapter 6

Conclusions

This thesis described different deep learning experiments for the Silent Speech Interface
application. The neural networks implemented had to predict Mel-Generalized Cepstrum
features in Line Spectral Pair representation from ultrasound images of the tongue. Four
different types of neural networks were investigated, including 1) a fully-connected feed-
forward neural network, 2) a convolutional neural network, 3) a combination of a CNN and
an LSTM layer, and 4) the addition of a second non-causal LSTM layer. In addition to
this, a denoising deep autoencoder was designed for a preprocessing purpose. An exhaustive
hyperparameter optimization process was conducted for all the networks (with and without
denoising preprocessing).

After carrying out the objective and subjective tests, we found that the bidirectional
CNN-biLSTM network was preferred in both objective and subjective terms. Even though,
the difference between it and its causal version (the unidirectional CNN-LSTM network) is
almost indistinguishable. Therefore, due to the fact that the CNN-biLSTM network would
need more delay, the CNN-LSTM network would be better for a practical system.

It was proven that it is possible to synthesize a speech signal from only ultrasound images
as input parameters using deep learning methods. The speech results were not totally
satisfying for the listeners but, taking into account the limitations of the training database
and the complexity of the problem, the resulting audios are considered as acceptable.
The hypothesis that adding more complexity to the neural network would increase its
performance was supported by both objective and subjective tests, verifying that every
attempt to improve the system (the convolutional layers, the LSTMs and the denoising
autoencoder) helped to obtain better results.

For a comercial purpose Silent Speech Interface application, more work needs to be done
in order to obtain satisfying results. Several things can be studied in the future in order
to improve the efficiency. One idea that has not been implemented in this thesis is adding
multimodal articulatory data, specifically images of the lips. Another improvement would
be implementing more complex image preprocessing (e.g. tongue tracking algorithms).
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