
IEEE JOURNAL OF SOLID-STATE CIRCUITS 1

A 16-nm SoC for Noise-Robust Speech and NLP
Edge AI Inference With Bayesian Sound Source

Separation and Attention-Based DNNs
Thierry Tambe , Member, IEEE, En-Yu Yang, Glenn G. Ko, Member, IEEE, Yuji Chai, Coleman Hooper ,

Marco Donato , Member, IEEE, Paul N. Whatmough , Member, IEEE, Alexander M. Rush,

David Brooks , Fellow, IEEE, and Gu-Yeon Wei, Senior Member, IEEE

Abstract— The proliferation of personal artificial intelligence
(AI) -assistant technologies with speech-based conversational AI
interfaces is driving the exponential growth in the consumer
Internet of Things (IoT) market. As these technologies are being
applied to keyword spotting (KWS), automatic speech recognition
(ASR), natural language processing (NLP), and text-to-speech
(TTS) applications, it is of paramount importance that they
provide uncompromising performance for context learning in
long sequences, which is a key benefit of the attention mechanism,
and that they work seamlessly in polyphonic environments. In this
work, we present a 25-mm2 system-on-chip (SoC) in 16-nm
FinFET technology, codenamed SM6, which executes end-to-end
speech-enhancing attention-based ASR and NLP workloads. The
SoC includes: 1) FlexASR, a highly reconfigurable NLP inference
processor optimized for whole-model acceleration of bidirectional
attention-based sequence-to-sequence (seq2seq) deep neural net-
works (DNNs); 2) a Markov random field source separation
engine (MSSE), a probabilistic graphical model accelerator for
unsupervised inference via Gibbs sampling, used for sound source
separation; 3) a dual-core Arm Cortex A53 CPU cluster, which
provides on-demand single Instruction/multiple data (SIMD)
fast fourier transform (FFT) processing and performs various
application logic (e.g., expectation–maximization (EM) algorithm
and 8-bit floating-point (FP8) quantization); and 4) an always-
ON M0 subsystem for audio detection and power manage-
ment. Measurement results demonstrate the efficiency ranges of
2.6–7.8 TFLOPs/W and 4.33–17.6 Gsamples/s/W for FlexASR
and MSSE, respectively; MSSE denoising performance allowing

Manuscript received January 4, 2022; revised March 30, 2022 and May 18,
2022; accepted May 24, 2022. This article was approved by Associate
Editor Meng-Fan Chang. This work was supported in part by the Center
for Applications Driving Architectures (ADA), one of six centers of JUMP,
a Semiconductor Research Corporation (SRC) Program co-sponsored by
DARPA; in part by the DARPA DSSoC program; in part by NSF under
Award 1704834 and Award 1718160; in part by Intel Corporation; and in
part by Arm Inc. (Corresponding author: Thierry Tambe.)

Thierry Tambe, En-Yu Yang, Glenn G. Ko, Yuji Chai, Coleman Hooper,
David Brooks, and Gu-Yeon Wei are with the School of Engineering
and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
(e-mail: ttambe@g.harvard.edu; enyu_yang@g.harvard.edu; gko@g.harvard.
edu; yuc927@g.harvard.edu; chooper@college.harvard.edu; dbrooks@g.
harvard.edu; gywei@g.harvard.edu).

Marco Donato is with the Department of Electrical and Com-
puter Engineering, Tufts University, Medford, MA 02155 USA (e-mail:
marco.donato@tufts.edu).

Paul N. Whatmough is with Arm Research, Boston, MA 02451 USA, and
also with the School of Engineering and Applied Sciences, Harvard University,
Cambridge, MA 02138 USA (e-mail: pwhatmough@eecs.harvard.edu).

Alexander M. Rush is with the Department of Computer Science, Cornell
University, New York, NY 10044 USA (e-mail: arush@cornell.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSSC.2022.3179303.

Digital Object Identifier 10.1109/JSSC.2022.3179303

6× smaller ASR model to be stored on-chip with negligible
accuracy loss; and 2.24-mJ energy consumption while achieving
real-time throughput, end-to-end, and per-frame ASR latencies
of 18 ms.

Index Terms— Attention mechanism, Gibbs sampling, hard-
ware accelerators, Internet of Things (IoT), natural language
processing (NLP), recurrent neural networks (RNNs), sound
source separation, speech recognition, system-on-chip (SoC).

I. INTRODUCTION

A I-RELATED workloads are increasingly shifting to the
edge, spurred by the unabated growth of raw sensor

data [46]. This exploding volume of information has become
a dominant driver for mobile and the Internet of Things (IoT)
throughout all segments, from consumer to industrial and
automotive markets. Intelligence at the edge is also gaining
greater interest as it can provide marked advantages over cloud
computing in terms of energy efficiency, latency, security/
privacy, and autonomy [22], [51].

Conversational artificial intelligence (AI) interfaces using
automatic speech recognition (ASR) or keyword spot-
ting (KWS) commands are the main human-to-machine com-
munication channel for a multitude of small form factor
IoT devices. Recently published ASR and KWS chips [10],
[11], [30], [50] operate in pristine acoustic conditions, rais-
ing questions about their performance and viability in a
more acoustically adverse environment containing multiple
noise sources. Furthermore, the underlying recognition algo-
rithms in several of these works are context-blind deep
neural networks (DNNs) implemented on small-vocabulary
tasks. However, for long-sequence transduction on large-
vocabulary tasks (e.g., >100k words), the attention mech-
anism [3] provides superior context learning by allowing
neural networks to emphasize the most relevant tokens of
information when making inference predictions. Enabling bidi-
rectional functionality [6] in sequence-to-sequence (seq2seq)
recurrent neural networks (RNNs) further improves inference
accuracy of long input sequences (e.g., >10 words). This
neural class of attention-based RNN models is commonly
known as listen-attend-spell (LAS) models [5] with wide
adoption in ASR [15], [16], [29], text-to-speech [36], neural
machine translation [47], and text summarization [32] appli-
cations. In this work, we describe SM6, a system-on-chip

0018-9200 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University College London. Downloaded on June 22,2022 at 13:54:36 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6411-9620
https://orcid.org/0000-0002-5890-610X
https://orcid.org/0000-0002-9354-3447
https://orcid.org/0000-0002-0662-7889
https://orcid.org/0000-0002-1865-6492

2 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 1. Inference pipeline executed on SM6. Upon detecting audio, the M0 subsystem wakes up the accelerators and A53 produces spectrogram features
that get denoised by the MSSE engine. Then, from the enhanced speech, FlexASR accelerates attention-based ASR workloads.

(SoC) for edge/the IoT devices, executing end-to-end speech-
enhancing attention-based ASR workloads (Fig. 1). The
proposed hardware–software co-design solution demonstrates
a tight coupling between special function accelerators and
CPU processing. Notably, the mobile-class A53 CPU performs
feature extraction tasks and other critical accelerator support-
ing tasks on its dual-issue datapath. The Markov random field
source separation engine (MSSE) runs sound source separation
on the post-processed spectrogram frames in an unsupervised
fashion. Then, FlexASR accelerates a bidirectional LAS model
for noise-robust ASR. To save power during intermittent
inference jobs, the always-ON M0 autonomously monitors
incoming audio amplitudes and subsequently boots the A53,
MSSE, and FlexASR when the signal magnitude exceeds a
threshold.

High-performance ASR systems are often trained with
datasets exhibiting adverse acoustic conditions. In such sys-
tems, noise robustness is partly paid with larger ASR model
sizes that may stretch the on-chip memory capacity of an IoT
SoC while at the same time worsening latency and energy
metrics. In SM6, by virtue of having MSSE sound source
separation preceding the speech-to-text computation, up to
6× smaller and iso-accurate LAS models can be fully stored
in FlexASR scratchpads—promoting higher energy efficiency
without compromising accuracy.

This article, therefore, makes the following contributions.

1) Energy-Efficient Acceleration of Attention-Based Bidi-
rectional RNNs in FlexASR: We describe FlexASR
processing element (PE) architecture utilizing adaptive
floating-point datapaths for performing quantized DNN
computations with greater accuracy. We further describe
its multi-function global buffer GB) unit, which effi-
ciently accelerates the attention mechanism among other
specialized compute units (e.g., layer normalization and
pooling).

2) Unsupervised Sound Source Separation in MSSE: We
make the case for using probabilistic Bayesian models

and solving them via accelerated Gibbs sampling inside
MSSE in order to enhance noise-corrupted speech sig-
nals. By virtue of preceding the speech-to-text com-
putation, MSSE allows FlexASR to fully store and
infer significantly smaller size, iso-accurate ASR models
trained on single-source clean datasets.

3) End-to-End Performance Demonstrating Real-Time
Throughput: SM6 achieves end-to-end per-frame ASR
latencies well below the 32-ms spectrogram frame length
while consuming nominally 2.24 mJ per inference.

The proposed chip was first presented in [17] and [18]. This
article significantly expands on the architectural design and
measurement details of the system and its various computing
components. This article is organized as follows. Section II
provides an overview of the main machine learning work-
loads executed on the test chip. The SoC architecture and
the various agile design logistics used to implement the
test chip are presented in Section III. The FlexASR accel-
erator and the MSSE are detailed in Sections IV and V,
respectively. The test chip measurement results are presented
in Section VI. Finally, concluding remarks are drawn in
Section VII.

II. BACKGROUND

In this section, we offer an overview of the machine learning
models behind the main workloads accelerated in the inference
pipeline (Fig. 1), namely, sound source separation and ASR.

A. Bayesian Inference on Markov Random Field
A pairwise Markov random field (MRF) with four-

connected neighbors is a type of Bayesian model commonly
used for labeling problems. Fig. 2 shows the factorized dis-
tribution on a four-connected pairwise MRF. Given a node
i ∈ V , the set of all nodes, the relationship between the label
on the node xi and the observed data yi is represented as
potential φi . The edge between nodes i and j represents the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University College London. Downloaded on June 22,2022 at 13:54:36 UTC from IEEE Xplore. Restrictions apply.

TAMBE et al.: 16-nm SoC FOR NOISE-ROBUST SPEECH AND NLP EDGE AI INFERENCE 3

Fig. 2. Bayesian MRF model highlighting sampled, observed, and neighbor
nodes.

affinity between the neighboring nodes using potential φi, j .
The posterior distribution of MRF is the product of all node
and edge factors

P(x, y) = 1

Z

∏

i∈V

φi (xi , yi)
∏

i, j∈E

φi, j (xi , x j) (1)

where Z is called a partition function or a normalizing
constant; it is the sum of all possible values of φ. Following
Gibbs distribution formulation, the probability distribution in
(1) is proportional to the sum of energy functions, which is
equivalent to taking the negative log of (1):

E(x, y) =
∑

i∈ν

θi(xi , yi) +
∑

i, j∈ε

θi, j(xi , x j) (2)

where θi(xi , yi) and θi, j (xi , x j) are energy functions often
referred to as data cost and smoothness cost, respectively [35],
[37]. They are labeled next to their corresponding edges
in Fig. 2. To find the maximizing assignment of x in (1),
we use the Gibbs sampling, which is executed by MSSE,
to perform maximum a posteriori (MAP) inference to find
labels x that minimize the energy function. The Gibbs sam-
pler is constructed by iteratively sampling each variable in
the MRF given all the neighboring variables. Since each
variable’s energy function depends on its neighbor’s label,
updating each variable’s label will slightly improve its neigh-
bor’s probability distribution as well. After enough iteration,
all variables’ labels reach convergence, which would mini-
mize the total energy function and maximize their posterior
probability.

B. LAS seq2seq Models

The seq2seq deep learning models [8] have generated
impressive results in many sequence transduction tasks, such
as speech recognition [8], machine translation [26], question
answering [14], and image captioning [49]. For greater con-
textual performance, it is standard to augment the decoding
process of seq2seq networks with an attention mechanism [3],
which allows the network to pay attention to the most relevant
parts of the source sequence during each decoding time
step.

Fig. 3 shows a typical attention-based seq2seq network
known as LAS [5], which is adopted in this work for ASR
inferencing. The encoder stage contains unidirectional or
bidirectional vanilla-RNN, GRU, or long short-term mem-
ory (LSTM) stacks sandwiched between normalization and

Fig. 3. LAS seq2seq network highlighting the encoder stage (in red) and
the attention-based decoding stage (in blue). For each output time step, all
the final encoder hidden states are attended and scored.

TABLE I

COMPUTATIONS ACCELERATED IN FLEXASR

pooling layers. At each output time step, the decoder stage
estimates the saliency weight of each output hidden state
coming out of the final encoder layer via the attention mech-
anism [3]. The latter is often called “soft” attention given
that the final encoder hidden state sequence acts as a soft-
addressable memory [9] whose words are weighted to compute
the context vector after a pass through the decoder RNN
stack. Assuming a greedy search, the most likely prediction
is computed by taking the Argmax of the Softmax output
probabilities. We note that this Softmax operation is useful
only during training for gradient approximation that can be
skipped during inference of the LAS model in FlexASR. The
decoder computes the next time steps in an auto-regressive
manner.

The main computation kernels in LAS models (i.e., RNN
and linear layers, attention, layer normalization, and pooling
as shown in Table I) are efficiently accelerated inside FlexASR
(discussed in Section IV).

III. SOC ARCHITECTURE AND IMPLEMENTATION

This section describes the SM6 SoC architecture and
the hardware–software design and verification methodology
employed during the test chip implementation. The main
computing components of the SoC (Fig. 4) are: 1) FlexASR;
2) MSSE; 3) dual-core Arm Cortex-A53 CPUs; and 4) an
always-ON M0 subsystem—interconnected by 128-bit AXI
and 32-bit AHB buses. A 1-MB SRAM buffer is provisioned
at the top level in order to store the intermediate pre- and post-
processed data [25] of the inference pipeline (Fig. 1). The SoC
is also equipped with various off-chip interfaces required for
DRAM access via field-programmable gate array (FPGA) and
for debug.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University College London. Downloaded on June 22,2022 at 13:54:36 UTC from IEEE Xplore. Restrictions apply.

4 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 4. Block diagram of the SM6 SoC, highlighting main components.

A. FlexASR

It is designed to support the key computational kernels and
features seen in LAS seq2seq networks (Fig. 3) as shown in
Table I while also allowing spatial and temporal configura-
tions. As shown in Fig. 4, FlexASR consists of four PEs and a
multi-function GB unit. The communication between GB and
PEs is performed via custom-built channel links. A centralized
arbiter is used to referee the stream of PE partial results, which
will be aggregated by the GB. Once the full activation has been
collected, the GB will then broadcast it back to the PEs for the
next time step computation. Each PE and GB is interfaced with
an AXI-Slave port. An interrupt (IRQ) channel originating
from the GB to the A53 cluster is implemented to indicate
the successful completion of the instructed task.

Section IV further expands on the FlexASR architecture,
detailing its PE, GB, and tiling mechanisms.

B. MRF Source Separation Engine

Over the last decade, there has been extensive research on
the design of ML accelerators [1], [7], [12], [13], [28], [31],
[39], [39] to solve supervised learning problems. In contrast,
unsupervised Bayesian models can be effective in solv-
ing problems relying on unlabeled data expressing various
degrees of information uncertainty [19], [20]. Unfortunately,
Bayesian inference workloads do not efficiently scale on
traditional CPUs and GPUs, therefore requiring specialized
hardware.

In this work, we accelerate Gibbs sampling operations on
MRFs for the purpose of denoising noise-corrupted speech or
enhancing a particular acoustic source in an environment with
multiple sound sources. The unsupervised Bayesian algorithm
excels in a more dynamic environment such as when sources
are moving with respect to the microphones [18], which
can potentially create problematic corner cases for supervised
methods where it is necessary to cover all scenarios with
training data. This specialized computation is accelerated in
the MSSE further discussed in Section V.

MSSE, which contains 12 parallel Gibbs samplers (Fig. 4),
is similar to PGMA [20], a general-purpose Bayesian inference

accelerator. However, we further customized and optimized it
specifically for sound source separation workloads by enabling
only binary label support. This customization resulted in fewer
pipelines and 2× speedup over PGMA (Section VI).

C. Dual-Core Arm Cortex-A53
The inference of the speech-enhancing pipeline (Fig. 1)

effects numerous dynamic data exchanges between the CPU
and the accelerators. SM6 integrates two A53 CPU cores [42],
proven in high-performance embedded and mobile SoCs, for
the following versatile purposes.

1) Feature Extraction Tasks: Framing, windowing, and
1024-pt fast fourier transform (FFT) tasks, required to
synthesize the overlapping sequence of speech spec-
trograms, are vectorized using Ne10 single Instruc-
tion/multiple data (SIMD) instructions [45].

2) Accelerator Programming: The AXI-Master port of the
A53 issues instruction set architecture (ISA) instructions
to FlexASR and MSSE to configure the nature, shape,
and size of their workloads.

3) Expectation–maximization (EM) algorithm, which is a
supplemental step of the Gibbs sampling process during
sound source separation [33].

4) 8-bit Floating-Point (FP8) Quantization: As FlexASR
PEs work on FP8 operands, the 32-bit fixed-point out-
puts from MSSE need to be converted and scaled down
to lower bit precision.

5) Label Mask Convolution: A53 convolves the binary label
mask from MSSE with the original spectrogram in order
to extract the clean speech.

6) Other miscellaneous tasks that include IRQ handling.

D. Design and Verification Methodology

In order to develop the SoC in an agile manner while
minimizing tapeout risks, we adopted the chip design and
infrastructure methodology first outlined in [24]. Specifically,
leveraging the CHIPKIT scaffold [48] and various ARM
collaterals (e.g., A53 and M0 soft IPs, Arm Socrates for
generating the NIC-400 interconnect) allowed us to focus
on the main differentiating features of the SoC. One such
differentiation was in the hardware–software co-design of
FlexASR.

FlexASR was designed using object-oriented high-level
synthesis (HLS) for fast SystemC-to-RTL prototyping [17].
In order to evaluate the bit-level correctness of the hardware
on a realistic speech-to-text workload, we developed a design
and verification flow, which closes the loop between the
software modeling and the backend hardware implementation
being abstracted within the HLS environment. Considering
the software ML framework (e.g., PyTorch and TensorFlow)
to be golden, the HLS environment allowed us to quickly
make hardware tweaks and ECOs until the hardware and
software DNN activations returned matching numerical results,
the post-HLS verification is functionally correct, and post-HLS
PPA results are satisfactory. This agility is made possible by
the higher level of abstraction imposed by the HLS flow.

The SystemC source code description of FlexASR is now
publicly available [43].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University College London. Downloaded on June 22,2022 at 13:54:36 UTC from IEEE Xplore. Restrictions apply.

TAMBE et al.: 16-nm SoC FOR NOISE-ROBUST SPEECH AND NLP EDGE AI INFERENCE 5

Fig. 5. (a) FlexASR PE highlighting its FP vector MAC and ActUnit. For (b) LSTM example, we adopt (c) a custom interleaved tensor tiling in the weight
buffer for (d) hazard-free vector operations in the ActUnit.

IV. FLEXASR

In this section, we provide details of the FlexASR architec-
ture to accelerate LAS models. We can categorize the seq2seq
computations into two main parts: 1) RNN computations for
each time step, which mainly involve matrix-vector multipli-
cations (MVMs) with fixed weights and dynamic activations,
and 2) auxiliary operations such as attention, normalization,
and pooling, which involve activations across time steps.

For the first case, four PEs with 16 lanes of vector multiply-
and-accumulates (MACs) are provisioned to efficiently par-
allelize MVMs. The idea of a weight stationary [7], [34]
dataflow is adopted to divide the workload of RNN compu-
tations and minimize the data movement of weights, given
that the RNN workload tends to be memory-bound. Therefore,
each PE will initially store fractions of the weight matrix in
their respective weight buffer, and during computation, the GB
and PEs exchange input and output activations. The second
case is handled by the GB unit, which houses the input and
output activations and contains several specialized functional
units to handle across-time-step seq2seq computations such as
normalization, pooling, and attention.

A vector size of 16 is applied to every part of the FlexASR
design, that is to say, the operations in the PE or GB are
always effected on 16-element vectors or involve multipli-
cation between a 16 × 16 matrix and a 16-element vector.
Larger vector sizes produce higher accelerator throughput at
the expense of reduced granularity for the RNN hidden state
size. Therefore, the size of the RNN hidden state programmed
in FlexASR is constrained to be a factor of 16—although
one may zero-pad a non-compliant tensor shape in software
prior to acceleration with FlexASR. Our choice of tile size
is also influenced by the design of memory instances and
the 128-bit AXI format. For example, a tile of input/weight
has 16 ∗ 8-bit = 128-bits, which motivates a memory bank
design with a data width of 128 bit per entry such that an
AXI operation can access the full row in this memory bank.

A. Processing Element

The PE [Fig. 5(a)] is the computational workhorse of
FlexASR during RNN, LSTM, GRU, or linear layer com-
putations. It contains a 1-MB 16-bank weight buffer and a

TABLE II

VECTOR OPERATIONS SUPPORTED IN THE FLEXASR ACTUNIT

4-kB input and bias buffer for storing the MVM operands
in FP8 precision. FlexASR FP8 format is E4M3 (i.e., 1-bit
sign, 4-bit exponent, and 3-bit mantissa) without support
for denormals. This FP8 format yielded the best accuracy
outcomes after performing a search on the optimal exponent
bit width to satisfy the dynamic range requirements of LAS
models. The PE also provides alternative support for weight
clustering implemented using lookup tables (LUTs) mapping
4-bit weight indexes to their 8-bit centers. This enables 2×
storage compression in the PE weight buffer.

Each weight buffer bank has a read port that feeds into
a floating-point vector MAC that provides scalability along a
vector dimension of 16 (similar to the PE architecture in [52]).

Therefore, each PE instantiates 16 vector MACs in total
(i.e., 256 MACs/cycles), to perform MVMs between an FP8
weight vector and an FP8 activation vector.

To boost the dynamic range and accuracy of quantized
RNN computations, the 32-bit fixed-point accumulated sum
is dynamically shifted, at a per-layer granularity, by an
exponential bias, expbias. The latter is extracted from the
maximum absolute value in the layer’s weight matrix and
stored in PE registers. This allows resilient and near-FP32
accuracy at FP8 precision on seq2seq models exhibiting wide
parameter distribution [41]. After layer-wise adaptive floating-
point exponent shift, the partial sums are then post-processed
by the PE activation unit (ActUnit).

The ActUnit performs a sequence of vector operations
(Table II) to compute the necessary activation functions

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University College London. Downloaded on June 22,2022 at 13:54:36 UTC from IEEE Xplore. Restrictions apply.

6 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 6. Macro-architecture of the FlexASR multi-function GB unit.

(e.g., sigmoid, tanh, and ReLU) and the element-wise addi-
tion (EADD) and multiplication of matrix-vector products
coming out of the truncation unit. Fig. 5(c) shows the tiling
convention in the multi-bank weight buffer and the ensuing
sequence of ActUnit commands required to fully compute
LSTM kernels without encountering logical hazards.

B. Multi-Function GB Unit

The FlexASR GB unit collects and unifies, across time
steps, the partial RNN output states that the PEs compute.
Once the partial RNN outputs for a time step are fully aggre-
gated, the GB then broadcasts the complete activation back
to each PE for the next time step computation. Moreover, the
GB is augmented with auxiliary processing units that compute
the attention mechanism, mean and max pooling, and layer
normalization, all of which are commonly invoked in modern
seq2seq natural language processing (NLP) networks. We note
that the normalization and the softmax operations used during
the attention calculation contain several serial operations (e.g.,
running average); therefore, DNN accelerators often offload
these computations to a nearby CPU due to the lack of
parallelism opportunities. We propose to compute them within
the confines of FlexASR in order to reduce CPU-accelerator
inter-layer activation exchanges, thereby avoiding undue
latencies during the end-to-end inference of the seq2seq
model.

Fig. 6 shows the macro-architecture of the FlexASR GB.
A 1-MB 16-banks unified buffer is used to store the partial
RNN hidden states computed by the PEs across time steps.
This capacity is large enough to fully store thousands of
activation time steps at any given time, corresponding to
more than 200 words of speech, and allow inference of
large-vocabulary applications requiring nuance and context
understanding, especially in long-sequence transductions.

While the unified buffer has a single write port, each
bank has its own independent read port. A 16-kB auxiliary
buffer is used to house the attention intermediate states and
the learnable normalization parameters. Load/store accesses
to the 1-MB and 16-kB buffers are controlled by a GB
manager, which responds to the requests from the PEs and the
auxiliary processing modules. The latter is composed of the
following.

1) The RNN control unit which orchestrates the sequencing
of the configured RNN flow mode (i.e., uni-directional,
bidirectional, and seq2seq decoder mode) between the
PEs and GB units. For this purpose, the RNN control
module uses the configured number of time steps and
the RNN hidden state size to track its job progress.

2) The attention mechanism unit which computes the soft
attention mechanism [26] for each decoding time step.
During this phase, encoder and decoder states are read
from the GB unified and auxiliary buffers, respectively,
before MAC operations generate scores processed by a
SoftMax unit to produce the attention weights. To pre-
vent numerical instability, the SoftMax is computed by
subtracting the max score in the numerator and denom-
inator. The attention context vector is then obtained by
multiplying the attention weights with the transposed
encoder states. Algorithm 1 details the step-by-step
vectorized computation of the attention unit.

3) The layer reduction unit which can be configured to per-
form mean or maximum pooling on the RNN activations,
as well as EADD of the forward and backward time
steps during the bidirectional mode. Notably, Concat,
sum, and average merge modes used during bidirectional
RNNs are supported by striping forward and backward
time steps across alternate banks in the GB unified
activation buffer. For the sum or average merge modes,
the GB layer reduction module performs EADD or
averaging on concatenated activations.

4) The normalization unit which computes layer normaliza-
tion [2] on the RNN activations in order to speed up the
training process. During the seq2seq inference, a hidden
state activation is normalized as

Xnorm = X − E[X]√
Var[X] ∗ γ + β (3)

where γ and β are learnable parameters obtained after
training and stored in the GB auxiliary buffer. The
normalization module first computes the mean, E[X],
by running average over the number of hidden states, and
then evaluates the variance, Var[X], as: E[X2]− E[X]2.
This process gets repeated for all the needed time steps.

Finally, we note here that the attention, pooling, and normal-
ization datapaths vectorize their computations with a vector
size of 16, which accelerates sequential operations.

V. MRF SOUND SOURCE SEPARATION ENGINE

The sound source separation mechanism is similar to the
approach used in [21] whereby, from the interaural level
difference (ILD) of the input spectrograms, a binary MRF is
constructed and then solved using the Gibbs sampling, which
is a popular Bayesian Markov chain Monte Carlo (MCMC)
inference method. The latter is an iterative process that com-
putes a set of labels that minimize a cost function describing
the conditional distribution for each label. Consequently, the
mean and variance for each of the sources are updated repeat-
edly during the Gibbs sampling inference until convergence.
In Fig. 7, we observe that starting from a mixture of sound
sources, the denoising performance improves with the number

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University College London. Downloaded on June 22,2022 at 13:54:36 UTC from IEEE Xplore. Restrictions apply.

TAMBE et al.: 16-nm SoC FOR NOISE-ROBUST SPEECH AND NLP EDGE AI INFERENCE 7

Algorithm 1 Computation Steps of the Attention Unit
Input: Encoder Matrix M , Decoder Vector v
Output: Attention Context Vector A
NT := encoder time steps in tiles
ND := decoder size in tiles
max = − inf
// 1st MV Mult
for i = 0 to NT − 1 do

accum := 0
for j = 0 to ND − 1 do

W := M[16i :16i+15][16 j :16 j+15]
v := v[16 j :16 j+15]
accum+ = W ∗ v

store accum to auxiliary buffer
// Get maximum at the same time of 1st stage
if max < max(accum) then

max = max(accum)

// Denote output of 1st MV Mult as X
X [16i :16i+15] = accum

// Softmax step 1: SRAM read on X
sumexp = 0
for i = 0 to NT − 1 do

sumexp+ = sum(ex p(X [16i :16i+15] − max)

// Softmax step 2: SRAM read/write to get result X �
for i = 0 to NT − 1 do

X �
[16i :16i+15] = (X [16i :16i+15] − max)/sumexp

// 2nd MV Mult
for i = 0 to ND − 1 do

accum := 0
for j = 0 to NT − 1 do

W := MT
[16i :16i+15][16 j :16 j+15]

v := X �
[16 j :16 j+15]

accum+ = W ∗ v

store accum to GB auxiliary buffer
// Context vector, A, is output of 2nd MV Mult
A[16i :16i+15] = accum

of Gibbs sampling iterations. Notably, at 120 iterations, the
mean square error (MSE) with respect to the baseline spec-
trogram is only 2%.

Formally, Bayesian sound source separation can be divided
into two phases. In the first phase, Gibbs sampling is per-
formed for a specified number of T iterations for N nodes in
the MRF. Then, in the second phase, the MRF distribution is
updated by computing improved Gaussian parameters through
EM. MSSE is designed to accelerate the Gibbs sampling
process via parallelization, while the EM step is handled by
the A53 cores. MSSE contains programmable registers to
configure the width and height of the MRF and the number of
Gibbs sampling iterations, T, to execute inside the hardware.

The ILD matrix is computed from the difference between
the audio recorded at the two microphones. As shown
in Fig. 8, MSSE takes in the ILD matrix and assumes

Fig. 7. Unsupervised sound source separation process showing improved
spectrogram quality following successive Gibbs sampling iterations.

Fig. 8. Sound source separation is performed via Gibbs sampling inference
on the ILD from the speech and noise sources.

Fig. 9. Datapath of the Gibbs sampler in MSSE.

that the probabilities of observing ILD values follow two
source-specific Gaussian distributions and assigns binary
labels to minimize a cost function based on how likely the
observed ILD values are to have come from either source. The
final output labels classify each time–frequency component as
being from one of the two separated output channels. The
binary mask output is used to isolate the time–frequency
components corresponding to each source, and the desired
clean audio is then identified as the output channel with greater
magnitude. This denoised audio is then passed to the FlexASR
inference pipeline.

Prior to running Gibbs sampling in MSSE, the MRF is split
into multiple tiles such that each MRF node update step is
handled by one of the 12 provisioned Gibbs samplers. Fig. 9
shows the 32-bit fixed-point datapath of the Gibbs sampler.
First, the sampler receives the smoothness cost (i.e., degree of
label difference between neighboring nodes) and the data cost
(i.e., mixture of Gaussian distributions) of an MRF node in
order to generate probabilities for every binary label value. The
smoothness cost is usually pre-computed and could be stored
in a read-only memory (ROM), while the data cost is computed
based on the input audio clip. Then, the Gibbs sampler samples
a new label based on the computed probability distribution.
To sample a new label, the probability distribution for each
label and their cumulative sums are stored in a first in, first
out (FIFO). A uniform random number, produced from a
pseudo-random number generator (PRNG), scales the final
cumulative sum (total sum of all probabilities) in order to
generate a probability threshold that is compared against each
of the cumulative sums in the FIFO. This comparison is
repeated until a sum larger than the probability threshold is
found—at which point the corresponding label mask is pushed
out of the sampler and stored in a dedicated new label buffer.

VI. MEASUREMENT RESULTS

An annotated photograph of the 25-mm2 SM6 die is shown
in Fig. 10(a). The SM6 die was implemented in the TSMC

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University College London. Downloaded on June 22,2022 at 13:54:36 UTC from IEEE Xplore. Restrictions apply.

8 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 10. (a) Annotated die photograph of the 25-mm2 SM6 test chip.
Summary of (b) SoC and (c) its main compute clusters.

16-nm FinFET technology and flip-chip bonded into a 672-pin
ball grid array (BGA) package [Fig. 10(b)]. In order to
orchestrate various energy efficiency ranges, six clock domains
capable of outputting fine-grained frequencies and five power
domains with a 0.55–1.0-V functional operation range are
servicing the main compute clusters and other on-chip end-
points. Fig. 10(c) lists the technical specifications of the main
compute clusters. Notably, at 0.8-V nominal voltage, the A53
cores, MSSE, and FlexASR dissipate 50.4, 42.2, and 214 mW,
respectively, at their maximum operating frequencies. With
the compute clusters inactive, SM6 has a standby power of
∼4 mW, as the M0 remains active to sense the GPIO pins for
audio detection.

To compare SM6 against commodity edge platforms,
we evaluated speech-to-text LAS models and Gibbs sampling
on an Nvidia TX2 mobile GPU, a Xilinx ZCU102 FPGA, and
the integrated dual-core A53 CPU. TX2 results were obtained
from CUDA implementations on the GPU module in order to
reap the benefits of parallelization. The ASIC RTL of FlexASR
and MSSE was programmed on the ZCU102 platform for
evaluating FPGA performance. The Ne10 [45] and eigen [44]
libraries were used to vectorize supporting ASR and Gibbs
sampling kernels on the A53 SIMD units.

We conducted the following application-level measurements
at room temperature using typical silicon.

A. Per-Layer Characterization

We begin by characterizing the processing times and energy
dissipation of the main SM6 compute clusters while run-
ning individual seq2seq layers and Gibbs sampling iterations
(Fig. 11). We can make the following observations.

1) FlexASR provides significant speedup gains while accel-
erating seq2seq layers—with attention, LSTM, and GRU
RNNs showing greater benefits. Notably, the 160-time
steps bidirectional LSTM (BILSTM) exhibits higher
processing speedup over CPU, GPU, and FPGA com-
pared to the unidirectional LSTM scenario—due to
FlexASR striping forward and backward activations
in alternate banks in its GB unit. In addition, even
though the normalization and pooling operations are
very serial in nature, by specializing their datapaths
within the confines of the accelerator and thereby avoid-
ing accelerator-CPU activation exchange, FlexASR still
outperforms all other platforms.

2) MSSE achieves appreciable latency reductions over the
commercial edge platforms—demonstrating the need for
specialized Gibbs sampling accelerated computing as
the A53 cores, TX2 GPU, and ZCU102 are 1577×,
7×, and 4× slower than MSSE, respectively. Moreover,
as MSSE was optimized for Bayesian inference with
binary labels as opposed to the general-purpose PGMA
accelerator [19], [20] (supporting up to 64 labels), Gibbs
sampling runs twice as fast on MSSE.

3) Both FlexASR and MSSE generate orders-of-magnitude
smaller energy consumption compared to the commer-
cial edge devices. This is particularly striking during
Gibbs sampling as the A53 cores, TX2 GPU, and
ZCU102 produce 1969×, 134×, and 446× larger energy
dissipation, respectively, compared to MSSE. Further-
more, although the FPGA generally executes seq2seq
kernels faster than the dual-core A53 and TX2 GPU,
its power consumption envelope is significant enough to
make it the least energy-efficient platform for several
workloads (e.g., BILSTM, GRU, and pooling).

Finally, we note that the RNN (BILSTM, LSTM, or GRU)
and linear workloads, which are computed in the FlexASR
PEs, achieve near 100% MAC utilization. However, at the
overall end-to-end ASR workload level, PE utilization is about
71%, given that the PEs become idle during the computation
of normalization, pooling, and attention that account for 19%,
6%, and 4%, respectively, of a representative ASR workload.1

B. End-to-End Characterization
To demonstrate the accuracy and end-to-end performance

benefits of the proposed speech-enhancing pipeline, we com-
pare our approach (Scenario D) with three other com-
mon inference scenarios using the LibriSpeech dataset [27],
as shown in Fig. 12. Scenario A emulates a clean environment
in which the speaker’s voice is the single audio source.
Scenario B mixes the speaker’s voice with another human
voice source in a simulated room environment for a signal-
to-noise ratio (SNR) of 0.90 dB. Finally, Scenario C (Noisy +
Big) adopts a much larger ASR model (22 versus 3.5 MB
used in Scenarios A, B, and D) trained with a noise-corrupted
LibriSpeech dataset in order to learn from noisy inputs. The
Noisy + Big model was gradually sized up, by increasing the
hidden state dimension, until its word error rate (WER) is
much closer to Scenario A in noisy cases. The ASR LAS
model adopted in Scenarios A, B, and D consists of four
BILSTM RNN stacks in the encoder with 512 cells and a
256-cell unidirectional LSTM RNN in the decoder. The LAS
model in Scenario D was scaled up to 1024 cells in each of
the four BILSTM RNN stacks in the encoder and 1024 cells
in its decoder LSTM RNN unit. The following observations
are made.

1) By denoising incoming audio signals and pre-
ceding the speech-to-text inference, MSSE allows
FlexASR to compute significantly smaller size (up
to 6× smaller), iso-accurate ASR models trained on
widely available single-source clean datasets [Fig. 12

1The ASR model used in Scenarios A, B, and D from Fig. 12.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University College London. Downloaded on June 22,2022 at 13:54:36 UTC from IEEE Xplore. Restrictions apply.

TAMBE et al.: 16-nm SoC FOR NOISE-ROBUST SPEECH AND NLP EDGE AI INFERENCE 9

Fig. 11. Breakdown of latency (top row) and energy (bottom row) for individual seq2seq layers running on FlexASR and Gibbs sampling running on MSSE,
compared to running on different commercial platforms. Here, FlexASR, MSSE, and the A53 cores are running at frequencies of 440, 533, and 715 MHz,
respectively, at 0.8 V. Accelerators’ throughput can be found in Table III.

(top left)]—obviating the very inefficient strategy of
scaling up the DNN model size (Scenario C) in order
to achieve noise robustness. Furthermore, the proposed
ASR pipeline delivers 3× accuracy improvement over
the unseparated noise case (Scenario B) and is within
1% of the clean input baseline case (Scenario A).
We note that in Scenario D, MSSE executes 150 Gibbs
sampling iterations, improving speech quality by up to
7.3-dB signal-to-distortion ration (SDR).

2) The proposed pipeline achieves 4.3× lower end-to-end
per-frame latency (bottom left) and 7× energy improve-
ment (bottom right) compared to the similarly accurate
case in Scenario C, which requires significant off-chip
data movements because the weights of the upsized
ASR model cannot fully fit in FlexASR PE scratchpads.
Notably, SM6 achieves latency per frame of 18.4 ms
while dissipating 2.24 mJ of energy during the end-to-
end speech-enhancing ASR inference.

3) Due to the use of RNNs, the inference computation is
mainly memory-bound. Therefore, it can be observed
that the latency and energy costs of memory transfers
in the bigger ASR model (i.e., Noisy + Big in Scenario
C) are much higher compared to the leaner ASR model
used in Scenarios A, B, and D. For example, memory
transfers in Scenario C account for 36% of the end-to-
end latency versus only 6% in our proposed pipeline
whose RNN model is 6× smaller.

4) Fig. 12 (top right) shows that despite substantial energy
expenditures, the commercial edge platforms fail to pro-
vide real-time performance as their per-frame latencies
exceed the 32-ms frame length.

C. CPU Characterization

As specified in Section III-C, the integrated A53 cores
perform various important tasks during the inference of the
speech-enhancing pipeline, which includes front-end feature

Fig. 12. End-to-end measurement results for ASR inference with (A) clean
input audio, (B) noisy input audio, (C) noisy input audio using 6× larger ASR
model, and (D) this work—noisy input audio with Bayesian sound source
separation denoising. WER performance (top left), end-to-end per-frame
latency (bottom left), energy (bottom right), and cross-platform comparisons
(top right) are shown.

extraction, FP8 quantization in preparation to speech-to-text
acceleration in FlexASR, and the EM algorithm.

Fig. 13 shows the runtime breakdown of running these
supporting tasks on the dual-core A53 CPU. Notably, the A53
spends the most time working on FP8 quantization (33.2%),
EM (29.7%), and FFT (25.9%). FP8 quantization is necessary
due to the difference in data type between MSSE (FxP32)
and FlexASR (FP8) as Gibbs sampling is known to require
significantly more precision for robust operation and fast
convergence [4].

Spectrogram framing and windowing and the process of
extracting clean labels after Gibbs sampling account for 6.1%

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University College London. Downloaded on June 22,2022 at 13:54:36 UTC from IEEE Xplore. Restrictions apply.

10 IEEE JOURNAL OF SOLID-STATE CIRCUITS

TABLE III

COMPARISON WITH RELATED WORK

Fig. 13. Breakdown of the processing times resulting from running various
supporting workloads on the dual-core A53 CPU during the end-to-end
speech-enhancing ASR pipeline.

Fig. 14. Impact of voltage scaling on (a) accelerators’ power efficiency and
(b) end-to-end ASR latency and SoC power envelope.

and 3.2% of the CPU workloads, respectively. The CPU
spends the remaining tasks (1.9%) on interrupt handling,
instruction dispatch, and other minor miscellaneous applica-
tion logic.

D. Voltage Scaling
To evaluate the functional efficiency range of the SoC,

all the power domains are uniformly scaled from 1.0 down
to 0.55 V, while the various compute clusters (FlexASR,
MSSE, and dual-A53) are clocked at their respective max-
imum frequencies. Fig. 14(a) shows that voltage/frequency
scaling on FlexASR and MSSE produces the efficiency ranges
of 2.6–7.8 TFLOPs/W and 4.33–17.6 GSamples/s/W, respec-
tively. The per-frame, end-to-end latency varies from 45 to

15 ms as the SoC voltage scales from 0.55 to 1.0 V while
consuming 19–227 mW on average [Fig. 14(b)]. At nominal
0.8 V, the average per-frame SoC power is 111 mW.

E. Comparison With Previous Work

Table III provides a qualitative and quantitative comparison
with some recent related work [10], [11], [23], [50] published
in silicon to date. First, the proposed work is the only solution
supporting an on-chip denoising solution prior to ASR or
KWS, enabling computation of highly accurate, yet leaner,
ASR models fully stored on-chip, thereby preventing costly
DRAM accesses. Second, this is the first work to demon-
strate specialized on-chip support of context-understanding
attention-based seq2seq RNNs for large-vocabulary and long-
sequence ASR workloads. Third, despite executing sound
source separation prior to speech-to-text, this work shows
competitive end-to-end per-frame ASR latency compared
to prior work. Fourth, this work demonstrates 4× higher
FP8 energy efficiency than a recent FP8 implementation in
7 nm [23].

VII. CONCLUSION

This article presents a 25-mm2 SoC in 16-nm FinFET,
which executes end-to-end speech-enhancing attention-based
seq2seq NLP workloads. The SoC, codenamed SM6, con-
tains two custom accelerators: 1) MSSE, a probabilistic
graphical model accelerator for MRF-based speech denoising,
and 2) FlexASR, a reconfigurable processor with a rich
ISA for accelerating ASR via attention-based bidirectional
RNNs. Feature extraction is performed in the integrated
dual-A53 cores, and an always-ON M0 serves as audio
detection and power management. The specialized accelera-
tors provide orders-of-magnitude greater latency and energy
gains over popular commercial edge platforms. At nominal
voltage, the test chip consumes 2.24-mJ per frame while
achieving end-to-end latency of 18 ms—enabling real-time

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University College London. Downloaded on June 22,2022 at 13:54:36 UTC from IEEE Xplore. Restrictions apply.

TAMBE et al.: 16-nm SoC FOR NOISE-ROBUST SPEECH AND NLP EDGE AI INFERENCE 11

throughput. MSSE speech denoising allows on-chip stor-
age of significantly smaller LAS ASR models in FlexASR
scratchpads—promoting higher energy efficiency during the
speech-enhancing pipeline without compromising inference
accuracy.

The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the U.S. Government.

REFERENCES

[1] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” in Proc. 43rd Int. Symp. Comput. Architecture, 2016,
pp. 1–13.

[2] J. Lei Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” 2016,
arXiv:1607.06450.

[3] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in Proc. 3rd Int. Conf. Learn.
Represent. (ICLR), 2015, pp. 1–15.

[4] Y. Chai, G. G. Ko, W.-T. M. Ting, L. Bailey, D. Brooks, and G.-Y. Wei,
“CoopMC: Algorithm-architecture co-optimization for Markov chain
Monte Carlo accelerators,” in Proc. IEEE Int. Symp. High-Perform.
Comput. Architecture (HPCA), Apr. 2022, pp. 38–52.

[5] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell: A
neural network for large vocabulary conversational speech recognition,”
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Mar. 2016, pp. 4960–4964.

[6] W. Chan and I. Lane, “Deep recurrent neural networks for acoustic
modelling,” 2015, arXiv:1504.01482.

[7] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,” in
Proc. ACM/IEEE Int. Symp. Comput. Architecture (ISCA), Jun. 2016,
pp. 367–379.

[8] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,
“Attention-based models for speech recognition,” in Proc. Adv. Neural
Inf. Process. Syst., Annu. Conf. Neural Inf. Process. Syst., vol. 28,
Montreal, QC, Canada, Dec. 2015, pp. 577–585.

[9] J. Dean, D. Patterson, and C. Young, “A new golden age in com-
puter architecture: Empowering the machine-learning revolution,” IEEE
Micro, vol. 38, no. 2, pp. 21–29, Mar. 2018.

[10] J. S. P. Giraldo, S. Lauwereins, K. Badami, and M. Verhelst, “Vocell:
A 65-nm speech-triggered wake-up SoC for 10-μw keyword spotting
and speaker verification,” IEEE J. Solid-State Circuits, vol. 55, no. 4,
pp. 868–878, Apr. 2020.

[11] R. Guo et al., “A 5.1 pJ/neuron 127.3 μs/inference RNN-based
speech recognition processor using 16 computing-in-memory SRAM
macros in 65 nm CMOS,” in Proc. Symp. VLSI Circuits, Jun. 2019,
pp. C120–C121.

[12] U. Gupta et al., “MASR: A modular accelerator for sparse RNNs,” in
Proc. 28th Int. Conf. Parallel Architectures Compilation Techn. (PACT),
Sep. 2019, pp. 1–14.

[13] S. Han et al., “EIE: Efficient inference engine on compressed deep neural
network,” SIGARCH Comput. Archit. News, vol. 44, no. 3, pp. 243–254,
Jun. 2016.

[14] K. M. Hermann et al., “Teaching machines to read and comprehend,”
in Proc. 28th Int. Conf. Neural Inf. Process. Syst., 2015, pp. 1–9.

[15] R. Hsiao, D. Can, T. Ng, R. Travadi, and A. Ghoshal, “Online automatic
speech recognition with listen, attend and spell model,” IEEE Signal
Process. Lett., vol. 27, pp. 1889–1893, 2020.

[16] K. Irie, R. Prabhavalkar, A. Kannan, A. Bruguier, D. Rybach, and
P. Nguyen, “On the choice of modeling unit for sequence-to-sequence
speech recognition,” 2019, arXiv:1902.01955.

[17] B. Khailany et al., “A modular digital VLSI flow for high-
productivity SoC design,” in Proc. 55th Annu. Design Autom. Conf.,
Jun. 2018, pp. 72:1–72:6. [Online]. Available: http://doi.acm.org/
10.1145/3195970.3199846

[18] M. Kim, P. Smaragdis, G. G. Ko, and R. A. Rutenbar, “Stereophonic
spectrogram segmentation using Markov random fields,” in Proc. IEEE
Int. Workshop Mach. Learn. Signal Process., Sep. 2012, pp. 1–6.

[19] G. Ko et al., “A scalable Bayesian inference accelerator for unsupervised
learning,” in Proc. IEEE Hot Chips 32 Symp. (HCS), Aug. 2020,
pp. 1–27. [Online]. Available: https://doi.ieeecomputersociety.org/
10.1109/HCS49909.2020.9220686

[20] G. G. Ko et al., “A 3 mm2 programmable Bayesian inference accelerator
for unsupervised machine perception using parallel Gibbs sampling in
16 nm,” in Proc. IEEE Symp. VLSI Circuits, Jun. 2020, pp. 1–2.

[21] G. G. Ko, Y. Chai, R. A. Rutenbar, D. Brooks, and G.-Y. Wei,
“Accelerating Bayesian inference on structured graphs using parallel
Gibbs sampling,” in Proc. 29th Int. Conf. Field Program. Log. Appl.
(FPL), Sep. 2019, pp. 159–165.

[22] S. Kodali, P. Hansen, N. Mulholland, P. Whatmough, D. Brooks, and
G.-Y. Wei, “Applications of deep neural networks for ultra low power
IoT,” in Proc. IEEE Int. Conf. Comput. Design (ICCD), Nov. 2017,
pp. 589–592.

[23] S. K. Lee et al., “A 7-nm four-core mixed-precision AI chip with
26.2-TFLOPS hybrid-FP8 training, 104.9-TOPS INT4 inference, and
workload-aware throttling,” IEEE J. Solid-State Circuits, vol. 57, no. 1,
pp. 182–197, Jan. 2022.

[24] S. K. Lee, P. N. Whatmough, M. Donato, G. G. Ko, D. Brooks, and
G.-Y. Wei, “SMIV: A 16-nm 25-mm2 SoC for IoT with arm Cortex-
A53, eFPGA, and coherent accelerators,” IEEE J. Solid-State Circuits,
vol. 57, no. 2, pp. 639–650, Feb. 2022.

[25] H. Li, M. Bhargava, P. N. Whatmough, and H.-S.-P. Wong, “On-chip
memory technology design space explorations for mobile deep neural
network accelerators,” in Proc. 56th ACM/IEEE Annu. Design Autom.
Conf. (DAC), Jun. 2019, pp. 1–6.

[26] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proc. Conf. Empirical
Methods Natural Lang. Process. Lisbon, Portugal: Association for Com-
putational Linguistics, Sep. 2015, pp. 1412–1421. [Online]. Available:
https://www.aclweb.org/anthology/D15-1166

[27] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech:
An ASR corpus based on public domain audio books,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2015,
pp. 5206–5210.

[28] A. Parashar et al., “SCNN: An accelerator for compressed-sparse
convolutional neural networks,” in Proc. 44th Annu. Int. Symp. Comput.
Architecture. New York, NY, USA: Association for Computing Machin-
ery, Jun. 2017, pp. 27–40.

[29] D. S. Park et al., “SpecAugment: A simple data augmentation method
for automatic speech recognition,” in Proc. Interspeech, Sep. 2019,
pp. 2613–2617.

[30] M. Price, J. Glass, and A. P. Chandrakasan, “A low-power speech
recognizer and voice activity detector using deep neural networks,” IEEE
J. Solid-State Circuits, vol. 53, no. 1, pp. 66–75, Jan. 2018.

[31] B. Reagen et al., “Minerva: Enabling low-power, highly-accurate deep
neural network accelerators,” in Proc. ACM/IEEE 43rd Annu. Int. Symp.
Comput. Architecture (ISCA), Jun. 2016, pp. 267–278.

[32] A. M. Rush, S. Chopra, and J. Weston, “A neural attention model
for abstractive sentence summarization,” in Proc. EMNLP, 2015,
pp. 379–389.

[33] S. Sahu and G. Roberts, “On convergence of the EM algorithm and the
Gibbs sampler,” Statist. Comput., vol. 9, pp. 55–64, Apr. 1999.

[34] A. Samajdar, J. M. Joseph, Y. Zhu, P. Whatmough, M. Mattina, and
T. Krishna, “A systematic methodology for characterizing scalability of
DNN accelerators using SCALE-sim,” in Proc. IEEE Int. Symp. Perform.
Anal. Syst. Softw. (ISPASS), Aug. 2020, pp. 58–68.

[35] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms,” Int. J. Comput. Vis., vol. 47,
nos. 1–3, pp. 7–42, Apr. 2002, doi: 10.1023/A:1014573219977.

[36] J. M. R. Sotelo et al., “Char2wav: End-to-end speech synthesis,” in Proc.
ICLR, 2017, pp. 1–6.

[37] R. Szeliski et al., “A comparative study of energy minimization methods
for Markov random fields with smoothness-based priors,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 30, no. 6, pp. 1068–1080, Jun. 2008.

[38] T. Tambe et al., “SM6: A 16 nm system-on-chip for accurate and noise-
robust attention-based NLP applications,” in Proc. IEEE Hot Chips 33
Symp. (HCS), Aug. 2021, pp. 1–13.

[39] T. Tambe et al., “EdgeBERT: Sentence-level energy optimizations
for latency-aware multi-task NLP inference,” in Proc. 54th Annu.
IEEE/ACM Int. Symp. Microarchitecture (MICRO). New York, NY,
USA: Association for Computing Machinery, Oct. 2021, pp. 830–844,
doi: 10.1145/3466752.3480095.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University College London. Downloaded on June 22,2022 at 13:54:36 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1023/A:1014573219977
http://dx.doi.org/10.1145/3466752.3480095

12 IEEE JOURNAL OF SOLID-STATE CIRCUITS

[40] T. Tambe et al., “A 25 mm2 SoC for IoT devices with 18 ms noise-robust
speech-to-text latency via Bayesian speech denoising and attention-
based sequence-to-sequence DNN speech recognition in 16nm FinFET,”
in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
Feb. 2021, pp. 158–160.

[41] T. Tambe et al., “Algorithm-hardware co-design of adaptive floating-
point encodings for resilient deep learning inference,” in Proc. 57th
ACM/IEEE Design Autom. Conf. (DAC), Jul. 2020, pp. 1–6.

[42] Arm Developer, Cortex-A53. Accessed: Jan. 1, 2022. [Online]. Available:
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53

[43] Harvard Architecture, Circuits, and Compilers. FlexASR: A Reconfig-
urable Hardware Accelerator for Attention-Based Seq-to-Seq Networks.
Accessed: Jan. 1, 2022. [Online]. Available: https://github.com/harvard-
acc/FlexASR

[44] Libeigen. Eigen. Accessed: Jan. 1, 2022. [Online]. Available:
https://gitlab.com/libeigen/eigen

[45] Ne10 Library. Project Ne10. Accessed: Jan. 1, 2022. [Online]. Available:
https://projectne10.github.io/Ne10/

[46] Semiconductor Research Corporation. (2020). The Decadal Plan for
Semiconductors. [Online]. Available: https://www.src.org/about/decadal-
plan/

[47] R. J. Weiss, J. Chorowski, N. Jaitly, Y. Wu, and Z. Chen, “Sequence-
to-sequence models can directly translate foreign speech,” in Proc.
Interspeech, Aug. 2017, pp. 2625–2629.

[48] P. N. Whatmough, M. Donato, G. G. Ko, S. K. Lee, D. Brooks, and
G.-Y. Wei, “CHIPKIT: An agile, reusable open-source framework for
rapid test chip development,” IEEE Micro, vol. 40, no. 4, pp. 32–40,
Jul. 2020.

[49] K. Xu et al., “Show, attend and tell: Neural image caption generation
with visual attention,” in Proc. ICML, 2015, pp. 2048–2057.

[50] S. Yin et al., “A 141 UW, 2.46 PJ/neuron binarized convolutional neural
network based self-learning speech recognition processor in 28 nm
CMOS,” in Proc. IEEE Symp. VLSI Circuits, Jun. 2018, pp. 139–140.

[51] Y. Zhu, M. Mattina, and P. N. Whatmough, “Mobile machine learning
hardware at ARM: A systems-on-chip (SoC) perspective,” in Proc. 1st
Conf. Syst. Mach. Learn., 2018, pp. 1–3.

[52] B. Zimmer et al., “A 0.32–128 TOPS, scalable multi-chip-module-
based deep neural network inference accelerator with ground-referenced
signaling in 16 nm,” IEEE J. Solid-State Circuits, vol. 55, no. 4,
pp. 920–932, Apr. 2020.

Thierry Tambe (Member, IEEE) received the B.S.
and M.Eng. degrees in electrical engineering from
Texas A&M University, College Station, TX, USA,
in 2010 and 2012, respectively. He is currently
pursuing the Ph.D. degree in electrical engineering
with Harvard University, Cambridge, MA, USA.

From 2012 to 2017, he was an Engineer with
Intel Corporation, Hillsboro, OR, USA, where he
worked on various analog/mixed-signal architectures
for high-bandwidth memory and peripheral inter-
faces on Xeon and Xeon-Phi HPC systems-on-chip

(SoCs). His current research interests focus on designing energy-efficient
and high-performance algorithms, and hardware accelerators and systems for
machine learning applications.

Mr. Tambe was a recipient of the NVIDIA Graduate Ph.D. Fellowship
in 2021.

En-Yu Yang received the B.S. degree in electrical
engineering from National Tsing Hua University,
Hsinchu, Taiwan, in 2018, and the M.S. degree
in computer science from Harvard University,
Cambridge, MA, USA, in 2020, where he is
currently pursuing the Ph.D. degree in computer
science.

His research focuses on specialized architec-
ture and hardware design for machine learning
applications.

Glenn G. Ko (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in electrical and com-
puter engineering from the University of Illinois
at Urbana–Champaign, Urbana, IL, USA, in 2004,
2006, and 2017, respectively.

He was previously with Samsung Electronics,
Suwon, South Korea, where he worked on mobile
application processor system-on-chip. He also spent
time at Qualcomm, San Diego, CA, USA, and
the IBM T. J. Watson Research Center, Yorktown
Heights, NY, USA, working on machine learning

accelerator architectures and deep learning kernels. He is currently a Research
Associate with the Department of Electrical Engineering and Computer
Science, School of Engineering and Applied Sciences (SEAS), Harvard
University, Cambridge, MA, USA. He is also the CEO of Stochastic, Inc.,
Cambridge. His research interests include machine learning algorithms, com-
puter architecture, and integrated circuits.

Yuji Chai received the B.S. degree in electrical
engineering and engineering physics from the Uni-
versity of Illinois at Urbana–Champaign, Urbana, IL,
USA, in 2019. He is currently pursuing the Ph.D.
degree in computer science with Harvard University,
Cambridge, MA, USA.

He was an Intern Research Engineer with
Arm Research, Boston, MA, USA. He is the
Co-Founder of Stochastic, Inc., Cambridge. His
research interests include architecture and algo-
rithm co-design, learned performance modeling, and
machine learning algorithms.

Coleman Hooper is currently pursuing the B.S.
degree in electrical engineering with Harvard Uni-
versity, Cambridge, MA, USA.

He was an Intern Digital Design Engineer
with Boréas Technologies, Bromont, QC, Canada.
He has worked as a Research Assistant with
the Harvard Architecture, Circuits, and Compilers
Group, Harvard University. His research interests
are in developing model compression techniques and
in hardware–software co-design for efficient edge
deployment of machine learning models.

Marco Donato (Member, IEEE) received the B.S.
and M.S. degrees in electrical engineering from
the Università di Roma La Sapienza, Rome, Italy,
in 2008 and 2010, respectively, and the Ph.D.
degree in electrical sciences and computer engineer-
ing from Brown University, Providence, RI, USA,
in 2016.

From 2017 to 2020, he was a Post-Doctoral
Research Associate with the John A. Paulson School
of Engineering and Applied Sciences, Harvard Uni-
versity, Cambridge, MA, USA. He is currently an

Assistant Professor with the Department of Electrical and Computer Engi-
neering, Tufts University, Medford, MA, USA. His research interests include
novel design methodologies targeting energy-efficient and reliable circuits and
architectures for emerging computing paradigms.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University College London. Downloaded on June 22,2022 at 13:54:36 UTC from IEEE Xplore. Restrictions apply.

TAMBE et al.: 16-nm SoC FOR NOISE-ROBUST SPEECH AND NLP EDGE AI INFERENCE 13

Paul N. Whatmough (Member, IEEE) received
the B.Eng. degree (Hons.) from Lancaster Uni-
versity, Lancaster, U.K., the M.Sc. degree (Hons.)
from the University of Bristol, Bristol, U.K., and
the Ph.D. degree from University College London,
London, U.K., in 2003, 2004, and 2012, respec-
tively.

From 2005 to 2008, he was with Philips/NXP
Research Labs, Redhill, U.K., researching hard-
ware architecture and signal processing for software-
defined radio. From 2008 to 2015, he was with the

Silicon Research and Development Group, ARM Ltd., Cambridge, U.K.,
working on topics, including DSP hardware accelerators, variation toler-
ance, and system-on-chip (SoC) supply voltage noise. From 2015 to 2017,
he was a Research Associate with Harvard University, Cambridge, MA,
USA. He currently leads research on hardware for machine learning at Arm
Research, Boston, MA, USA, and is a part-time Associate with the School of
Engineering and Applied Sciences, Harvard University. He has coauthored the
book Deep Learning for Computer Architects (Morgan & Claypool, 2017).

Dr. Whatmough is a member of the Institution of Engineering and Tech-
nology (IET). He was a recipient of the IET Student Project Award in 2003,
the IEEE Communications Chapter Award in 2004, and multiple best paper
awards. He has served on the technical program committees of numerous
conferences in the fields of solid-state circuits, computer architecture, and
machine learning.

Alexander M. Rush received the B.A. degree
in computer science from Harvard University,
Cambridge, MA, USA, in 2007, and the Ph.D.
degree in computer science from the Massachusetts
Institute of Technology, Cambridge, in 2014.

He was with Facebook artificial intelligence (AI)
Research, New York, NY, USA, where he worked
on natural language generation. He is currently an
Associate Professor of computer science with the
Cornell Ann S. Bowers College of Computing and
Information Science, New York. His research is in

the intersection of natural language processing, deep learning, and structured
prediction with applications in text generation and efficient inference.

David Brooks (Fellow, IEEE) received the B.S.
degree in electrical engineering from the University
of Southern California, Los Angeles, CA, USA,
in 1997, and the M.A. and Ph.D. degrees in electrical
engineering from Princeton University, Princeton,
NJ, USA, in 1999 and 2001, respectively.

He is currently the Haley Family Professor of com-
puter science with the School of Engineering and
Applied Sciences, Harvard University, Cambridge,
MA, USA. His current research interests include
resilient and power-efficient computer hardware and

software design for high-performance and embedded systems.
Dr. Brooks was a recipient of several honors and awards, including the ACM

Maurice Wilkes Award and ISCA Influential Paper Award.

Gu-Yeon Wei (Senior Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in electrical engineer-
ing from Stanford University, Stanford, CA, USA,
in 1994, 1997, and 2001, respectively.

He is currently a Robert and Suzanne Case Pro-
fessor of electrical engineering and computer science
with the Paulson School of Engineering and Applied
Sciences (SEAS), Harvard University, Cambridge,
MA, USA. His research interests span multiple lay-
ers of a computing system: mixed-signal integrated
circuits, computer architecture, and design tools for

efficient hardware. His research efforts focus on identifying synergistic
opportunities across these layers to develop energy-efficient solutions for a
broad range of systems from flapping-wing microrobots to machine learning
hardware for the Internet of Things (IoT) devices to large-scale servers.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University College London. Downloaded on June 22,2022 at 13:54:36 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

