32,560 research outputs found

    On the Capacity and Performance of Generalized Spatial Modulation

    Full text link
    Generalized spatial modulation (GSM) uses NN antenna elements but fewer radio frequency (RF) chains (RR) at the transmitter. Spatial modulation and spatial multiplexing are special cases of GSM with R=1R=1 and R=NR=N, respectively. In GSM, apart from conveying information bits through RR modulation symbols, information bits are also conveyed through the indices of the RR active transmit antennas. In this paper, we derive lower and upper bounds on the the capacity of a (N,M,RN,M,R)-GSM MIMO system, where MM is the number of receive antennas. Further, we propose a computationally efficient GSM encoding (i.e., bits-to-signal mapping) method and a message passing based low-complexity detection algorithm suited for large-scale GSM-MIMO systems.Comment: Expanded version of the IEEE Communications Letters pape

    Generalized Spatial Modulation in Large-Scale Multiuser MIMO Systems

    Full text link
    Generalized spatial modulation (GSM) uses ntn_t transmit antenna elements but fewer transmit radio frequency (RF) chains, nrfn_{rf}. Spatial modulation (SM) and spatial multiplexing are special cases of GSM with nrf=1n_{rf}=1 and nrf=ntn_{rf}=n_t, respectively. In GSM, in addition to conveying information bits through nrfn_{rf} conventional modulation symbols (for example, QAM), the indices of the nrfn_{rf} active transmit antennas also convey information bits. In this paper, we investigate {\em GSM for large-scale multiuser MIMO communications on the uplink}. Our contributions in this paper include: (ii) an average bit error probability (ABEP) analysis for maximum-likelihood detection in multiuser GSM-MIMO on the uplink, where we derive an upper bound on the ABEP, and (iiii) low-complexity algorithms for GSM-MIMO signal detection and channel estimation at the base station receiver based on message passing. The analytical upper bounds on the ABEP are found to be tight at moderate to high signal-to-noise ratios (SNR). The proposed receiver algorithms are found to scale very well in complexity while achieving near-optimal performance in large dimensions. Simulation results show that, for the same spectral efficiency, multiuser GSM-MIMO can outperform multiuser SM-MIMO as well as conventional multiuser MIMO, by about 2 to 9 dB at a bit error rate of 10310^{-3}. Such SNR gains in GSM-MIMO compared to SM-MIMO and conventional MIMO can be attributed to the fact that, because of a larger number of spatial index bits, GSM-MIMO can use a lower-order QAM alphabet which is more power efficient.Comment: IEEE Trans. on Wireless Communications, accepte

    Frequency domain equalization for single and multiuser generalized spatial modulation systems in time dispersive channels

    Get PDF
    In this letter, a low-complexity iterative detector with frequency domain equalization is proposed for generalized spatial modulation (GSM) aided single carrier (SC) transmissions operating in frequency selective channels. The detector comprises three main separate tasks namely, multiple-input multiple-output (MIMO) equalization, active antenna detection per user and symbol wise demodulation. This approach makes the detector suitable for a broad range of MIMO configurations, which includes single-user and multiuser scenarios, as well as arbitrary signal constellations. Simulation results show that the receiver can cope with the intersymbol interference induced by severe time dispersive channels and operate in difficult underdetermined scenarios.info:eu-repo/semantics/acceptedVersio

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Multidimensional Index Modulation in Wireless Communications

    Full text link
    In index modulation schemes, information bits are conveyed through indexing of transmission entities such as antennas, subcarriers, times slots, precoders, subarrays, and radio frequency (RF) mirrors. Index modulation schemes are attractive for their advantages such as good performance, high rates, and hardware simplicity. This paper focuses on index modulation schemes in which multiple transmission entities, namely, {\em antennas}, {\em time slots}, and {\em RF mirrors}, are indexed {\em simultaneously}. Recognizing that such multidimensional index modulation schemes encourage sparsity in their transmit signal vectors, we propose efficient signal detection schemes that use compressive sensing based reconstruction algorithms. Results show that, for a given rate, improved performance is achieved when the number of indexed transmission entities is increased. We also explore indexing opportunities in {\em load modulation}, which is a modulation scheme that offers power efficiency and reduced RF hardware complexity advantages in multiantenna systems. Results show that indexing space and time in load modulated multiantenna systems can achieve improved performance
    corecore