35,753 research outputs found

    Agile Autonomous Driving using End-to-End Deep Imitation Learning

    Full text link
    We present an end-to-end imitation learning system for agile, off-road autonomous driving using only low-cost sensors. By imitating a model predictive controller equipped with advanced sensors, we train a deep neural network control policy to map raw, high-dimensional observations to continuous steering and throttle commands. Compared with recent approaches to similar tasks, our method requires neither state estimation nor on-the-fly planning to navigate the vehicle. Our approach relies on, and experimentally validates, recent imitation learning theory. Empirically, we show that policies trained with online imitation learning overcome well-known challenges related to covariate shift and generalize better than policies trained with batch imitation learning. Built on these insights, our autonomous driving system demonstrates successful high-speed off-road driving, matching the state-of-the-art performance.Comment: 13 pages, Robotics: Science and Systems (RSS) 201

    Predictive current control of asynchronous machines by optimizing the switching moments

    Get PDF
    In this paper a model-based predictive control (MBPC) scheme for the current control of induction machines is presented. The controller directly selects the optimal switch state of the inverter. The proposed scheme uses a longer prediction horizon and a limited amount of optimal switching instants to reduce the average switching frequency. The next iteration of the MBPC-scheme is performed at the established optimal switching instant, as such suppressing the receding horizon property for short time spans. The proposed method is compared to a more conventional MBPC-scheme with a very short prediction horizon. Both simulations and experiments clearly show a significant reduction in average switching frequency. However, with a reduction in switching frequency the torque ripple is increased. To correctly asses the properties of the different schemes, a key performance indicator is proposed that offers a fair and unbiased comparison in terms of switching frequency and torque ripple

    Implementation of Nonlinear Model Predictive Path-Following Control for an Industrial Robot

    Full text link
    Many robotic applications, such as milling, gluing, or high precision measurements, require the exact following of a pre-defined geometric path. In this paper, we investigate the real-time feasible implementation of model predictive path-following control for an industrial robot. We consider constrained output path following with and without reference speed assignment. We present results from an implementation of the proposed model predictive path-following controller on a KUKA LWR IV robot.Comment: 8 pages, 3 figures; final revised versio

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    A two-dimensional data-driven model for traffic flow on highways

    Full text link
    Based on experimental traffic data obtained from German and US highways, we propose a novel two-dimensional first-order macroscopic traffic flow model. The goal is to reproduce a detailed description of traffic dynamics for the real road geometry. In our approach both the dynamic along the road and across the lanes is continuous. The closure relations, being necessary to complete the hydrodynamic equation, are obtained by regression on fundamental diagram data. Comparison with prediction of one-dimensional models shows the improvement in performance of the novel model.Comment: 27 page

    A Learning-based Stochastic MPC Design for Cooperative Adaptive Cruise Control to Handle Interfering Vehicles

    Full text link
    Vehicle to Vehicle (V2V) communication has a great potential to improve reaction accuracy of different driver assistance systems in critical driving situations. Cooperative Adaptive Cruise Control (CACC), which is an automated application, provides drivers with extra benefits such as traffic throughput maximization and collision avoidance. CACC systems must be designed in a way that are sufficiently robust against all special maneuvers such as cutting-into the CACC platoons by interfering vehicles or hard braking by leading cars. To address this problem, a Neural- Network (NN)-based cut-in detection and trajectory prediction scheme is proposed in the first part of this paper. Next, a probabilistic framework is developed in which the cut-in probability is calculated based on the output of the mentioned cut-in prediction block. Finally, a specific Stochastic Model Predictive Controller (SMPC) is designed which incorporates this cut-in probability to enhance its reaction against the detected dangerous cut-in maneuver. The overall system is implemented and its performance is evaluated using realistic driving scenarios from Safety Pilot Model Deployment (SPMD).Comment: 10 pages, Submitted as a journal paper at T-I

    Predictive Control of Autonomous Kites in Tow Test Experiments

    Get PDF
    In this paper we present a model-based control approach for autonomous flight of kites for wind power generation. Predictive models are considered to compensate for delay in the kite dynamics. We apply Model Predictive Control (MPC), with the objective of guiding the kite to follow a figure-of-eight trajectory, in the outer loop of a two level control cascade. The tracking capabilities of the inner-loop controller depend on the operating conditions and are assessed via a frequency domain robustness analysis. We take the limitations of the inner tracking controller into account by encoding them as optimisation constraints in the outer MPC. The method is validated on a kite system in tow test experiments.Comment: The paper has been accepted for publication in the IEEE Control Systems Letters and is subject to IEEE Control Systems Society copyright. Upon publication, the copy of record will be available at http://ieeexplore.ieee.or
    • …
    corecore