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Abstract—In this paper a model-based predictive control
(MBPC) scheme for the current control of induction machines is
presented. The controller directly selects the optimal switch state
of the inverter. The proposed scheme uses a longer prediction
horizon and a limited amount of optimal switching instants to
reduce the average switching frequency. The next iteration of the
MBPC-scheme is performed at the established optimal switching
instant, as such suppressing the receding horizon property for
short time spans.

The proposed method is compared to a more conventional
MBPC-scheme with a very short prediction horizon. Both sim-
ulations and experiments clearly show a significant reduction
in average switching frequency. However, with a reduction in
switching frequency the torque ripple is increased. To correctly
asses the properties of the different schemes, a key performance
indicator is proposed that offers a fair and unbiased comparison
in terms of switching frequency and torque ripple.

Index Terms—Indirect field-oriented control, induction ma-
chines, MBPC, predictive control, FPGA implementation,
switching-loss reduction

I. INTRODUCTION

Control schemes in electrical drives have been the subject
of research for several decades. In practice, two typical ap-
proaches are used in industrial applications: schemes based
on linear control (PI-controllers) in a field-oriented reference
frame combined with a voltage modulator [1] and schemes
based on non-linear control with hysteresis bounds [2].

These concepts are mainly focused on a low computational
complexity. However the increasing computation power of
digital hardware in the last decades has allowed the application
of very demanding control schemes. Especially model-based
predictive control (MBPC) [3]–[5] has received increasing
interest. Within MBPC the controller uses a machine and
converter model to predict the future behaviour, then the
optimal control action is selected by means of a cost function.
The notion of optimality for the selected control action and the
natural handling of system constraints are the main reasons for
the increased interest in MBPC from academia and industry.
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In the MBPC-scheme, the future system states are predicted
in discrete-time steps (often corresponding with the fixed sam-
pling frequency of the controller). The number of subsequent
prediction steps is called the prediction horizon Ny . For larger
prediction horizons the MBPC-scheme is computationally very
demanding, even for the powerful digital devices that are
nowadays available.

As such two approaches exist in the literature: either the
MBPC uses a long horizon (tens or hundreds of time steps)
where the problem is solved offline [3] or the horizon is typ-
ically reduced to one time step (or a few sampling periods at
most) and the problem is solved online [5], [6]. This problem
is even more evident for complex converter topologies, such as
multilevel inverters [6], [7]. The offline versions of MBPC are
rather impractical, but for the short prediction horizon versions
it is difficult to reduce the switching frequency properly. In this
paper an online MBPC is studied and realised for medium-
length prediction horizons (typically 5 to 10 periods). The
experimental verification is achieved by the implementation of
the prediction calculations in programmable digital hardware
(FPGA), as discussed in [7]. The MBPC scheme in this paper
takes the inverters discrete switch conditions directly into
account and uses no modulator. As the available switch states
are limited, this technique is often referred to as finite-set
MBPC (FS-MBPC).

The literature on the model-based predictive control of AC
machines is mainly focused on the direct control of torque and
flux by choosing the best inverter switch state (often called pre-
dictive torque control, PTC) [3], [8]–[10], a technique closely
related to the more conventional DTC-technique (direct torque
control [2]). Considerably less publications discuss the direct
current control [4], [11]–[13] of AC machines. The control task
here is to accurately track the reference current obtained from a
field-oriented control principle. The proposed method reduces
the switching frequency efficiently without compromising the
current tracking (and thus the torque quality) too much.

II. FIELD-ORIENTED CONTROL OF INDUCTION MACHINES

The field-oriented control of induction machines [14], [15],
has become a standard technique in industry. The main prin-
ciples are summarized below.

A. Modelling Induction Machines
Induction machines can be modelled by an equivalent two-

phase speed-dependent fourth-order state-space equation. The
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horizontal and vertical axis of the stationary reference frame
are called α and β, respectively. The measured stator current
is and unmeasured rotor flux ψr are chosen as overall state
vector x =

[
isα isβ ψrα ψrβ

]T
. They are controlled by

the stator voltage vs.
In the following equations Np denotes the pole pairs. Ls,

Rs, Rr and ωr are respectively the stator inductance, stator
resistance, rotor resistance and rotor speed. Assuming no
leakage on rotor side, Lm is both mutual and rotor inductance
whereas the stator leakage inductance Lsσ is Ls − Lm.

The system dynamics are described by the state-space model

ẋ = A(ωr)x+Bvs (1)

vs =
[
vsα vsβ

]T
(2)

A(ωr) =

⎡
⎢⎢⎢⎣
−Rs+Rr

Lsσ
0 Rr

LsσLm

ωr

Lsσ

0 −Rs+Rr

Lsσ
− ωr

Lsσ

Rr

LsσLm

Rr 0 − Rr

Lm
−ωr

0 Rr ωr − Rr

Lm

⎤
⎥⎥⎥⎦ (3)

B =

⎡
⎢⎢⎣

1
Lsσ

0

0 1
Lsσ

0 0
0 0

⎤
⎥⎥⎦ . (4)

The electromagnetic torque tem is given by

tem =
3

2
NpLm (ψrβisα − ψrαisβ) . (5)

B. Indirect Field-Oriented Control - Current References

Using a reference frame (d, q), with the d-axis fixed to
the rotor-flux vector and angular speed ωdq = ωslip + ωr

relative to the stationary frame (α, β), the stator current can be
decomposed in two perpendicular components: isd generating
the rotor flux ψrd and a component isq responsible for the
torque tem. The dynamics of this technique illustrated on Fig.
1 and called ‘indirect field-oriented control’ [14], [15] are:

ψrd(p) =
Lm

1 + pLm

Rr

isd(p) (6)

tem(t) =
3

2
NpLmψrd(t)isq(t) (7)

ωslip(t) = −Rrisq(t)

ψrd(t)
; θslip(t) =

∫ t

t0

ωslip(t
′)dt′. (8)

q
d

isq

isd

ψrd

is

Fig. 1: dq-components of the stator current and rotor flux

VDC C
ia ib icva vb vc

Fig. 2: 2-level voltage-source inverter

Table I: The 8 voltage vectors depending on the inverter state

Binary code va vb vc vα vβ

000 −VDC
2

−VDC
2

−VDC
2

0 0

001 −VDC
2

−VDC
2

VDC
2

− 1
3
VDC −

√
3

3
VDC

010 −VDC
2

VDC
2

−VDC
2

− 1
3
VDC

√
3

3
VDC

011 −VDC
2

VDC
2

VDC
2

− 2
3
VDC 0

100 VDC
2

−VDC
2

−VDC
2

2
3
VDC 0

101 VDC
2

−VDC
2

VDC
2

1
3
VDC −

√
3

3
VDC

110 VDC
2

VDC
2

−VDC
2

1
3
VDC

√
3

3
VDC

111 VDC
2

VDC
2

VDC
2

0 0

p is the Laplace-operator. Reference values ψref
rd and trefem

can be transformed into references irefsq and irefsd , which can be
transformed into reference values irefsα and irefsβ :[
irefsα

irefsβ

]
=

[
cos(θdq) − sin(θdq)
sin(θdq) cos(θdq)

] [
irefsq

irefsd

]
; θdq = θslip + θr

(9)
.

In this paper the challenge is to track the reference current
through a voltage-source inverter with minimal switching-
losses. This paper deals with a two-level inverter as shown
in Fig. 2, but the principles can be extended to other inverter
topologies. The three-phase currents and the dc-voltage are
measured. Table I contains a list of the 8 instantaneous stator
voltage vectors. The binary code indicates the state of the
semiconductor switches: the MSB stands for phase a, the LSB
is phase c and 1 or 0 indicates the on-state of respectively
the upper or lower switch. Mind that there is no difference
between 000 and 111 except for the homopolar component
generating zero rotor flux nor electromagnetic torque.

III. PREDICTIVE CURRENT CONTROL WITH
OPTIMIZATION OF THE VOLTAGE VECTORS AND

SWITCHING MOMENTS

The reference current obtained with the field-oriented con-
trol principle has to be realized by the predictive current
controller, as shown in figure 3.

A. FS-MBPC in General

The FS-MBPC algorithm has three important steps [5], [6]:
1) ESTIMATION: based on samples of currents, dc-voltage,

rotor speed and rotor position at update instant k− 1 an
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Fig. 3: Overall control scheme

estimation is made for the state at update instant k. Up
to that moment k, the switch state applied at k − 1 is
considered.

2) PREDICTION: starting from the estimated state at k,
predictions are made for the state evolution over the
entire prediction horizon Ny (from k to k + Ny) for
each allowed sequence of switch states.

3) OPTIMISATION: for each switch state sequence a cost
function for the states from k+1 to k+Ny is calculated.
The sequence k+1 to k+Ny with minimal cost is then
selected and the first switch state is applied. After this,
the algorithm is iterated.

The sampling period for the algorithm and thus the update
period of the switch state is denoted by t∆. The update
frequency fu = 1

t∆
is much higher than the average switching

frequency. Still, the average switching frequency can be rather
high. As the prediction horizon often is restricted to Ny = 1 to
realize online implementation, switching frequency reduction
can not satisfactorily be obtained.

For the estimation and prediction steps the model in (3) is
used. However, the rotor flux is not measured and as such an
observer based on the measured states (current, voltage and
position) is used as shown in Fig. 3.

B. State Estimation: Observer for the Rotor Flux

A hands-on approach is to take the estimated stator current
îs equal to the measured one ĩs. The rotor flux is estimated
by using (3).

îsα(n+ 1) = ĩsα(n+ 1)

îsβ(n+ 1) = ĩsβ(n+ 1)

ψ̂sα(n+ 1) = t∆Rr îsα(n) +
[
1− t∆Rr

Lm

]
ψ̂sα(n)− t∆ωrψ̂sβ(n)

ψ̂sβ(n+ 1) = t∆Rr îsβ(n) +
[
1− t∆Rr

Lm

]
ψ̂sβ(n) + t∆ωrψ̂sα(n)

(10)

Both simulations and experiments show a good robustness
of the current control against machine parameter variations,
even with this very simple state estimator.

C. New Algorithm: Long Horizon, Few Switches

The newly proposed algorithm searches not only for the
optimal voltage vectors, but also for the best switching mo-
ments. In this paper, two switching moments are allowed over

the total horizon only: one in the beginning and one on an
arbitrary point of time within the prediction horizon. So the
prediction horizon is divided into two time intervals each with
their own optimal voltage vector.

The first optimal voltage vector vap (ap: apply) will be
applied during its respective optimal time whereas the second
voltage vector vf (f: foresee) has to make sure the control
system does not fall into a situation where it will be difficult
to track the reference current in the future. This method is
called the Long Horizon Few Switches (LHFS) algorithm.
The main difference between the LHFS-algorithm and other
methods proposed in literature with a longer horizon [3], [13]
is twofold:

• the horizon is still less than 10 update periods (compared
to several tens or hundreds of [3], [13]),

• the fact that the receding horizon property is suppressed
during mopt sample periods. This results in a smoother
control without the need for an explicit ‘end-cost’.

The LHFS algorithm consists of the following steps:

1) construct all possible sequences of voltage vectors

[vap . . . vap︸ ︷︷ ︸
Ny−m

vf . . . vf︸ ︷︷ ︸
m

]; 0 ≤ m < Ny (11)

vap and vf ∈ [0 1 2 3 4 5 6]; vap �= vf (12)

Only one null vector is considered. vap and vf have
respectively 7 and 6 possibilities.

2) Simulate for all sequences the current evolution and
associate a cost with it.

K =

Nyt∆∑
j=t∆

(
isq(t+ j)− irefsq

)2
+
(
isd(t+ j)− irefsd

)2
(13)

3) Determine the optimal sequence, i.e. the one with lowest
associated cost.

4) Apply the optimal vector vap,opt during Ny − mopt

samples and repeat the whole calculation. If va,opt is
a null vector, then switch to the null vector that requires
least switches (according to Table I).

The above algorithm is rather hard to evaluate within an up-
date period for long horizons and/or other inverter topologies
with more than two voltage levels. In a naive implementation
where all sequences are simulated after each other,

42Ny
2; Ny > 1; O(N2

y ) (14)

time steps have to be simulated since there are 7 possibilities
for vap, 6 for vf and Ny for m. Finally every combination of
vap, vf and m has to be simulated over Ny time steps. As e.g.
the sequence [1 1 1 5 5] and [1 1 6 6 6] both start with [1 1],
this common switching sequence can be reused.

In general the voltage vector of the common sequence has
7 possibilities and needs to be simulated over Ny time steps.
As such, vf has 6 possibilities and needs to be simulated over
1 to Ny − 1 time steps. Hence the number of calculations is
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⎛
⎝Ny + 6

Ny−1∑
j=1

j

⎞
⎠ = 21Ny

2 − 14Ny; O(Ny
2). (15)

Compared to (14), this is a reduction with more than a half,
but it complicates the implementation.

D. Simplification

A further reduction of the complexity of the algorithm can
be made using the so-called ‘Branch & Bound’-techniques.
This means that some voltage sequences are considered inap-
propriate in advance, so their current evolutions don’t have to
be simulated, nor evaluated.

Specifically, vap may at maximum differ one single switch
of a random phase from the previous applied voltage vector1,
subsequently vf must differ one switch from its respective vap.
As the amount of switches is important, it is clear that the two
null vectors have to be taken in account directly. Hence vap
has 4 possibilities, vf 3 and m is still going from 1 to Ny−1.
The total calculations amount to

12Ny
2; O(Ny

2) (16)

for a naive implementation, for the reusing one it is

4

⎛
⎝Ny + 3

Ny−1∑
j=1

j

⎞
⎠ = 6Ny

2 − 2Ny; O(Ny
2). (17)

For prediction horizons up to Ny = 20 the number of
calculations is comparable to the cases discussed in [7], where
the FPGA-implementation of FS-MBPC is discussed.

IV. KEY PERFORMANCE INDICATOR

The first goal of the controller is to track the reference
current precisely to minimize the torque ripple.

The expected electromagnetic torque strongly depends on
the rotor inductance and resistance as can be seen in eq. (6)
to (8). Biased machine parameters will give biased fluxes and
torques, even with a perfect current controller. This systematic
error during experiments due to the error on the accepted, yet
slightly inaccurate, machine parameters is unimportant and
therefore it’s undesirable to take it into account as torque
ripple. Consequently, the root mean square error (RMSE) of
the torque compared to the average measured torque is chosen
as criterion for the torque ripple

RMSEtem =

√√√√∑ntotal
n=1

(
tem(n)− tem(n)

)
ntotal

(18)

The second goal is to minimize the average switching
frequency of an inverter leg fswitch.

As the algorithm prohibits the controller to switch every
update period it is clear that the average switching frequency
per leg of the inverter fswitch will lower with longer horizons.
The torque ripple on the other side will rise. Therefore it’s not

1This means the binary code (table I) of vap and the actual applied voltage
vector may differ one random bit
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Fig. 4: Simulated current control with a one-step-ahead algorithm
(Ny = 1) and the LHFS (Ny = 5) algorithm. Above: α and β

currents, below: torque. Simulation conditions: isq = 8.5A,
isd = −3.2A, ωr

ωsy,nom
= 0.5 and VDC = 538V

directly clear whether this method is to be preferred above
an ordinary one-step-ahead prediction with a lower update
frequency since it also has lower switching frequency and
higher torque ripple.

A good comparison takes this balance in account. The
product fswitchRMSEtem appears to be characterizing for a
certain control strategy and working point, independent from
fupdate

2, as will be shown in the next section. Therefore it is
taken as the key performance indicator (KPI).

Good control strategies have lower KPI’s compared to worse
strategies as their torque ripple is lower for the same switching
strategy. Alternatively their switching frequency is lower for
the same torque ripple.

V. SIMULATIONS

The simulations and experiments are done on an induction
machine with parameters Np = 1, fsy,nom = 50Hz, Rs =
1.26Ω, Ls = 0.304H, Rr = 1Ω and Lr = Lm = 0.28H.

In Fig. 4 the current control and obtained torque is compared
for the algorithm with Ny = 1 (one-step-ahead) and LHFS

2As long as fswitch > 2kHz for the in the next section considered machine



5

0 0.5 1 1.5 2 2.5 3 3.5
−1

0

1

2

3

4

5

6

t [ms]

i
[A

]

reference
Ny = 1
Ny = 5

Fig. 5: Current ripple with a one-step-ahead algorithm (Ny = 1)
and the LHFS (Ny = 5) algorithm (zoomed view).
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w
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Fig. 6: At high enough fupdate, the product fswitchRMSEtem is
constant. For low fupdate, the KPI rises. Simulation conditions:
isq = 8.5A, isd = −3.2A, ωr

ωsy,nom
= 0.5 and VDC = 538V

with Ny = 5. Clearly both algorithms are capable of tracking
the current reference, but the LHFS algorithm has a higher
torque ripple. In Fig. 5 however it is clear that also the
switching frequency is lower. A proper comparison requires
the use of the KPI.

A. Original Algorithm

Fig. 6 shows the torque ripple in function of the switching
frequency. The update frequency is the implicit parameter.

It follows that the proposed algorithm (Ny = 5) performs
better than a classic one-step-ahead predictor (Ny = 1) as
the same torque ripple can be achieved with fewer switches.
Moreover the simulated curves can be fit by fswitchRMSEtem =
constant. This proofs that the KPI is independent of fupdate for
medium switching frequencies and higher (> 2kHz). At low
fswitch ≈ 1kHz, the KPI increases since the torque ripple still
rises with declining fupdate, but fswitch is rather constant. Nev-

ertheless the proposed algorithm is an improvement relative to
a one-step-ahead prediction.

Fig. 7 presents the influence of the speed. The properties
for Ny = 5 (and Ny = 3), compared to a classic Ny = 1
predictor, are:

• (a) From ωr > 0.1 (0.25) ωsy,nom, the torque ripple rises.
• (b) Simultaneously fswitch saturates, which means it is

relatively constant over a large speed range.
• (c) The KPI rises with increasing speed, but not as much

as for Ny = 1.
• (d) Especially at medium speeds

(
ωr

ωsy,nom
≈ 0.5

)
, there is

a remarkable improvement: the KPI is 25% (20%) lower.

B. Simplified Algorithm

Fig. 8 indicates that the simplified algorithm also has a
constant KPI for not too low update frequencies. Moreover, the
forced reduction of switching possibilities has a good impact
on the overall performance as the curves of the simplified

(d) KPI
KPINy=1

ν
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(c) KPI
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Fig. 7: Influence of the speed on the performance of the algorithm.
Enlarging the horizon increases torque ripple (a), but this is

overcompensated by the lower switching frequency (b) as seen in
(c) and (d). Simulation conditions: isq = 8.5A, isd = −3.2A,

fupdate = 12.2kHz and VDC = 538V
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Fig. 8: Influence of the speed on the performance of the simplified
algorithm. It performs at least as good as the original algorithm.

Simulation conditions: isq = 5A, isd = −3.2A, Ny = 5 and
VDC = 538V

algorithm are situated lower than those of the original. This
behaviour is comfortable since the simplified algorithm is both
easier to implement while it still performs better.

VI. EXPERIMENTS

To verify the results, the simplified algorithm was used in the
experiments. The control was implemented in a Xilinx Spartan
6 evaluation board (Atlys) from Digilent Inc. with the System
Generator Toolbox for Matlab/Simulink. The Chipscope tool
was used to obtain measurements. The 2-level inverter is re-
alized with a Fuji Electronic. IPM (Intelligent Power Module)
rated at 600V, 15A. The update frequency is 12 kHz.

Fig. 9 shows the current evolution as a function of time
for a one step ahead predictor while Fig. 10 shows the same
working point for the proposed algorithm. As it is impossible
to say at sight which one is the better, calculation of the KPI
is required.

In Table II the switching frequency, estimated torque ripple
and KPI are given for a prediction horizon Ny of respectively
1 and 5. The torque ripple is estimated through the current
ripple and the model since dynamic torques (especially high-
frequency components) are difficult to measure. The average
switching frequency is obtained by monitoring the voltage
vector command over a long time range.

The experimental results confirm the results obtained in
simulation. A longer horizon, and thus less abilities to switch
the voltage vector, obviously lowers the switching frequency,
but it also increases the torque ripple. Clearly the algorithm
with Ny = 5 is preferable: although the torque ripple almost
doubles, the switching frequency is reduced with almost a
factor 3.

0 80 160 240 320
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0
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4

6

8

t [ms]

i
[A

]

iα
iβ

Fig. 9: Current as a function of time for a one step ahead predictor.
Experiment conditions: isq = 6A, isd = −3A, ωr = 500rpm and

VDC = 150V
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i
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]

iα
iβ

Fig. 10: Current as a function of time for the proposed algorithm
with Ny = 5. Experiment conditions: isq = 6A, isd = −3A,

ωr = 500rpm and VDC = 150V

As mentioned before, the KPI takes both effects into ac-
count. For the longer horizon (Ny = 5) this results in a KPI
which is 27% lower compared to the one-step-ahead solution.
The LHFS-algorithm clearly is capable of closely tracking the
reference current with a very low effective switching frequency
whilst limiting the torque ripple.

VII. CONCLUSIONS

In this paper a model-based predictive controller was pre-
sented with a medium-length prediction horizon and optimized
switching instants. This algorithm allows the reduction of the
average switching frequency whilst obtaining good current
tracking and thus high-quality torque control. This was verified

Ny 1 5
KPI [Nm kHz] 1.059 0.771
σ̂tem [Nm] 0.300 0.596
fswitch [kHz] 3.529 1.294

Table II: Experimental conditions: isq = 6A, isd = −3A,
ωr = 500rpm and VDC = 150V
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by simulation as well as experiment. A Key Performance In-
dicator was proposed to correctly compare several algorithms.
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