6,490 research outputs found

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    The design and evaluation of discrete wearable medical devices for vital signs monitoring

    Get PDF
    The observation, recording and appraisal of an individual’s vital signs, namely temperature, heart rate, blood pressure, respiratory rate and blood oxygen saturation (SpO2), are key components in the assessment of their health and wellbeing. Measurements provide valuable diagnostic data, facilitating clinical diagnosis, management and monitoring. Respiratory rate sensing is perhaps the most under-utilised of all the vital signs, being routinely assessed by observation or estimated algorithmically from respiratory-induced beat-to-beat variation in heart rate. Moreover there is an unmet need for wearable devices that can measure all or most of the vital signs. This project therefore aims to a) develop a device that can measure respiratory rate and b) develop a wearable device that can measure all or most of the vital signs. An accelerometer-based clavicular respiratory motion sensor was developed and compared with a similar thoracic motion sensor and reference using exhalatory flow. Pilot study results established that the clavicle sensor accurately tracked the reference in monitoring respiratory rate and outperformed the thoracic device. An Ear-worn Patient Monitoring System (EPMS) was also developed, providing a discrete telemonitoring device capable of rapidly measuring tympanic temperature, heart rate, SpO2 and activity level. The results of a comparative pilot study against reference instruments revealed that heart rate matched the reference for accuracy, while temperature under read (< 1°C) and SpO2 was inconsistent with poor correlation. In conclusion, both of the prototype devices require further development. The respiratory sensor would benefit from product engineering and larger scale testing to fully exploit the technology, but could find use in both hospital and community-based The design and evaluation of discrete wearable medical devices for vital signs monitoring DG Pitts ii Cranfield University monitoring. The EPMS has potential for clinical and community use, having demonstrated its capability of rapidly capturing and wirelessly transmitting vital signs readings. Further development is nevertheless required to improve the thermometer probe and resolve outstanding issues with SpO2 readings

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    FIT FOR USE ASSESSMENT OF BIOZEN AS A BIOMETRIC SENSOR CONCENTRATOR FOR REMOTE PATIENT MONITORING

    Get PDF
    In recent years, COVID-19 highlighted the importance of virtual health solutions with regard to improving patient health and conserving valuable hospital resources. Currently, the Defense Health Agency (DHA) does not own a remote patient-monitoring solution and relies on external commercial entities to provide the application and services. This could potentially lead to the DHA not retaining complete data ownership when patient data would reside on or traverse through commercial remote patient-monitoring solutions. This thesis evaluates BioZen, a DHA-owned biomedical sensor concentrator designed to run on a mobile phone, as a remote patient-monitoring tool. From this analysis, several key measures of effectiveness and measures of performance for remote patient-monitoring tools are identified and operationalized to measure the overall value BioZen brings to the DHA. Based on this research, it was found that the current build of BioZen, 2.0.0, is unable to meet any of the measures outlined in the study as a remote patient-monitoring tool. A future build of BioZen, or any remote patient-monitoring tool, could then be assessed using the measures of effectiveness and measures of performance within this study to determine the overall value brought to the DHA.Defense Health Agency, 7700 Arlington Boulevard, Falls Church, VA 22042Captain, United States ArmyLieutenant, United States NavyApproved for public release. Distribution is unlimited

    Respiration rate and volume measurements using wearable strain sensors.

    Get PDF
    Current methods for continuous respiration monitoring such as respiratory inductive or optoelectronic plethysmography are limited to clinical or research settings; most wearable systems reported only measures respiration rate. Here we introduce a wearable sensor capable of simultaneously measuring both respiration rate and volume with high fidelity. Our disposable respiration sensor with a Band-Aid© like formfactor can measure both respiration rate and volume by simply measuring the local strain of the ribcage and abdomen during breathing. We demonstrate that both metrics are highly correlated to measurements from a medical grade continuous spirometer on participants at rest. Additionally, we also show that the system is capable of detecting respiration under various ambulatory conditions. Because these low-powered piezo-resistive sensors can be integrated with wireless Bluetooth units, they can be useful in monitoring patients with chronic respiratory diseases in everyday settings

    Smart vest for respiratory rate monitoring of COPD patients based on non-contact capacitive sensing

    Get PDF
    In this paper, a first approach to the design of a portable device for non-contact monitoring of respiratory rate by capacitive sensing is presented. The sensing system is integrated into a smart vest for an untethered, low-cost and comfortable breathing monitoring of Chronic Obstructive Pulmonary Disease (COPD) patients during the rest period between respiratory rehabilitation exercises at home. To provide an extensible solution to the remote monitoring using this sensor and other devices, the design and preliminary development of an e-Health platform based on the Internet of Medical Things (IoMT) paradigm is also presented. In order to validate the proposed solution, two quasi-experimental studies have been developed, comparing the estimations with respect to the golden standard. In a first study with healthy subjects, the mean value of the respiratory rate error, the standard deviation of the error and the correlation coefficient were 0.01 breaths per minute (bpm), 0.97 bpm and 0.995 (p < 0.00001), respectively. In a second study with COPD patients, the values were -0.14 bpm, 0.28 bpm and 0.9988 (p < 0.0000001), respectively. The results for the rest period show the technical and functional feasibility of the prototype and serve as a preliminary validation of the device for respiratory rate monitoring of patients with COPD.Ministerio de Ciencia e InnovaciĂłn PI15/00306Ministerio de Ciencia e InnovaciĂłn DTS15/00195Junta de AndalucĂ­a PI-0010-2013Junta de AndalucĂ­a PI-0041-2014Junta de AndalucĂ­a PIN-0394-201

    Hardware Prototype for Wrist-Worn Simultaneous Monitoring of Environmental, Behavioral, and Physiological Parameters

    Get PDF
    We designed a low-cost wrist-worn prototype for simultaneously measuring environmental, behavioral, and physiological domains of influencing factors in healthcare. Our prototype continuously monitors ambient elements (sound level, toxic gases, ultraviolet radiation, air pressure, temperature, and humidity), personal activity (motion tracking and body positioning using gyroscope, magnetometer, and accelerometer), and vital signs (skin temperature and heart rate). An innovative three-dimensional hardware, based on the multi-physical-layer approach is introduced. Using board-to-board connectors, several physical hardware layers are stacked on top of each other. All of these layers consist of integrated and/or add-on sensors to measure certain domain (environmental, behavioral, or physiological). The prototype includes centralized data processing, transmission, and visualization. Bi-directional communication is based on Bluetooth Low Energy (BLE) and can connect to smartphones as well as smart cars and smart homes for data analytic and adverse-event alerts. This study aims to develop a prototype for simultaneous monitoring of the all three areas for monitoring of workplaces and chronic obstructive pulmonary disease (COPD) patients with a concentration on technical development and validation rather than clinical investigation. We have implemented 6 prototypes which have been tested by 5 volunteers. We have asked the subjects to test the prototype in a daily routine in both indoor (workplaces and laboratories) and outdoor. We have not imposed any specific conditions for the tests. All presented data in this work are from the same prototype. Eleven sensors measure fifteen parameters from three domains. The prototype delivers the resolutions of 0.1 part per million (PPM) for air quality parameters, 1 dB, 1 index, and 1 °C for sound pressure level, UV, and skin temperature, respectively. The battery operates for 12.5 h under the maximum sampling rates of sensors without recharging. The final expense does not exceed 133€. We validated all layers and tested the entire device with a 75 min recording. The results show the appropriate functionalities of the prototype for further development and investigations

    Detecting Vital Signs with Wearable Wireless Sensors

    Get PDF
    The emergence of wireless technologies and advancements in on-body sensor design can enable change in the conventional health-care system, replacing it with wearable health-care systems, centred on the individual. Wearable monitoring systems can provide continuous physiological data, as well as better information regarding the general health of individuals. Thus, such vital-sign monitoring systems will reduce health-care costs by disease prevention and enhance the quality of life with disease management. In this paper, recent progress in non-invasive monitoring technologies for chronic disease management is reviewed. In particular, devices and techniques for monitoring blood pressure, blood glucose levels, cardiac activity and respiratory activity are discussed; in addition, on-body propagation issues for multiple sensors are presented

    Mobihealth: mobile health services based on body area networks

    Get PDF
    In this chapter we describe the concept of MobiHealth and the approach developed during the MobiHealth project (MobiHealth, 2002). The concept was to bring together the technologies of Body Area Networks (BANs), wireless broadband communications and wearable medical devices to provide mobile healthcare services for patients and health professionals. These technologies enable remote patient care services such as management of chronic conditions and detection of health emergencies. Because the patient is free to move anywhere whilst wearing the MobiHealth BAN, patient mobility is maximised. The vision is that patients can enjoy enhanced freedom and quality of life through avoidance or reduction of hospital stays. For the health services it means that pressure on overstretched hospital services can be alleviated
    • 

    corecore