18,918 research outputs found

    Sequence-based prediction for vaccine strain selection and identification of antigenic variability in foot-and-mouth disease virus

    Get PDF
    Identifying when past exposure to an infectious disease will protect against newly emerging strains is central to understanding the spread and the severity of epidemics, but the prediction of viral cross-protection remains an important unsolved problem. For foot-and-mouth disease virus (FMDV) research in particular, improved methods for predicting this cross-protection are critical for predicting the severity of outbreaks within endemic settings where multiple serotypes and subtypes commonly co-circulate, as well as for deciding whether appropriate vaccine(s) exist and how much they could mitigate the effects of any outbreak. To identify antigenic relationships and their predictors, we used linear mixed effects models to account for variation in pairwise cross-neutralization titres using only viral sequences and structural data. We identified those substitutions in surface-exposed structural proteins that are correlates of loss of cross-reactivity. These allowed prediction of both the best vaccine match for any single virus and the breadth of coverage of new vaccine candidates from their capsid sequences as effectively as or better than serology. Sub-sequences chosen by the model-building process all contained sites that are known epitopes on other serotypes. Furthermore, for the SAT1 serotype, for which epitopes have never previously been identified, we provide strong evidence - by controlling for phylogenetic structure - for the presence of three epitopes across a panel of viruses and quantify the relative significance of some individual residues in determining cross-neutralization. Identifying and quantifying the importance of sites that predict viral strain cross-reactivity not just for single viruses but across entire serotypes can help in the design of vaccines with better targeting and broader coverage. These techniques can be generalized to any infectious agents where cross-reactivity assays have been carried out. As the parameterization uses pre-existing datasets, this approach quickly and cheaply increases both our understanding of antigenic relationships and our power to control disease

    Risk assessment in patients with an acute ST-elevation myocardial infarction

    Get PDF
    ST-elevation myocardial infarction (STEMI) is one of the leading causes of mortality and morbidity worldwide. While the survival after acute STEMI has considerably improved, mortality rate still remains high, especially in high-risk patients. Survival after acute STEMI is influenced by clinical characteristics such as age as well as the presence of comorbidities. However, during emergency care increasing access to tools such as the electrocardiogram, chest x-ray and echocardiography can provide additional information helping to further risk stratify patients. In the invasive setting, this can also include coronary angiography, invasive hemodynamic recordings and angiographic assessments of coronary flow and myocardial perfusion. We outline the common investigations used in STEMI and their role in risk assessment of patients with an acute STEMI

    Towards Automated Performance Bug Identification in Python

    Full text link
    Context: Software performance is a critical non-functional requirement, appearing in many fields such as mission critical applications, financial, and real time systems. In this work we focused on early detection of performance bugs; our software under study was a real time system used in the advertisement/marketing domain. Goal: Find a simple and easy to implement solution, predicting performance bugs. Method: We built several models using four machine learning methods, commonly used for defect prediction: C4.5 Decision Trees, Na\"{\i}ve Bayes, Bayesian Networks, and Logistic Regression. Results: Our empirical results show that a C4.5 model, using lines of code changed, file's age and size as explanatory variables, can be used to predict performance bugs (recall=0.73, accuracy=0.85, and precision=0.96). We show that reducing the number of changes delivered on a commit, can decrease the chance of performance bug injection. Conclusions: We believe that our approach can help practitioners to eliminate performance bugs early in the development cycle. Our results are also of interest to theoreticians, establishing a link between functional bugs and (non-functional) performance bugs, and explicitly showing that attributes used for prediction of functional bugs can be used for prediction of performance bugs

    Instruction flow-based front-end throttling for power-aware high-performance processors

    Full text link

    Species traits and the form of individual species–energy relationships

    Get PDF
    Environmental energy availability explains much of the spatial variation in species richness at regional scales. While numerous mechanisms that may drive such total species–energy relationships have been identified, knowledge of their relative contributions is scant. Here, we adopt a novel approach to identify these drivers that exploits the composite nature of species richness, i.e. its summation from individual species distributions. We construct individual species–energy relationships (ISERs) for each species in the British breeding avifauna using both solar (temperature) and productive energy metrics (normalized difference vegetation index) as measures of environmental energy availability. We use the slopes of these relationships and the resultant change in deviance, relative to a null model, as measures of their strength and use them as response variables in multiple regressions that use ecological traits as predictors. The commonest species exhibit the strongest ISERs, which is counter to the prediction derived from the more individuals hypothesis. There is no evidence that predatory species have stronger ISERs, which is incompatible with the suggestion that high levels of energy availability increase the length of the food chain allowing larger numbers of predators to exist. We find some evidence that species with narrow niche breadths have stronger ISERs, thus providing one of the few pieces of supportive evidence that high-energy availability promotes species richness by increasing the occurrence of specialist species that use a narrow range of resources

    Reducing the LSQ and L1 data cache power consumption

    Get PDF
    In most modern processor designs, the HW dedicated to store data and instructions (memory hierarchy) has become a major consumer of power. In order to reduce this power consumption, we propose in this paper two techniques, one to filter accesses to the LSQ (Load-Store Queue) based on both timing and address information, and the other to filter accesses to the first level data cache based on a forwarding predictor. Our simulation results show that the power consumption decreases in 30-40% in each structure, with a negligible performance penalty of less than 0.1%.Presentado en el V Workshop Arquitectura, Redes y Sistemas Operativos (WARSO)Red de Universidades con Carreras en Informática (RedUNCI

    Reducing the LSQ and L1 Data Cache Power Consuption

    Get PDF
    In most modern processor designs, the HW dedicated to store data and instructions (memory hierarchy) has become a major consumer of power. In order to reduce this power consumption, we propose in this paper two techniques, one to filter accesses to the LSQ (Load-Store Queue) based on both timing and address information, and the other to filter accesses to the first level data cache based on a forwarding predictor. Our simulation results show that the power consumption decreases in 30-40% in each structure, with a negligible performance penalty of less than 0.1%
    corecore