5,793 research outputs found

    Low Diameter Graph Decompositions by Approximate Distance Computation

    Get PDF
    In many models for large-scale computation, decomposition of the problem is key to efficient algorithms. For distance-related graph problems, it is often crucial that such a decomposition results in clusters of small diameter, while the probability that an edge is cut by the decomposition scales linearly with the length of the edge. There is a large body of literature on low diameter graph decomposition with small edge cutting probabilities, with all existing techniques heavily building on single source shortest paths (SSSP) computations. Unfortunately, in many theoretical models for large-scale computations, the SSSP task constitutes a complexity bottleneck. Therefore, it is desirable to replace exact SSSP computations with approximate ones. However this imposes a fundamental challenge since the existing constructions of low diameter graph decomposition with small edge cutting probabilities inherently rely on the subtractive form of the triangle inequality, which fails to hold under distance approximation. The current paper overcomes this obstacle by developing a technique termed blurry ball growing. By combining this technique with a clever algorithmic idea of Miller et al. (SPAA 2013), we obtain a construction of low diameter decompositions with small edge cutting probabilities which replaces exact SSSP computations by (a small number of) approximate ones. The utility of our approach is showcased by deriving efficient algorithms that work in the CONGEST, PRAM, and semi-streaming models of computation. As an application, we obtain metric tree embedding algorithms in the vein of Bartal (FOCS 1996) whose computational complexities in these models are optimal up to polylogarithmic factors. Our embeddings have the additional useful property that the tree can be mapped back to the original graph such that each edge is "used" only logaritmically many times, which is of interest for capacitated problems and simulating CONGEST algorithms on the tree into which the graph is embedded

    Low diameter graph decompositions by approximate distance computation

    Get PDF
    In many models for large-scale computation, decomposition of the problem is key to efficient algorithms. For distance-related graph problems, it is often crucial that such a decomposition results in clusters of small diameter, while the probability that an edge is cut by the decomposition scales linearly with the length of the edge. There is a large body of literature on low diameter graph decomposition with small edge cutting probabilities, with all existing techniques heavily building on single source shortest paths (SSSP) computations. Unfortunately, in many theoretical models for large-scale computations, the SSSP task constitutes a complexity bottleneck. Therefore, it is desirable to replace exact SSSP computations with approximate ones. However this imposes a fundamental challenge since the existing constructions of low diameter graph decomposition with small edge cutting probabilities inherently rely on the subtractive form of the triangle inequality, which fails to hold under distance approximation. The current paper overcomes this obstacle by developing a technique termed blurry ball growing. By combining this technique with a clever algorithmic idea of Miller et al. (SPAA 2013), we obtain a construction of low diameter decompositions with small edge cutting probabilities which replaces exact SSSP computations by (a small number of) approximate ones. The utility of our approach is showcased by deriving efficient algorithms that work in the CONGEST, PRAM, and semi-streaming models of computation. As an application, we obtain metric tree embedding algorithms in the vein of Bartal (FOCS 1996) whose computational complexities in these models are optimal up to polylogarithmic factors. Our embeddings have the additional useful property that the tree can be mapped back to the original graph such that each edge is “used” only logaritmically many times, which is of interest for capacitated problems and simulating CONGEST algorithms on the tree into which the graph is embedded

    Decompositions into subgraphs of small diameter

    Full text link
    We investigate decompositions of a graph into a small number of low diameter subgraphs. Let P(n,\epsilon,d) be the smallest k such that every graph G=(V,E) on n vertices has an edge partition E=E_0 \cup E_1 \cup ... \cup E_k such that |E_0| \leq \epsilon n^2 and for all 1 \leq i \leq k the diameter of the subgraph spanned by E_i is at most d. Using Szemer\'edi's regularity lemma, Polcyn and Ruci\'nski showed that P(n,\epsilon,4) is bounded above by a constant depending only \epsilon. This shows that every dense graph can be partitioned into a small number of ``small worlds'' provided that few edges can be ignored. Improving on their result, we determine P(n,\epsilon,d) within an absolute constant factor, showing that P(n,\epsilon,2) = \Theta(n) is unbounded for \epsilon n^{-1/2} and P(n,\epsilon,4) = \Theta(1/\epsilon) for \epsilon > n^{-1}. We also prove that if G has large minimum degree, all the edges of G can be covered by a small number of low diameter subgraphs. Finally, we extend some of these results to hypergraphs, improving earlier work of Polcyn, R\"odl, Ruci\'nski, and Szemer\'edi.Comment: 18 page

    Space and Time Efficient Parallel Graph Decomposition, Clustering, and Diameter Approximation

    Full text link
    We develop a novel parallel decomposition strategy for unweighted, undirected graphs, based on growing disjoint connected clusters from batches of centers progressively selected from yet uncovered nodes. With respect to similar previous decompositions, our strategy exercises a tighter control on both the number of clusters and their maximum radius. We present two important applications of our parallel graph decomposition: (1) kk-center clustering approximation; and (2) diameter approximation. In both cases, we obtain algorithms which feature a polylogarithmic approximation factor and are amenable to a distributed implementation that is geared for massive (long-diameter) graphs. The total space needed for the computation is linear in the problem size, and the parallel depth is substantially sublinear in the diameter for graphs with low doubling dimension. To the best of our knowledge, ours are the first parallel approximations for these problems which achieve sub-diameter parallel time, for a relevant class of graphs, using only linear space. Besides the theoretical guarantees, our algorithms allow for a very simple implementation on clustered architectures: we report on extensive experiments which demonstrate their effectiveness and efficiency on large graphs as compared to alternative known approaches.Comment: 14 page

    On Strong Diameter Padded Decompositions

    Get PDF
    Given a weighted graph G=(V,E,w), a partition of V is Delta-bounded if the diameter of each cluster is bounded by Delta. A distribution over Delta-bounded partitions is a beta-padded decomposition if every ball of radius gamma Delta is contained in a single cluster with probability at least e^{-beta * gamma}. The weak diameter of a cluster C is measured w.r.t. distances in G, while the strong diameter is measured w.r.t. distances in the induced graph G[C]. The decomposition is weak/strong according to the diameter guarantee. Formerly, it was proven that K_r free graphs admit weak decompositions with padding parameter O(r), while for strong decompositions only O(r^2) padding parameter was known. Furthermore, for the case of a graph G, for which the induced shortest path metric d_G has doubling dimension ddim, a weak O(ddim)-padded decomposition was constructed, which is also known to be tight. For the case of strong diameter, nothing was known. We construct strong O(r)-padded decompositions for K_r free graphs, matching the state of the art for weak decompositions. Similarly, for graphs with doubling dimension ddim we construct a strong O(ddim)-padded decomposition, which is also tight. We use this decomposition to construct (O(ddim),O~(ddim))-sparse cover scheme for such graphs. Our new decompositions and cover have implications to approximating unique games, the construction of light and sparse spanners, and for path reporting distance oracles

    Parallel Graph Decompositions Using Random Shifts

    Full text link
    We show an improved parallel algorithm for decomposing an undirected unweighted graph into small diameter pieces with a small fraction of the edges in between. These decompositions form critical subroutines in a number of graph algorithms. Our algorithm builds upon the shifted shortest path approach introduced in [Blelloch, Gupta, Koutis, Miller, Peng, Tangwongsan, SPAA 2011]. By combining various stages of the previous algorithm, we obtain a significantly simpler algorithm with the same asymptotic guarantees as the best sequential algorithm

    Distributed Strong Diameter Network Decomposition

    Full text link
    For a pair of positive parameters D,χD,\chi, a partition P{\cal P} of the vertex set VV of an nn-vertex graph G=(V,E)G = (V,E) into disjoint clusters of diameter at most DD each is called a (D,χ)(D,\chi) network decomposition, if the supergraph G(P){\cal G}({\cal P}), obtained by contracting each of the clusters of P{\cal P}, can be properly χ\chi-colored. The decomposition P{\cal P} is said to be strong (resp., weak) if each of the clusters has strong (resp., weak) diameter at most DD, i.e., if for every cluster CPC \in {\cal P} and every two vertices u,vCu,v \in C, the distance between them in the induced graph G(C)G(C) of CC (resp., in GG) is at most DD. Network decomposition is a powerful construct, very useful in distributed computing and beyond. It was shown by Awerbuch \etal \cite{AGLP89} and Panconesi and Srinivasan \cite{PS92}, that strong (2O(logn),2O(logn))(2^{O(\sqrt{\log n})},2^{O(\sqrt{\log n})}) network decompositions can be computed in 2O(logn)2^{O(\sqrt{\log n})} distributed time. Linial and Saks \cite{LS93} devised an ingenious randomized algorithm that constructs {\em weak} (O(logn),O(logn))(O(\log n),O(\log n)) network decompositions in O(log2n)O(\log^2 n) time. It was however open till now if {\em strong} network decompositions with both parameters 2o(logn)2^{o(\sqrt{\log n})} can be constructed in distributed 2o(logn)2^{o(\sqrt{\log n})} time. In this paper we answer this long-standing open question in the affirmative, and show that strong (O(logn),O(logn))(O(\log n),O(\log n)) network decompositions can be computed in O(log2n)O(\log^2 n) time. We also present a tradeoff between parameters of our network decomposition. Our work is inspired by and relies on the "shifted shortest path approach", due to Blelloch \etal \cite{BGKMPT11}, and Miller \etal \cite{MPX13}. These authors developed this approach for PRAM algorithms for padded partitions. We adapt their approach to network decompositions in the distributed model of computation
    corecore