86 research outputs found

    Video QoS/QoE over IEEE802.11n/ac: A Contemporary Survey

    Get PDF
    The demand for video applications over wireless networks has tremendously increased, and IEEE 802.11 standards have provided higher support for video transmission. However, providing Quality of Service (QoS) and Quality of Experience (QoE) for video over WLAN is still a challenge due to the error sensitivity of compressed video and dynamic channels. This thesis presents a contemporary survey study on video QoS/QoE over WLAN issues and solutions. The objective of the study is to provide an overview of the issues by conducting a background study on the video codecs and their features and characteristics, followed by studying QoS and QoE support in IEEE 802.11 standards. Since IEEE 802.11n is the current standard that is mostly deployed worldwide and IEEE 802.11ac is the upcoming standard, this survey study aims to investigate the most recent video QoS/QoE solutions based on these two standards. The solutions are divided into two broad categories, academic solutions, and vendor solutions. Academic solutions are mostly based on three main layers, namely Application, Media Access Control (MAC) and Physical (PHY) which are further divided into two major categories, single-layer solutions, and cross-layer solutions. Single-layer solutions are those which focus on a single layer to enhance the video transmission performance over WLAN. Cross-layer solutions involve two or more layers to provide a single QoS solution for video over WLAN. This thesis has also presented and technically analyzed QoS solutions by three popular vendors. This thesis concludes that single-layer solutions are not directly related to video QoS/QoE, and cross-layer solutions are performing better than single-layer solutions, but they are much more complicated and not easy to be implemented. Most vendors rely on their network infrastructure to provide QoS for multimedia applications. They have their techniques and mechanisms, but the concept of providing QoS/QoE for video is almost the same because they are using the same standards and rely on Wi-Fi Multimedia (WMM) to provide QoS

    大規模システムLSI設計のための統一的ハードウェア・ソフトウェア協調検証手法

    Get PDF
    Currently, the complexity of embedded LSI system is growing faster than the productivity of system design. This trend results in a design productivity gap, particularly in tight development time. Since the verification task takes bigger part of development task, it becomes a major challenge in LSI system design. In order to guarantee system reliability and quality of results (QoR), verifying large coverage of system functionality requires huge amount of relevant test cases and various scenario of evaluations. To overcome these problems, verification methodology is evolving toward supporting higher level of design abstraction by employing HW-SW co-verification. In this study, we present a novel approach for verification LSI circuit which is called as unified HW/SW co-verification framework. The study aims to improve design efficiency while maintains implementation consistency in the point of view of system-level performance. The proposed data-driven simulation and flexible interface of HW and SW design become the backbone of verification framework. In order to avoid time consuming, prone error, and iterative design spin-off in a large team, the proposed framework has to support multiple design abstractions. Hence, it can close the loop of design, exploration, optimization, and testing. Furthermore, the proposed methodology is also able to co-operate with system-level simulation in high-level abstraction, which is easy to extend for various applications and enables fast-turn around design modification. These contributions are discussed in chapter 3. In order to show the effectiveness and the use-cases of the proposed verification framework, the evaluation and metrics assessments of Very High Throughput wireless LAN system design are carried out. Two application examples are provided. The first case in chapter 4 is intended for fast verification and design exploration of large circuit. The Maximum Likelihood Detection (MLD) MIMO decoder is considered as Design Under Test (DUT). The second case, as presented in chapter 5, is the evaluation for system-level simulation. The full transceiver system based on IEEE 802.11ac standard is employed as DUT. Experimental results show that the proposed verification approach gives significant improvements of verification time (e.g. up to 10,000 times) over the conventional scheme. The proposed framework is also able to support various schemes of system level evaluations and cross-layer evaluation of wireless system.九州工業大学博士学位論文 学位記番号:情工博甲第328号 学位授与年月日:平成29年6月30日1 Introduction|2 Design and Verification in LSI System Design|3 Unified HW/SW Co-verification Methodology|4 Fast Co-verification and Design Exploration in Complex Circuits|5 Unified System Level Simulator for Very High Throughput Wireless Systems|6 Conclusion and Future Work九州工業大学平成29年

    SplitBeam: Effective and Efficient Beamforming in Wi-Fi Networks Through Split Computing

    Full text link
    Modern IEEE 802.11 (Wi-Fi) networks extensively rely on multiple-input multiple-output (MIMO) to significantly improve throughput. To correctly beamform MIMO transmissions, the access point needs to frequently acquire a beamforming matrix (BM) from each connected station. However, the size of the matrix grows with the number of antennas and subcarriers, resulting in an increasing amount of airtime overhead and computational load at the station. Conventional approaches come with either excessive computational load or loss of beamforming precision. For this reason, we propose SplitBeam, a new framework where we train a split deep neural network (DNN) to directly output the BM given the channel state information (CSI) matrix as input. We formulate and solve a bottleneck optimization problem (BOP) to keep computation, airtime overhead, and bit error rate (BER) below application requirements. We perform extensive experimental CSI collection with off-the-shelf Wi-Fi devices in two distinct environments and compare the performance of SplitBeam with the standard IEEE 802.11 algorithm for BM feedback and the state-of-the-art DNN-based approach LB-SciFi. Our experimental results show that SplitBeam reduces the beamforming feedback size and computational complexity by respectively up to 81% and 84% while maintaining BER within about 10^-3 of existing approaches. We also implement the SplitBeam DNNs on FPGA hardware to estimate the end-to-end BM reporting delay, and show that the latter is less than 10 milliseconds in the most complex scenario, which is the target channel sounding frequency in realistic multi-user MIMO scenarios.Comment: Presented at the 43rd IEEE International Conference on Distributed Computing Systems (ICDCS 2023

    Wi-Fi의 신뢰성 및 에너지 효율성 향상을 위한 MAC/PHY 기법

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2015. 8. 최성현.Over the last quarter century, wireless local area network (WLAN) technology has become an essential and indispensable part of our daily lives. Recently, a tremendously growing number of portable devices, such as smartphones, tablets and laptops, are being equipped with Wi-Fi, the hallmark of the IEEE 802.11 WLAN, in order to meet ever-increasing traffic demands at extremely low cost. Encouraged by this remarkable success, Wi-Fi is facing two trends. First, the state-of-the-art IEEE 802.11 specifications, e.g., IEEE 802.11n and 802.11ac, have focused on improving physical layer (PHY) rate by enabling multiple antennas, called multiple-input multiple-output (MIMO), and bandwidth widening, known as chan- nel bonding [1, 2]. Second, to achieve high throughput and transmission efficiency at medium access control (MAC) layer, IEEE 802.11n/ac standards have defined two types of frame aggregation techniques: MAC service data unit (MSDU) aggregation and MAC protocol data unit (MPDU) aggregation which amortize PHY/MAC proto- col overhead e.g., binary random backoff, physical layer convergence protocol (PLCP) preamble, and acknowledgement (ACK), over multiple frames by packing several MS- DUs and MPDUs into a single aggregate MSDU (A-MSDU) and aggregate MPDU (A-MPDU), respectively. Apparently, there is no doubt that these state-of-the-art features meet and fulfill i the requirements of Wi-Fi equipped device users by offering several hundred-fold in- creases in PHY rate and ubiquitous access. However, with respect to the demands of the battery-powered portable device users, the belief is easily broken from two per- spectives. First, since using higher PHY rate and longer A-MPDU are more vulnerable to channel errors especially for mobile users, the significant throughput performance degradation can be observed. Second, the emerging Wi-Fi chipsets, based on IEEE 802.11n/ac, consume much more energy than its legacy IEEE 802.11a/b/g counterparts due to the usage of MIMO and channel bonding. Nowadays, as the battery-powered portable device users place increasingly complex demands on the functionality of their devices which have strict power limitation, satisfaction with robust communication and battery life time is becoming increasingly important. In this dissertation, to address these challenges, we propose robust and energy efficient MAC/PHY layer strategies of Wi-Fi. First of all, to confirm those changes, we have conducted extensive experiments using state-of-the-art commercial IEEE 802.11n/ac-equipped devices and Microsofts Software Radio (Sora) platform. Our experiment results have revealed strong evidence that the use of long A-MPDU frames seriously deteriorates the Wi-Fi performance, i.e., throughput, especially for the pedestrian mobile users. Besides, we have found that the use of channel bonding remarkably consumes more energy, thus making Wi- Fi a primary energy consumer in the battery-powered portable devices. Especially, the energy cost is dominated by excessive and unnecessary listening and receiving operations. We begin an intra-frame rate control algorithm (Intra-RCA) design, called SNR- aware Intra-frame Rate Adaption (SIRA), which enhances the system performance of Wi-Fi in fast time-varying environments [3]. Widely used inter-frame rate control algorithms (Inter-RCAs), which select the PHY rate of each frame based on the time- ii averaged frame loss rate and the signal strength statistics, perform poorly for a long A-MPDU due to the channel variation in mobile environments. Unlike the previous ap- proaches, SIRA adapts the PHY rate on intra-frame basis, i.e., the PHY rate is updated in the middle of a frame according to user mobility. The performance of the proposed scheme is also evaluated by a trace-driven link level simulator employing the collected channel traces from real measurements. The simulation results show that SIRA outper- forms a standalone Inter-RCA in all tested traces. Despite its enhanced performance and considerable frame error reduction, the performance degradation caused by the impact of user mobility still remains due to the inherent limitation of IEEE 802.11 PHY design. Therefore, we conclude that this challenge should be solved with the assistance of PHY modification, and propose Channel-Aware Symbol Error Reduction (ChASER), a new practical channel estimation and tracking scheme for Wi-Fi receivers [4]. ChASER utilizes re-encoding and re-modulation of the received data symbol to keep up with the wireless channel dynamics at the granularity of orthogonal frequency division multi- plexing (OFDM) symbols. In addition, its low-complexity and feasibility of standard compliance is demonstrated by Microsofts Sora prototype implementation and experi- mentation. To our knowledge, ChASER is the first IEEE 802.11n-compatible channel tracking algorithm since other approaches addressing the time-varying channel con- ditions over a single (aggregated) frame duration require costly modifications of the IEEE 802.11 standard. Even though the above proposed approaches enhance the Wi- Fis throughput performance and robustness over conventional technique, the rest re- quirement of the portable device user, i.e., energy efficient Wi-Fi system design, should be addressed as ever. Accordingly, we propose a new power save operation as well as the corresponding protocol, called WiFi in Zizz (WiZizz), which judiciously exploits the characteristic iii of the channel bonding defined in IEEE 802.11ac and efficiently handles the channel bandwidth in an on-demand manner to minimize the traumatic energy spent by IEEE 802.11ac devices [5]. Our extensive measurement and simulation show significant per- formance improvement (as high as 73% energy saving) over a wide range of commu- nication scenarios. In addition, the feasibility of easy implementation is demonstrated by a prototype with a commercial 802.11ac device. To the best of our knowledge, WiZizz is the first IEEE 802.11ac-congenial energy efficient bandwidth management while other existing approaches require costly modifications of the IEEE 802.11ac specification. In summary, we propose a number of compelling algorithms and protocols to im- prove the robustness and energy efficiency in accordance with the paradigm shift of Wi-Fi. Moreover, our evaluation results show that the proposed schemes in this disser- tation are effective and yield considerable performance gain based on both the trace- driven link level simulation and the network level simulation which well reflects the wireless channel characteristics of the real world and the operation of IEEE 802.11 WLAN, respectively. We demonstrate the feasibility of our approaches by implement- ing prototypes in off-the-self IEEE 802.11n/ac devices and software-defined radio.Abstract Contents List of Tables List of Figures 1 Introduction 1.1 Paradigm Shift of Wi-Fi 1.2 DevelopmentTrend of IEEE802.11 1.2.1 MAC Features 1.2.2 PHY Features 1.3 Overview of Existing Approaches 1.3.1 Rate Adaptation 1.3.2 MPDU Length Optimization 1.3.3 Channel Estimation 1.3.4 Demystifying Wi-Fi Power Consumption 1.3.5 Minimizing Energy Consumption of Wi-Fi 1.4 Main Contributions 1.4.1 Impact of Mobility Analysis 1.4.2 Intra-frame Rate Adaptation 1.4.3 Enhanced Channel Estimation and Tracking 1.4.4 802.11ac Power Consumption Analysis 1.4.5 Energy Efficient Bandwidth Management 1.5 Organization of the Dissertation 2 Impact of Mobility 2.1 Introduction 2.2 Background 2.2.1 Channel Estimation and Compensation 2.2.2 Role of Pilot Subcarriers 2.2.3 Frame Aggregation 2.3 Measurement Study 2.3.1 Experimental Settings 2.3.2 Temporal Selectivity 2.3.3 Unreliability of A-MPDU in Mobile Environments 2.3.4 Relation between Symbol Dispersion and Mobility 2.4 Summary 3 SIRA: SNR-aware Intra-frame Rate Adaptation 3.1 Introduction 3.1.1 Revisit of Rate Adaptation Algorithms 3.1.2 Channel and Mobility Condition 3.2 ProposedAlgorithm 3.2.1 Pilot-based SNR Estimation 3.2.2 Mobility Detection 3.2.3 Unequal Modulation and Coding Scheme 3.2.4 Zero-overhead Feedback 3.2.5 SIRA Structure 3.3 Simulation 3.3.1 Trace-drivenLinkLevelSimulation 3.3.2 Mobility Detection Accuracy 3.3.3 Performance Comparison 3.4 Summary 4 ChASER: Channel-Aware Symbol Error Reduction 4.1 Introduction 4.2 Revisit of Channel Estimation Algorithms 4.3 ChASER Design 4.3.1 Channel Estimation using Unknown Data Symbols 4.3.2 Adaptive Filter 4.3.3 Adaptive Filter for MIMO 4.3.4 CRC-assisted Channel Correction 4.3.5 Summary of ChASER Operation 4.3.6 Impact of Step Size μ 4.4 Testbed Experiments 4.4.1 Prototype Implementation on SDR Platform 4.4.2 Testbed Settings 4.4.3 Performance Comparison 4.5 Simulation 4.5.1 Simulation Methodology 4.5.2 Estimation Accuracy 4.5.3 Impact of the A-MPDU Duration 4.5.4 Throughput Performance 4.6 Summary 5 Power Consumption of Wi-Fi: Modeling and Testbed Validation 5.1 Introduction 5.2 Revisit of IEEE 802.11ac Features 5.2.1 Wider Bandwidth Channel 5.2.2 MIMO and Higher Order Modulation 5.2.3 Relation between 802.11ac Features and Power 5.3 Modeling 802.11ac Power Consumption 5.3.1 Power Model of IEEE 802.11ac Receiver 5.3.2 Power Model of IEEE 802.11ac Transmitter 5.4 Power Consumption Measurement 5.4.1 Experimental Setting 5.4.2 Idle State Power Consumption 5.4.3 Receive State Power Consumption 5.4.4 Transmit State Power Consumption 5.4.5 PowerModelVerification 5.4.6 Summary 6 WiZizz: Energy Efficient Bandwidth Management 6.1 Introduction 6.2 WiFi Need to Zizz 6.3 WiZizz Design 6.3.1 Dynamic Mode 6.3.2 Pseudo-dynamic Mode 6.3.3 PHY-level Filtering 6.4 Testbed Experiments 6.4.1 Prototype Implementation and Testbed Setting 6.4.2 Bandwidth Switching Delay 6.4.3 Performance Evaluation 6.5 SimulationResults 6.5.1 Simulation Methodology 6.5.2 Constant Traffic Source with FixedMCS 6.5.3 Comprehensive Traffic Patterns 6.5.4 Collaboration with SMPS 6.6 Summary 7 Conclusion and Future Work 7.1 Research Contributions 7.2 Further Research Plans Abstract (In Korean) 감사의 글Docto

    Design of Low Latency and High Reliable Industrial Wireless Lan System

    Get PDF
    Industrial wireless system, particularly Factory Automation (FA) system has been recognized as one of potential applications in machine type communication. A wireless system for an industrial network is preferable due to its primary advantages: flexibility for controlling mobile clients, low-complexity installation and low-cost maintenance by reducing physical connectivity in factory environment, and also applicable for hazardous sites. Several existing wireless technologies have been deployed for industrial wireless system, including Zigbee, WirelssHART and WLAN based system. However, the existing technologies have several limitations in terms of low throughput, poor reliability, as well as non deterministic. These drawbacks restrict the deployment of these technologies in critical industrial control system where low latency and high reliability are the primary requirements. In order to overcome the limitations of current technology, this thesis proposes low latency and high reliable industrial wireless LAN system, particularly for FA system. Specifically, two main topics are presented: (1) Design of high throughput of WLAN PHY transceiver for industrial wireless system. The first topic is presented to deal with fast transmission requirements. Typically, a WLAN system is deployed for home or office network scenarios. Since this scenario incorporates large data payload, throughput metric is higher priority than latency metric. Hence, to adopt WLAN based PHY transceiver for industrial wireless network, the issue of latency should be addressed as the top priority with respect to maintain reliability performance as well as low-complexity implementation. Therefore, as a first step, cross layer design approach is carried out in order to achieve optimum trade-off between QoS performance, implementation complexity, as well as lower power consumption. Later, the obtained PHY system parameters from cross layer design stage are employed for designing PHY transceiver system. In addition, several design optimizations are also incorporated during designing transceiver system that was conducted based on Model based RTL design. (2) Retransmission diversity based on channel selectivity scheme. The second part discusses performance improvement, specifically reliability performance in regard to low latency communication. The proposed work leverages frequency diversity that is available in the employed transmission bandwidth. A low complexity sub channel selection method by utilizing adjacent channel selection is considered. To confirm the effectiveness of this proposal, the performance results in terms of latency and reliability are evaluated, covering link level and system level performance of the FAWLAN system. Hardware implementation and verification result confirms that the designed PHY system achieves processing latency for about 13μs, corresponding to total transmission delay for about 85μs. This performance could satisfy the performance target in terms of FA WLAN protocol which requires transmission delay less than 100μs. Furthermore, the proposed PHY design also offers better normalize power consumption per transmitted bit (e.g. energy efficiency performance) for around 6.76 mJ/Mb. Moreover, the proposed retransmission scheme could also offer control duration per user (cycle time) from 52-63μs, improving the control duration per user for approximately 36% from the conventional system. Therefore, the proposed retransmission scheme is an sub-optimum method in terms of low complexity and low latency, as compared to CSI based retransmission. This could be potentially applied in industrial wireless system.九州工業大学博士学位論文 学位記番号:情工博甲第350号 学位授与年月日:令和2年9月25日1 Introduction|2 Overview of Low Latency and High Reliable Industrial Wireless System|3 Cross Layer Design|4 Low Latency and High Throughput PHY Design|5 High Reliable Transceiver System|6 Conclusion and Future Work九州工業大学令和2年

    Software Defined Radio Solutions for Wireless Communications Systems

    Get PDF
    Wireless technologies have been advancing rapidly, especially in the recent years. Design, implementation, and manufacturing of devices supporting the continuously evolving technologies require great efforts. Thus, building platforms compatible with different generations of standards and technologies has gained a lot of interest. As a result, software defined radios (SDRs) are investigated to offer more flexibility and scalability, and reduce the design efforts, compared to the conventional fixed-function hardware-based solutions.This thesis mainly addresses the challenges related to SDR-based implementation of today’s wireless devices. One of the main targets of most of the wireless standards has been to improve the achievable data rates, which imposes strict requirements on the processing platforms. Realizing real-time processing of high throughput signal processing algorithms using SDR-based platforms while maintaining energy consumption close to conventional approaches is a challenging topic that is addressed in this thesis.Firstly, this thesis concentrates on the challenges of a real-time software-based implementation for the very high throughput (VHT) Institute of Electrical and Electronics Engineers (IEEE) 802.11ac amendment from the wireless local area networks (WLAN) family, where an SDR-based solution is introduced for the frequency-domain baseband processing of a multiple-input multipleoutput (MIMO) transmitter and receiver. The feasibility of the implementation is evaluated with respect to the number of clock cycles and the consumed power. Furthermore, a digital front-end (DFE) concept is developed for the IEEE 802.11ac receiver, where the 80 MHz waveform is divided to two 40 MHz signals. This is carried out through time-domain digital filtering and decimation, which is challenging due to the latency and cyclic prefix (CP) budget of the receiver. Different multi-rate channelization architectures are developed, and the software implementation is presented and evaluated in terms of execution time, number of clock cycles, power, and energy consumption on different multi-core platforms.Secondly, this thesis addresses selected advanced techniques developed to realize inband fullduplex (IBFD) systems, which aim at improving spectral efficiency in today’s congested radio spectrum. IBFD refers to concurrent transmission and reception on the same frequency band, where the main challenge to combat is the strong self-interference (SI). In this thesis, an SDRbased solution is introduced, which is capable of real-time mitigation of the SI signal. The implementation results show possibility of achieving real-time sufficient SI suppression under time-varying environments using low-power, mobile-scale multi-core processing platforms. To investigate the challenges associated with SDR implementations for mobile-scale devices with limited processing and power resources, processing platforms suitable for hand-held devices are selected in this thesis work. On the baseband processing side, a very long instruction word (VLIW) processor, optimized for wireless communication applications, is utilized. Furthermore, in the solutions presented for the DFE processing and the digital SI canceller, commercial off-the-shelf (COTS) multi-core central processing units (CPUs) and graphics processing units (GPUs) are used with the aim of investigating the performance enhancement achieved by utilizing parallel processing.Overall, this thesis provides solutions to the challenges of low-power, and real-time software-based implementation of computationally intensive signal processing algorithms for the current and future communications systems

    MIMO無線伝送に適したスケーラブルビデオコーディングに関する研究

    Get PDF
    Because of the COVID-19 pandemic, a new normal has taken over. It affects the higher demand for using video traffic. H.264/SVC is the video compression standard with several advantages compared with the previous standard, such as a smaller storage space and scalability of video quality depending on network quality. The H.264/SVC bitstream includes one base layer (BL), the most important layer, and one or more enhancement layers (EL) which can be leveraged to optimize the video scalability depending on the network condition and user preferences. The method of transmission is powerful as the video coding method. The transmission of the good video quality will not be effective without a suitable transmission method. In this thesis, we study and research the H.264 scalable video coding transmission with IEEE 802.11ac standard MIMO wireless transmission. We focus on the suitable transmission method for H.264/SVC in a different environment. We divide the research focusing on two issues: 1. With the difference channel environment: The suitable H.264/SVC transmission technique in IEEE 802.11ac with the specific quantization parameter of video encoding was proposed. This aim is to compare three techniques in IEEE 802.11ac: STBC, SISO, and MIMO. In this focus, only the accuracy of the video was considered to measure the efficiency of the transmission technique. This part proposed to utilize STBC to improve the quality of H.264/SVC video transmission. We have shown the performance of H.264/SVC video transmission with three multiple antenna techniques. The results show that STBC is the best technique for H.264/SVC transmission under a low-quality channel environment. The best result shows that STBC in channel model D can improve the PSNR by 67 percent and 76 percent compared with SISO and MIMO, respectively, at low SNR of 20 dB. Due to STBC transmitting multiple copies of data, it can increase data reliability. We proved that STBC is the most suitable multiple antenna technique to improve the quality and realizability of video transmission in both PSNR and bit error rate (BER). 2. With the different transmission distance: H.264/SVC video transmission on MIMO with RSSI feedback was proposed. This aim to proposes the allocation of packetization in the transmission packet and the compromising of quantization parameter encoding both vary on the channel efficiency. This part proposed a MIMO transmission system for H.264 scalable video coding that does not require full CSI feedback. Instead of the CSI feedback, we have used the RSSI and table of encoding rules obtained via link simulation in MATLAB. The encoding rule takes the form of the encoding ratio between the base and enhancement layer, which was done by adjusting the quantization parameter. This proposed system has been shown to improve the PSNR by at least 16 dB and increase the effective distance of 6 meters above compared with the conventional method.九州工業大学博士学位論文 学位記番号:情工博甲第372号 学位授与年月日:令和4年12月27日1 Introduction|2 Video Transmission System Overview|3 H.264/SVC Video Transmission by IEEE 802.11ac Techniques|4 H.264/SVC Video Transmission on MIMO with RSSI Feedback|5 Conclusion and Future Work九州工業大学令和4年
    corecore