13 research outputs found

    Synthétiseur de fréquences RF destiné aux dispositifs médicaux implantables

    Get PDF
    RÉSUMÉ Les microsystèmes biomédicaux implantables présentent un énorme potentiel pour la recherche médicale. Les dispositifs médicaux intelligents implantables, qui combinent des capteurs et/ou des actuateurs avec des circuits intégrés, ouvrent la voie à des applications fascinantes. Aujourd’hui, la possibilité d’utiliser la technologie CMOS pour intégrer des circuits RF, numériques, et même certains types de capteurs sur une même puce, suscite un vif intérêt dans un domaine nouveau : celui des réseaux de capteurs implantables, ou BSN (Body-Sensor Networks) et leurs applications en recherche biomédicale. L’implantation dans le corps de tels réseaux de capteurs sans-fils permettrait de surveiller, détecter ou même combattre différentes maladies, et ce de manière in situ. Avec des dimensions minimales inférieures à 100 nm, la technologie CMOS représente un choix viable pour l’implémentation des blocs de bases des circuits intégrés radio-fréquences (Radio- Frequency Integrated Circuits - RFIC) à faible consommation de puissance. Toutefois, la réduction de la tension d’alimentation permise dans les procédés CMOS nanométriques, l’impédance de sortie limitée des transistors disponibles, ainsi que les variations de procédés ont pour conséquence que plusieurs architectures de circuits analogiques n’offrent plus les performances requises ou ne sont tout simplement plus applicables. Des méthodes de conception innovatrices doivent être utilisées et des compromis judicieux doivent être faits afin de maintenir les performances requises. Dans un système de communication sans-fil, l’oscillateur local (Local Oscillator - LO) est l’un des modules les plus importants puisqu’il sert à générer la porteuse du lien RF qui sera par la suite modulée pour transmettre les données. Dans un contexte où la consommation de puissance doit être strictement minimisée, la génération d’une fréquence porteuse RF stable dans un procédé CMOS nanométrique présente des défis énormes. Dans cette optique, cette thèse se concentre sur la conception, l’analyse, ainsi que sur l’implémentation de circuits analogiques et RF à basse tension faisant partie d’un synthétiseur de fréquences à consommation ultra faible utilisant un procédé CMOS nanométrique. Tout d’abord, une nouvelle architecture de miroir de courant présentant une impédance de sortie très élevée destiné aux applications à faible tension d’alimentation est présentée. Ce miroir de courant de faible complexité présente une résistance de sortie très élevée et ce pour des tensions de sortie s’approchant des alimentations. Ensuite, une nouvelle architecture de pompe de charges CMOS destinée aux boucles à verrouillage de phase à faible tension et faible puissance est proposée afin de contourner les difficultés causées par la basse tension d’alimentation et la faible impédance de sortie des transistors nanométriques.----------ABSTRACT Implantable biomedical microsystems present a huge potential for medical research. The recent possibility to use CMOS technology to integrate radio-frequency (RF) circuits, baseband signal processing, and even sensors on a same chip has led to a tremendous growth of interest in wireless sensors and their applications. Such microsystems typically include a microprocessor and memory, an energy source, one or more sensors, an analog-to-digital converter (ADC), and a RF transceiver to communicate with a remote base-station or processing unit. In the biomedical field, it is expected that implanting such wireless sensing microsystems could greatly help the medical research community in learning about the progression of some diseases and assess degree of response to treatment. With a minimum feature size that has reduced under 100 nm, CMOS technology has become a viable choice for the implementation of low-power radio-frequency integrated circuits (RFIC) building blocks. However, the reduction of the supply voltage combined with the low output impedance of nanometer transistors have caused many analog and RF circuit solutions to be unsuitable, or even unusable due to voltage headroom constraints. Therefore, new circuit techniques and innovative design approaches are needed in order to meet the required performance level while maintaining low power consumption. In a wireless communications system, the local oscillator (LO) is one of the most important building blocks since it generates the RF carrier signal upon which data is modulated for transmission. In a context where power consumption must be strictly minimized, the generation of a stable RF carrier using a nanometer CMOS process presents huge challenges. In this regard, this thesis focuses on the design, the analysis and the implementation of low-voltage analog and RF circuits used to build an ultra-low power integer-N frequency synthesizer. First, a new current mirror architecture dedicated to low-voltage, low-power applications is presented. The proposed current mirror offers a very high output resistance and an enhanced output voltage range in comparison with other current mirrors similar in architecture. Then, a novel charge pump dedicated to low-power low-voltage PLLs is proposed. The design of this circuit was motivated by the need of a nano-CMOS charge pump that would offer constant current magnitude and minimum current mismatch over a wide range of output voltage, while maintaining power consumption and complexity level as low as possible. A LC resonator-based voltage-controlled oscillator (LC-VCO) that implements a new technique to reduce the impact of process variation on phase noise and power consumption is presented

    Rapport annuel 2006-2007

    Get PDF

    EUROSENSORS XVII : book of abstracts

    Get PDF
    Fundação Calouste Gulbenkien (FCG).Fundação para a Ciência e a Tecnologia (FCT)

    Rapport annuel 2007-2008

    Get PDF

    Single-Chip Scanning Probe Microscopes

    Get PDF
    Scanning probe microscopes (SPMs) are the highest resolution imaging instruments available today and are among the most important tools in nanoscience. Conventional SPMs suffer from several drawbacks owing to their large and bulky construction and to the use of piezoelectric materials. Large scanners have low resonant frequencies that limit their achievable imaging bandwidth and render them susceptible to disturbance from ambient vibrations. Array approaches have been used to alleviate the bandwidth bottleneck; however as arrays are scaled upwards, the scanning speed must decline to accommodate larger payloads. In addition, the long mechanical path from the tip to the sample contributes thermal drift. Furthermore, intrinsic properties of piezoelectric materials result in creep and hysteresis, which contribute to image distortion. The tip-sample interaction signals are often measured with optical configurations that require large free-space paths, are cumbersome to align, and add to the high cost of state-of-the-art SPM systems. These shortcomings have stifled the widespread adoption of SPMs by the nanometrology community. Tiny, inexpensive, fast, stable and independent SPMs that do not incur bandwidth penalties upon array scaling would therefore be most welcome. The present research demonstrates, for the first time, that all of the mechanical and electrical components that are required for the SPM to capture an image can be scaled and integrated onto a single CMOS chip. Principles of microsystem design are applied to produce single-chip instruments that acquire images of underlying samples on their own, without the need for off-chip scanners or sensors. Furthermore, it is shown that the instruments enjoy a multitude of performance benefits that stem from CMOS-MEMS integration and volumetric scaling of scanners by a factor of 1 million. This dissertation details the design, fabrication and imaging results of the first single-chip contact-mode AFMs, with integrated piezoresistive strain sensing cantilevers and scanning in three degrees-of-freedom (DOFs). Static AFMs and quasi-static AFMs are both reported. This work also includes the development, fabrication and imaging results of the first single-chip dynamic AFMs, with integrated flexural resonant cantilevers and 3 DOF scanning. Single-chip Amplitude Modulation AFMs (AM-AFMs) and Frequency Modulation AFMs (FM-AFMs) are both shown to be capable of imaging samples without the need for any off-chip sensors or actuators. A method to increase the quality factor (Q-factor) of flexural resonators is introduced. The method relies on an internal energy pumping mechanism that is based on the interplay between electrical, mechanical, and thermal effects. To the best of the author’s knowledge, the devices that are designed to harness these effects possess the highest electromechanical Qs reported for flexural resonators operating in air; electrically measured Q is enhanced from ~50 to ~50,000 in one exemplary device. A physical explanation for the underlying mechanism is proposed. The design, fabrication, imaging, and tip-based lithographic patterning with the first single-chip Scanning Thermal Microscopes (SThMs) are also presented. In addition to 3 DOF scanning, these devices possess integrated, thermally isolated temperature sensors to detect heat transfer in the tip-sample region. Imaging is reported with thermocouple-based devices and patterning is reported with resistive heater/sensors. An “isothermal electrothermal scanner” is designed and fabricated, and a method to operate it is detailed. The mechanism, based on electrothermal actuation, maintains a constant temperature in a central location while positioning a payload over a range of >35μm, thereby suppressing the deleterious thermal crosstalk effects that have thus far plagued thermally actuated devices with integrated sensors. In the thesis, models are developed to guide the design of single-chip SPMs and to provide an interpretation of experimental results. The modelling efforts include lumped element model development for each component of single-chip SPMs in the electrical, thermal and mechanical domains. In addition, noise models are developed for various components of the instruments, including temperature-based position sensors, piezoresistive cantilevers, and digitally controlled positioning devices

    DEVELOPMENT OF PIEZOELECTRIC MEMS DEVICES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Recent Application in Biometrics

    Get PDF
    In the recent years, a number of recognition and authentication systems based on biometric measurements have been proposed. Algorithms and sensors have been developed to acquire and process many different biometric traits. Moreover, the biometric technology is being used in novel ways, with potential commercial and practical implications to our daily activities. The key objective of the book is to provide a collection of comprehensive references on some recent theoretical development as well as novel applications in biometrics. The topics covered in this book reflect well both aspects of development. They include biometric sample quality, privacy preserving and cancellable biometrics, contactless biometrics, novel and unconventional biometrics, and the technical challenges in implementing the technology in portable devices. The book consists of 15 chapters. It is divided into four sections, namely, biometric applications on mobile platforms, cancelable biometrics, biometric encryption, and other applications. The book was reviewed by editors Dr. Jucheng Yang and Dr. Norman Poh. We deeply appreciate the efforts of our guest editors: Dr. Girija Chetty, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park and Dr. Sook Yoon, as well as a number of anonymous reviewers

    Low Power SAW-Based Oscillator for an Implantable Multisensor Microsystem

    No full text

    Faculty Publications & Presentations, 2004-2005

    Get PDF
    corecore