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Abstract
The development of low-cost smart labels with sensing capabilities is raising a high interest

among the scientific community due to the increasing need for monitoring ambient condi-

tions in the fields of wearable electronics and logistics. Printed electronics gathers all the

requirements to enable the development of cost-effective smart systems, the reason why the

framework of this thesis, the EU project FlexSmell, targets the development of a printed radio

frequency identification (RFID) smart label with sensing capabilities for perishable goods

monitoring. In that respect, I present in this thesis the design, fabrication and characterization

of different chemical gas, humidity and temperature microsensors fabricated on plastic foil by

means of additive methods compatible with large-area and large-scale production. The high

potential of integrating these microsensors together was demonstrated by inkjet printing a

multisensing platform able to detect relevant parameters for perishable goods monitoring,

such as temperature, relative humidity (R.H.) and presence of diverse chemical gases. On one

hand the use of cost-effective polymeric substrates brings novel functionalities to the system,

namely flexibility and light weight. On the other hand, owing to their simplicity and additive

character, printed techniques can potentially lead to a reduction of the fabrication cost of

smart labels by minimizing the number of processing steps, the usage of raw material and

the need of expensive clean-room infrastructure. Inkjet printing is especially appealing for

research among other printing techniques because it permits quick prototyping due to its digi-

tal character (no need of a mask) and enables local functionalization of the different sensors

in the platform. The issue of the typical low resolution of inkjet printing was addressed in this

work by proposing suitable sensors architecture and optimizing the fabrication processes of

inkjet printing silver nanoparticles, plating on plastic foil and inkjet-printed polymers. The

combination of the optimal process and materials with the investigation of different sensor

architectures permitted the development, for the first time, of fully printed capacitive R.H.

sensors with high performance and reduced footprint.

The sensors developed in this thesis were based on the absorption of the analyte in the

sensing layer, which modified its relative permittivity and thickness. Cellulose acetate butyrate

(CAB) has been inkjet-printed to perform as R.H. sensing layer in this work. Several theoretical

models have been proposed and employed to understand the working principle of the different

developed transducers and sensing layers, facilitating their optimization. Since the employed

polymeric foils provided the system with mechanical flexibility, a new theoretical model to

predict the effect of bending in sensors based on interdigitated electrodes (IDE) has been

thoroughly described. The first developed sensor was based on IDE to facilitate the interaction
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between analyte and sensing layer. The performance of the device was optimized through the

electrodeposition of nickel on the silver electrodes, which contributed to sensor stability, and

the use of differential methods to eliminate the undesired influence of the polymeric substrate.

The reliable reduction of the IDE pitch and the passivation of the substrate against moisture

were simultaneously achieved by introducing a thin dielectric interlayer between electrodes.

The second capacitive device was based on a standard parallel-plate (PP) structure where the

dielectric between electrodes acted as a sensing layer. It was demonstrated that once the issue

of chemical incompatibility between printed stack layers was solved, the standard PP structure

outperformed the others investigated in terms of capacitance per surface area (3.8 pF / mm2),

sensitivity towards R.H. (0.33% / 1% R.H.) and response time (50 seconds). The high porosity of

the printed top electrode facilitated the humidity diffusion through the sensor, permitting the

realization of devices as small as 1 mm2, and opening a new door to further miniaturization

of printed capacitive gas sensors. The third capacitive device developed consisted of a novel

array of fully printed MEMS microbridges utilizing the substrate as sensing layer through a

swelling-based sensing principle never reported before. The sensor is independent of the

analyte permittivity complementing the others described above.

Last but not least, in order to broaden the functionality of our multisensing platform for

temperature detection, inkjet-printed resistive thermodetectors (RTD) were developed on

foil. Temperature plays a main role in gas sensing so its control resulted crucial for thermal

compensation as well. To surmount the low sensitivity encountered for bare-printed RTD while

keeping the additive character of their fabrication, electrodeposition of nickel on the printed

lines was demonstrated. Plated RTD presented a three-fold sensitivity improvement, up to

1820 ppm / °C. The same meander structure used for the RTD has been adapted to form an

integrated microhotplate for those sensing layers requiring relatively high temperature (100°C)

of operation. The inkjet-printed microhotplate has been validated for sensitive and reversible

chemiresistive detection of ammonia at 90°C, corresponding to a power consumption of 35

mW. Finally, all the described sensing elements (except the PP-MEMS sensors) were integrated

for first time on a common substrate to form a multisensing platform compatible with a

flexible and printed RFID smart label. Within the FlexSmell project framework, this smart

label was applied to smart packaging for the reduction of perishable goods waste during their

distribution. Nevertheless, the outcome of this work presents a high interest in general, for the

development of very low-cost ubiquitous and wireless gas and temperature sensing systems

conceived to fulfill the increasing demand in ambient monitoring in the fields of wearable

electronics, distributed smart sensing objects or logistics.

Keywords: Gas sensor, Thermometer, Plastic foil, Inkjet printing, Capacitor, Microhotplate,

MEMS, Smart sensing system, RFID.
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Résumé
Le développement d’objets intelligents à bas coût possédant des capacités de détection sou-

lève un grand intérêt dans la communauté scientifique en raison de la nécessité croissante

de connaître les conditions ambiantes dans les domaines de l’électronique à porter et de la

logistique. L’électronique imprimée rassemble toutes les conditions pour permettre le déve-

loppement de tels dispositifs à faible coût, raison pour laquelle le cadre de cette thèse, le projet

européen FlexSmell, visait le développement d’un Tag d’identification par radiofréquence

(RFID) hybride (avec des composants en silicium et imprimés) et intelligent incluant des

capacités de détection pour le suivi des biens périssables. À cet égard, je présente dans cette

thèse la conception, la fabrication et la caractérisation de différents micro-capteurs de gaz,

d’humidité et de température fabriqués sur des feuilles de plastique souples par des méthodes

additives compatibles avec une production sur grande surface et à grande échelle. Le grand

potentiel d’intégration de ces micro-capteurs a été démontré par la réalisation par impression

jet d’encre d’une plateforme multi-capteurs permettant de mesurer les paramètres pertinents

pour le suivi de produits périssables, tels que la température, l’humidité relative (H.R.) et la

présence de gaz divers. D’une part, l’utilisation de substrats polymères peu coûteux apporte

de nouvelles fonctionnalités à ces systèmes de capteurs, notamment souplesse et légèreté.

D’autre part, en raison de leur simplicité et de leur caractère additif, les techniques d’impres-

sion peuvent conduire à une réduction significative du coût de production d’objets intelligents

en réduisant au minimum le nombre d’étapes de fabrication ainsi que la quantité de matières

premières utilisée, tout en s’affranchissant du besoin d’une infrastructure salle blanche lourde

et coûteuse. L’impression par jet d’encre utilisée pour ces recherches est particulièrement

attrayante car elle permet, grâce à son caractère digital, le prototypage rapide, en plus d’être

appropriée pour une fonctionnalisation localisée des capteurs. Le problème de la faible ré-

solution typique de l’impression à jet d’encre a été adressé en proposant des architectures

de capteurs adaptées et en optimisant les procédés d’impression d’encres de nanoparticules

d’argent et d’électrodéposition de métaux sur feuille de plastique. La combinaison optimale

des procédés et des matériaux avec les différentes architectures de capteurs a permis un déve-

loppement original de capteurs H.R. capacitifs totalement imprimés performants et de taille

réduite. Les capteurs développés dans cette thèse sont basés sur l’absorption de l’analyte dans

la couche active qui résulte en une modification de sa permittivité relative et de son épaisseur.

Lors de ces travaux, l’impression jet d’encre d’une couche de détection en acétate butyrate de

cellulose (CAB) a été mise en œuvre pour la détection H.R. Plusieurs modèles théoriques ont

été décrits et ont servi à une meilleure compréhension du principe de fonctionnement des
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différentes architectures de capteurs capacitifs développés et à leur optimisation. Notamment,

un nouveau modèle théorique pour prédire l’effet de la flexion pour le capteur à électrodes

interdigitées (IDE) a été proposé. Le premier capteur développé est basé sur des IDE afin de

faciliter l’interaction entre l’analyte gazeux et la couche active. Les performances du dispositif

ont été optimisées par l’électrodéposition de nickel sur les électrodes d’argent, pour une

meilleure stabilité du capteur, et par l’utilisation de méthodes différentielles pour éliminer

l’influence indésirable du substrat en polymère. La réduction de façon fiable du pas des IDE et

la passivation du substrat contre l’humidité ont été obtenues par l’introduction d’une couche

mince diélectrique intermédiaire entre les électrodes. Le second dispositif capacitif est basé

sur une structure standard à plaques parallèles (PP), où le diélectrique entre les électrodes agit

comme une couche sensible. Il a été démontré qu’une fois le problème de l’incompatibilité

chimique entre les différentes couches imprimées a été résolu, la structure PP standard était

plus performante que les autres étudiées en termes de capacité par unité de surface (3,8 pF /

mm2), de sensibilité à HR ( 0,33 % / 1 % H.R.) et de temps de réponse (50 secondes). Grâce à la

porosité de l’électrode supérieure imprimée qui permet une bonne diffusion de l’humidité,

une forte miniaturisation des capteurs de gaz capacitifs imprimés a été réalisée (1 mm2). Le

troisième dispositif capacitif développé est composé d’un réseau de micro-ponts entièrement

imprimés qui utilise le substrat comme couche active avec un principe de détection original

basé sur son expansion en présence de l’analyte. Le principe de fonctionnement du capteur est

indépendant de la permittivité de l’analyte et donc complémentaire à ceux décrits auparavant.

Finalement, afin d’étendre les fonctions de notre plateforme multi-capteurs à la détection

de la température, des thermodétecteurs résistifs (RDT) imprimés par jet d’encre ont été

développés sur feuille plastique, pour son suivi et/ou sa compensation. Pour remédier à la

faible sensibilité des RDT imprimés tout en gardant le caractère additif de leur fabrication,

l’électrodéposition de nickel sur les lignes d’argent imprimées a été implémentée. Les RDT

avec électrodéposition présentaient une amélioration de la sensibilité de 300%, jusqu’à 1820

ppm / °C. La même structure en méandre utilisée pour le RDT a été adaptée pour former une

micro-plaque chauffante nécessaire au bon fonctionnement de couches sensibles aux gaz

nécessitant une température d’opération relativement élevée (100°C). Cette micro-plaque

chauffante imprimée par jet d’encre a été appliquée à une détection résistive de l’ammoniac

de façon réversible à 90°C, correspondant à une puissance de consommation de 35 mW. Enfin,

tous les éléments de détection décrits (à l’exception des capteurs PP- MEMS) ont été intégrés

pour une première fois sur un même substrat pour former une plateforme multi-capteurs

compatible avec un Tag RFID intelligent imprimé sur support souple. Dans le cadre du projet

FlexSmell, ce Tag a été appliqué au domaine du packaging intelligent visant la réduction des

pertes lors de la distribution des produits périssables. Toutefois, les résultats de cette thèse

présentent aussi un fort intérêt général pour le développement de systèmes intelligents distri-

bués de détection de gaz et de température, sans fil et à faible coût, conçus pour répondre à la

demande croissante en matière de contrôle, surveillance et suivi des conditions ambiantes

dans les domaines de l’électronique à porter, des objets intelligents et de la logistique.

Mots-clés : Capteur de gaz, Thermomètre, Feuille plastique, Impression à jet d’encre,

Condensateur, Microélément chauffant, MEMS, Système de détection intelligent, RFID.
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1 Introduction

1.1 Introduction

Conventional electronics are based on rigid and brittle inorganic materials, such as Silicon or

Gallium Arsenide, which are fabricated in clean-room environments at wafer-size level. This

type of electronics starts to find severe limitations to satisfy the demands imposed by new

applications, especially those requiring large area, mechanical flexibility or compatibility with

biological systems. Thank to their particular properties, printed and organic electronics could

fill this existing gap in technology, reason why they are recently gaining a lot of interest in the

field of circuits, sensors, bioelectronics, photovoltaics, displays and lighting.

On one hand organic electronics, polymer electronics or plastic electronics consist of using

organic materials as the substrate or active material in electronic circuits and systems. Some

organic electronic devices have reached a level of technological maturity high enough to find

a place in the market for large-area applications. This is the case of well established devices

such as organic thin film transistors (OTFTs) or especially organic LEDs (OLEDs), already used

on modern displays and TVs. As a natural expansion of the field, the development of low-cost

ubiquitous flexible sensors, biomedical stretchable and implantable devices or intelligent

surfaces are currently gaining a lot of interest. These devices require all the use of polymers

as supportive substrate. Using polymers substrates as substrates for electronic systems is

then opening new opportunities in the field of microengineering. Polymers have the potential

of making electronics very low-cost, environmental friendly, disposable, biocompatible or

biodegradable. Moreover, they can bring added value to electronic systems especially in

those applications where optical opacity, weight or mechanical rigidity are limiting factors.

Some polymers are also able to stretch or deform into arbitrary shapes without loosing their

properties. The fact that they are inexpensive and compatible with large-scale production

though roll-to-roll or sheet-to-sheet process make them the perfect complement to be used

with printing technologies, rather than with standard clean-room techniques such as pho-

tolithography, lift-off or etching; to the point that the term printing electronics often implies

the use of a plastic or paper substrate.
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Chapter 1. Introduction

Printed electronics refer to a set of printing methods used to pattern electronic circuits

on different substrates. Printed electronics are associated to low cost owing not only to

their additive nature, which reduce the fabrication process complexity and optimize the

material usage [1, 2], but also to its compatibility with inexpensive substrate materials, such as

plastic or paper. Printing techniques do not involve aggressive chemicals, high demanding

conditions like ultra clean environments, or high temperatures. They are also suitable for

large-scale production through sheet-to-sheet or roll-to-roll processes, which reduce further

their production cost [3, 4]. Traditional graphic printing is optimized for patterns size adapted

to the human eye, which is able to resolve ∼ 100 um [5]. Unlike in the case of graphic printing,

in printing electronics the resolution is a key aspect to be optimized. Among the different

printing technologies, screen printing, inkjet printing, gravure or flexography are the most

common ones. Table 1.1 and Figure 1.1 summarizes the main features of these different

printing technologies [6, 7].

Table 1.1: Comparison of layer thickness, thickness variation and ink viscosity for different printing
electronics techniques. Adapted from [6] [7].

Technique Layer thickness Thickness Viscosity
(µm) variation (cP)

Screen 5-20 huge 500-50000
Flexography 0.8-2.5 - 50-500

Gravure 0.1-3 medium 50-500
Inkjet 0.1-2 small 1-30

Figure 1.1: Comparison of resolution and throughput for different printing electronics techniques.

Among the different printing technique exposed above, inkjet printing has been selected as
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the main technology during this thesis work because of its good resolution and also due to

its non-contact and digital character, which makes unnecessary the use of a mask. This last

aspect is key for quick prototyping, which lead to a significant saving of research time and cost.

Concretely, drop-on-demand inkjet printing has been used, in which the drops are ejected

only on the necessary location, by opposition to continuous jet printing. There are two main

ways to generate the pressure pulse necessary to form and eject the ink drops out of their small

reservoir through a micrometer sized nozzle (see Figure 1.2). The first way consists of the

generation of a bubble by using a heater (thermal inkjet). The second way is to use a MEMS

piezoelectric actuator that squishes the ink out (piezoelectric inkjet) [8]. The commercial

availability of modern, yet economical, inkjet-printers based on piezoelectric actuation con-

tributed to our selection of this method. Among the parameters that can influence the quality

of inkjet-printed lines, the most significant ones for a defined combination of ink/substrate

and a fixed drop volume are: substrate surface treatment, surface and ink temperature, jetting

frequency and speed, and the drop-to-drop distance as it is depicted in Figure 1.3.

Figure 1.2: Schematic diagram showing the operation of drop-on-demand inkjet printing, where drops
are formed and ejected in two ways: Thermal inkjet (on the left) and piezoelectric inkjet (on the right) [8].

Summarizing, the utilization of flexible low-cost polymeric substrates in combination with

additive methods compatible with large-area and large-scale fabrication such as printing, is

paving the way towards a new generation of thin and light-weight electronic systems able

adapt to arbitrary shapes. On to top of that, owing to their ultra low fabrication cost, these

systems can be ubiquitous and disposable. This set of characteristics enables new applications

such as large-area displays, large-area photovoltaics or smart packaging.

1.2 Project background and motivation

Shortage of resources is one of the biggest issues of the world nowadays. The increasing world

population demands every time more and more goods and the countries need to struggle to
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Figure 1.3: Examples of principal printed line behaviours: (a) individual drops, (b) scalloped, (c) uniform
(ideal case), (d) bulging, and (e) stacked coins (formed when one drop lands onto another drop already
dry). Drop spacing decreases from left to right [9].

fulfill these demands. Global market aggravates even more the situation since goods need

to be transported across the world, complicating their distribution and generating a huge

waste of perishable goods in the process. Recent studies about goods waste have thrown really

worrisome numbers: for instance, 40% of the total perishable food in USA is wasted along

the whole process "from the field to the the dish" [10]. Moreover, food waste contributes

to excess consumption of freshwater and fossil fuels which, along with methane and CO2

emissions from decomposing food, impacts global climate change [11]. A big part of that waste

occurred during transportation [12]. Extracting information of the real ambient conditions

that goods undergo during transportation could prevent a large part of this waste. However,

obtaining this information requires gathering a large amount of data of temperature, relative

humidity and presence of certain gases or volatile organic compounds (VOC) at many different

points around the goods, and over certain time. Turning this concept into reality requires the

development of extremely cheap sensing systems readily integrable in food packages. Inspired

by this need, the Marie Curie Actions European project FlexSmell has targeted at producing a

hybrid (organic-inorganic) very low-cost and ultra low-power olfaction RFID tag for freshness

& quality traceability control of perishable goods through smart packaging. This system is

based on transducers functionalized with different gas bio-receptors or specific sensing layers,

and implemented on a flexible substrate on foil using printing techniques. Because logistics

for medicines and food requires relatively slow sampling times of 10 to 15 minutes during no
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more than few weeks, there is not special need for very fast or very long-lasting devices for this

targeted application. Nonetheless, the sensors must be able to distinguish among different

analytes, including humidity, ammonia, alcohols and other VOC. The resulting printed foil-like

sensors needed to be also integrated with the rest of a RFID system. Two different approaches

have been investigated by other partners in the project to include the flexible sensors on

the RFID tag: either the sensors were patterned in a monolithical way on the tag, which was

advantageous to minimize process steps, or they were realized on a different foil and then

assembled into the main tag using low-cost foil-to-foil integration techniques. Although the

last option is more complex from a processing point of view, it was preferred because it allowed

more flexibility to fabricate the sensors and to test them before final integration into the tag. A

hybrid approach has been also studied to assemble on the main flexible foil the silicon chips

serving for sensors reading-out and RFID communication.

Different transduction principles such as field-effect, capacitance and resistance have

been implemented on the tag to achieve low-power consumption, good selectivity and high

sensitivity to different analytes relevant in food spoilage. Among them, I focused during my

project on the development of resistive and especially on capacitive sensors by means of

low-cost technologies such as inkjet printing and other additive methods on polymeric foil.

The investigation of different methods for the functionalization and encapsulation of these

devices have been addressed to form multisensing platforms at very low cost able to sense

simultaneously ammonia vapour, relative humidity and temperature. The ability of a gas

sensor to distinguish between different present analytes is one of the main challenges to solve

in the field, and the concept of a many sensors integrated and operating together in a same

platform presents itself as one of the best candidate to solve this issue. Other analytes of

interest in food spoilage are detailed in Section 5.4.3 of Chapter 5. The detection of such

analytes were the field of research of other partners of the FlexSmell project. At the end, the

developed smart system was able to store data from the sensors and transmit them wirelessly,

setting the ground for the future development of smart sensing RFID tags.

1.3 State of the art

Since the topic of this thesis is the development of resistive and capacitive gas sensors on

flexible polymeric substrates for food monitoring through RFID labels, the sensors devel-

opment required low-cost non-standard fabrication techniques such as inkjet printing or

electrodeposition. With that consideration in mind, I developed three different kind of capaci-

tive sensors, namely interdigitated electrode (IDE) with a sensing layer on top, parallel-plate

sensors where the sensing layer is placed between plates, and parallel plates-like suspended

beams utilizing the polymeric substrate as sensing layer. Thermoresistors and microhotplates

have been also developed to deal with the influence of temperature on gas sensing: whereas

the thermoresistors were used to account for the variations in capacitive detection of humidity

at different temperatures, the microhotplates were used to heat up the sensing layer of an

ammonia resistive sensor. Thus, in this section I review previously reported work dealing
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with resistive, capacitive and beam-based gas sensors on foil as well as thermoresistors and

heaters on foil, putting special emphasis on printed devices. Owing to their similarities with

these devices, other capacitive structures realized by means of printing technologies are also

described in this section despite their application in fields other than gas sensing. Finally,

I mention previous existing work where some of the non-standard processes that I also op-

timized and used in this thesis were studied, namely inkjet printing, electrodeposition and

diverse techniques to deposit sensing layers.

1.3.1 Resistive gas sensors on foil

There exists a relatively mature technology of microfabricated resistive gas sensors, some of

them even commercially available. Those mature devices are based on metal oxide (MOX)

sensing layers, which conductivity changes in presence of a gas as a result of a red-ox reaction

occurring at high temperatures [13] (so they usually require the use of an integrated heater);

or on conductive polymers which conductivity changes in presence of a target molecule for

different reasons such as red-ox reactions, doping or dedoping [14,15], swelling of the polymer

[16], etc. In any case, these devices have traditionally been developed mostly on silicon

and other rigid ceramic substrates and by means of standard expensive microfabrication

techniques. Only recently (over the last 8 years) there has been some published work related

with the development of flexible/polymeric resistive gas and vapour (humidity included)

sensors fabricated by mostly using clean room technology. The sensors were mostly based

either on conductive polymers or on MOX with integrated hotplate for detection of a high

variety of vapours and gases. Among them, few examples can be found where printing

technology was employed, and to the best of our knowledge there is only one example of

printed resistive sensor on foil with integrated heater in the archival literature. In 2006,

mechanically compliant humidity sensors were fabricated in nanoporous membranes such

as polycarbonate, cellulose acetate, and nylon membranes [17]. The same year, resistive

sensing for vapour (hexane, toluene, acetone, chloroform, acetonitrile, methanol, water, etc.)

was demonstrated with films of single-walled carbon nanotube bundles (SWNT) on flexible

PET substrates. These sensors were extremely easy to fabricate using the line patterning

method, which could be considered as a hybrid printing method consisting on printing with a

normal printer the negative of the pattern on a PET foil, where the SWNT attached directly

after dipping the substrate in the SWNT dispersion. [18]. Another example of on-foil resistive

sensor is found in [19], where gold electrodes were fabricated on a polyethylene terephthalate

(PET) film using low temperature sputtering technique for a flexible resistive-type relative

humidity (R.H.) sensor which used in situ co-polymerization of methyl methacrylate (MMA)

and [3-(methacrylamino)propyl] trimethyl ammonium chloride (MAPTAC) copolymer as

sensing layer. The logarithm of the sensor signal was linear in the range of 10–90% R.H.,

presented low hysteresis (within 6.1% R.H.), good response (45 s) and recovery time (150

s) and long-term stability (120 days at least). In 2008, resisitive sensors based on a drop-

coated MOX (SnO2) sensing layer with microheater integrated were fabricated by means of

evaporation and lift-off on polyimide for CO, NOx and CH4 [20]. One year later, in 2009, a
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chemoresistive gas sensor array for the volatile organic compounds based on electrospun

nanofibrous was presented in [21]. The sensor included read-out electronics, both of them

fabricated by means of standard clean room technologies on plastic substrate. Regarding

devices fabricated using conventional printing techniques, silkscreen printed gold electrodes

on alumina substrate covered with photocurable electrolyte inks for resistive measurements

of humidity were reported in 2008 [22]. The same year Crowley et al. presented screen printing

of silver electrodes using inkjet-printed polyaniline nanoparticle films as sensing layer for

conductimetric detection of ammonia [23]. They used a commercially available external

foil heater to improve the sensing performances. The same group has also reported on a

fully printable polyaniline-copper (II) chloride chemoresistor for the detection of hydrogen

sulfide gas. On exposure to hydrogen sulfide, 2.5 ppmv (parts per million by volume) is

clearly detectable with a linear relationship between measured current and concentration

over the 10–100 ppmv region [24]. Finally, Claramunt and colleagues have recently reported

an ammonia sensor consisting of a polyimide flexible substrate, onto which an array of silver

interdigitated electrodes were inkjet-printed on one side, and a common silver heater on the

backside. The interdigitated electrodes were coated with carbon nanofibers decorated with

metal nanoparticles (see Figure 1.4). The heater was used to chemically reset the nanofibers

and make the sensor operation reversible. The sensor showed 3% change in resistance upon

exposure to rather high concentrations of ammonia (500 ppm). A relatively high power

consumption of around 150 mW was needed to achieve the optimal sensing temperature of

110 to 120 °C [25].

Figure 1.4: Optical picture of the sensor developed in [25]. A silver heater was printed on the bottom part
of a polyimide foil and four comb electrodes on the other side of the foil to be functionalized for ammonia
sensing.

As it has been described above, only few resistive gas sensors printed on foil appear in the

literature, among them only one developed by Claramunt et al . includes a printed integrated

heater to improve the sensor performances. In this thesis we present a microhotplate for

ammonia sensing similar to the one developed by Claramunt et al . However, apart from using

a different and more performing sensing layer (developed by our partners at the University of
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Manchester), we utilized another sensor configuration to decrease the power consumption of

the device. Basically, we decreased the size of the devices from few mm2 to 1 mm2 and used

a thin dielectric layer instead of the 50 um-thick substrate to separate the heater from the

sensing layer. We also replaced the expensive polyimide foil substrate for more cost effective

polyethylene naphthalate (PEN), and demonstrated the possibility of electroplating noble

materials like nickel or gold on the silver seed for better chemical compatibility and long-term

stability.

1.3.2 Capacitive gas sensors on foil

Even though the previous examples of gas resistive sensors are significant in terms of the used

technology, the requirements for low-power consumption of the FlexSmell project favored

capacitive-based devices over resistive-based ones. An important part of these sensors utilizes

the ability of certain polymers to absorb humidity and other vapours and gases, modifying their

dielectric properties and/or swelling, inducing in that way changes in the capacitive structure

in which they are placed. As in the case of resistive gas sensors, we can find companies like Sen-

sirion in Stäfa (Switzerland) producing commercial humidity capacitive microsensors made

on silicon by means of standard clean room technology. Within the CATRENE project Pasteur,

CO2 sensors have been developed through a fabrication process compatible with CMOS that

included also post-processing coating of the transducers by means of inkjet-printing [26].

Also some examples of capacitive vapour (propan-1-ol, toluene, trichloromethane, n-octane,

ethanol, etc.) sensors made on Si with CMOS integrated read-out circuitry can be found

in the literature [27–30]. Since some years ago, the field is undergoing a transition towards

foil technology while keeping traditional expensive patterning methods. Only very recently,

very few capacitive gas sensors have been fabricated using only printing technologies for

humidity detection. Two main geometries (shown in Figure 1.5) are commonly utilized for

the fabrication of capacitive sensors: interdigitated electrode (IDE) and parallel plates (PP).

Although some beam-based gas sensors use capacitive detection principle as well, they will be

described in the Section 1.3.3 along with other microbeams-based systems. On the other hand,

other capacitive microstructures fabricated by means of printing technologies for applications

different from gas sensing will be reviewed at the end of this section.

Even though the number of capacitive gas sensors fabricated on foil by means of printing

technology is swiftly increasing, the low resolution and poor reproducibility allowed by print-

ing technologies along with the undesired gas absorption into the polymeric materials utilized

as substrate, remain important unsolved issues that prevent printed gas sensors on foil to be

as performing as their silicon counterparts.

Interdigitated (IDE) gas sensors on foil

We can find in archival literature few previous works highlighting the fabrication of IDE gas

and vapour sensors on foil using standard microfabrication methods for relative humidity
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Figure 1.5: Sketch displaying the most typical capacitor configurations: (a) interdigitated electrode (IDE)
and (b) parallel plates (PP).

(R.H.) and volatile organic compounds (VOC) detection. Some of these works come from our

own group in collaboration with Institute of Physical Chemistry of the University of Tübingen

(IPC-EKUT, Germany) (see Figure 1.6). Other groups have also reported on similar devices, but

in both previous cases the emphasis was almost always on the sensing layer composition and

the substrate contribution to the sensing behaviour rather than on the transducers themselves.

That scenario is expected if one considers the low limitations in size offered by standard

microfabrication methods. Only very recently, in the last 3 - 4 years, some authors have

reported on partially or fully printed IDE-based gas sensors. Due to the new challenges

introduced by the printing process, such as low patterning resolution, much more focus was

put now on the fabrication of the IDE rather than on the sensing layer. The devices were

usually tested only for R.H. which is the most straight forward analyte to detect due to its high

permittivity and easiness to generate compared to other substances in gas state such as VOC.

In 2008, temperature and humidity sensors were developed by patterning gold (e-beam

evaporated) on parylene and using polyimide as sensing layer. The sensitivity was 0.03 pF

/ % R.H. [32]. One year later, IDE capacitive humidity sensors based on multi-walled car-

bon nanotubes MWCNTs/polyelectrolyte interfaces on flexible substrates were reported [33].

Humidity sensing was demonstrated by a reversible change of capacitance, from few tens

pF to hundreds pF, as the relative humidity level changed from 35% to 60%. The average

response and recovery time of the devices was of few min. That same year Oprea et al., in

collaboration with EPFL-SAMLAB fabricated low-power temperature and VOC (ammonia,

toluene, n-hexane, n-propanol and ethanol) sensors evaporated on flexible substrates and

functionalized by spray coating of customized sensing layers [31]. They measured the capaci-

tance using a differential method to subtract the parasitic effect of the substrate. The utilized

sensing materials were common polymers, like PEUT or PDMS, and the sensitivity was good

enough to detect gas well below time weighted average (TWA) levels. More recently, a humid-

ity sensor based on evaporated gold on a substrate of cellulose-polypyrrole nanocomposite

was reported. The response (continuous humidification from 27.8 to 94.2%) and recovery
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Figure 1.6: Sensor platform on polyimide substrate with Pt thermometer, IDE and connection pads. The
IDE are capacitive transducers, a sensing one (left) and a reference one (right). The area reserved for the
polymer sensing layer is surrounded by a dot line frame [31].

(continuous dehumidification from 91.7 to 28.9%) time was ∼ 418 s (∼ 7 s per 1 %R.H.) [34].

Only very recently we can find printed capacitive humidity sensors on foil where the

capacitor is formed by a planar IDE strucutre: In 2011 and 2012, Starke et al. developed a silver-

based inkjet-printed relative humidity sensor on polyimide and PET substrate respectively.

The devices size was rather large, with a minimum line width and inter-lines gap of 119

and 90 µm respectively in the best cases. Their response behaved linearly up to ∼ 70% R.H.

and faster-than-linear above that level. The devices also presented certain hysteresis and

the dependence with temperature was investigated [35, 36]. Our group also presented in

2011 IDE humidity sensors on paper. In spite of fact that the paper was passivated with a

moisture barrier layer of parylene-C and that differential measurements were carried out to

minimize the influence of the substrate [37], the capacitive sensors exhibited an exponential

response with humidity level and an unstable output signal. One year later, another paper

described inkjet printing of capacitive humidity sensors also based on nanoparticles of silver.

The silver electrodes were inkjet-printed on polyimide, and the authors used Nafion® as

humidity sensing layer during impedance measurements [38]. The minimum line width and

gap achieved on the substrate was of ∼ 49 µm and ∼ 34 µm respectively. The sensors were

tested in a broad humidity range of 5 – 95% R.H. For each humidity value, both impedance

components have been measured in the frequency range of 20 Hz – 1 MHz. The signal did

not show a linear behaviour neither. Other than inkjet, gravure-printed silver electrodes on

PET foil covered with polymer poly (2-hydroxyethyl methacrylate) (pHEMA) for capacitive

humidity sensing was presented in [39]. The sensor response was measured in the range of

30% R.H. to 80% R.H.; the maximum percentage change in capacitance was 172% at 80% R.H.

when compared to base capacitance at 30% R.H. However, the signal was supralinear. The
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humidity response of the printed sensor revealed a very high stability with a maximum error

of 0.6% and 0.8% from the average value at 40% R.H. and 60% R.H., respectively. Another work

from 2014 presented printed IDE using the polyimide substrate as sensing layer and achieving

a sensitivity of 4.5 fF / % R.H. The dependence of the sensor with temperature was analyzed at

different operation frequencies [40].

The performance of the previous printed sensors was limited and no special care was taken

to study and remove the parasitic effect of the substrate [31] in the majority of the cases. This

usually resulted in no stabilization of the sensor signal or in very long response time. This last

point is however difficult to confirm because in the most part of the work presented above the

authors did not study the transient response of the sensors.

Printed capacitors on foil for diverse applications As it can be drawn from the previous

sections, not a lot of work has been found describing fully printed capacitive gas sensors.

However, some work has been reported in the fabrication of printed capacitors for other

sensing applications, describing interesting fabrication processes. For instance, in 2003

PEDOT:PSS (conductive polymer) inkjet-printed parallel-plate capacitors for RC filters were

published [41, 42]. In 2009, an IDE capacitive and resistive strain sensor using inkjet printed

PEDOT:PSS [43] was also reported. The reported geometries could be readily applicable to

gas sensing although the possible interaction of of PEDOT:PSS in capacitive structures with

humidity have not been studied.

In this thesis, different fully inkjet-printed IDE capacitive R.H. sensors will be developed

while pushing forward the maximum resolution permitted by inkjet printing. Moreover, several

strategies will be utilized to reduce the detrimental influence of the substrate in the sensor

signal: Differential measurements, decrease of the IDE pitch or passivation of the substrate

with a parylene-C dielectric barrier will be investigated through the study of both the dynamic

and static response of the sensor to R.H.

Analytical models for IDE sensors The analytical calculation of the capacitance of IDE

structures is not straight forward. Some groups have tried to calculate it using different

approaches. One approach opts for figuring out the electric field in the devices from an

electrostatic point of view, solving the Laplace’s equation for the concrete geometry [44]. The

other approach makes use of the conformal mapping method in which a space transformation

is used to convert coplanar geometries in parallel plates geometries, which are much easier to

dealt with. Such approach, combined with the partial capacitance concept has been developed

in few previous works to analytically calculate the capacitance of IDE capacitors in a multi-

layered structure [45–47], as well as the role of the thickness of a sensitive layer deposited on

the IDE structure for gas sensing applications [48] respectively). In all the previous examples,

only flat and regular IDE structures were addressed. Since I deal in this thesis with devices

fabricated on flexible substrates, it is of high interest for the field to expand such models for
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IDE structures subjected to bending conditions.

Parallel plates gas sensors on foil

IDE-based sensors present the advantage of requiring only one metalization layer and of

maximizing the exposure of the sensing layer to its environment, since it is the last material to

be deposited on top of the IDE structure. However, their patterning by printing technology is

challenging if one targets small pitch. Also, since the electric field lines existing between IDE

are also present in the substrate, the substrate becomes an undesirable sensing part of the

device. This aspect will be described in detail in Section 2.2 of Chapter 2. On the other hand, the

other most common capacitive structure, the parallel plates structure, can be also used for gas

sensing. For this configuration, the sensing layer is placed between the two parallel electrodes

so that the electric field is totally confined in it. Hence, sensors using this configuration

are potentially more sensitive and whatever change undergoes in the substrate does not

affect their behaviour. Furthermore, this geometry can provide higher values of nominal

capacitance than IDE, since a very small distance between parallel plates is achievable by

controlling the thickness of the dielectric layer in between. However, these devices require two

metalization layers and complex patterning of the top electrode to permit the analyte reach

the sensing layer underneath. Only two parallel plates-based gas sensors have been reported

on polymeric foil so far, and to the best of our knowledge, none of them were fabricated by

means of printing technologies, probably due to the challenges associated with the chemical

compatibility between the solvent of the ink used to pattern the top electrode and the sensing

layer underneath. In 2009, Zampetti and his group developed a vertical parallel plates-based

sensor on very thin (8 µm) polyimide substrate. The sensor was fabricated by spin coating,

evaporation of chromium and wet-etching as depicted in Figure 1.7, and its operation was

based on the variation of the [bis(benzo cyclobutene)] sensing layer permittivity in presence

of humidity [49]. The fabricated sensor showed a sensitivity to relative humidity of 0.38% /

R.H. % and a linearity of R2 = 0.996 in the range of 10 – 90 R.H.%. The response time, estimated

from 10 to 90% of the response curve was 216 s.

The bendability of the device was assessed demonstrating negligible electrical variations for

bending radius down to 1.4 mm. The same group extended the work and reported it two years

after in [50]. They developed a whole system composed of three PP sensors using different

polymeric sensing layers: poly(tetrafluoroethene) (PTFE), poly(methyl 2-methylpropenoate)

(PMMA) and benzocyclobutene (BCB). A ring oscillator circuit, implemented with polysilicon

thin film transistors (PS-nTFT), was used to convert the capacitance variations into frequency

shifts. The electronic tests show oscillating frequencies of about 211 ± 2 kHz and negligible

frequency shifts under different bending radius of curvature. The system response to some

concentrations of alcohols (Methanol, ethanol, 1-butanol, and 1-propanol) was reported and

data analysis proved that the system was able to discriminate methanol from ethanol.

Getting over the materials limitations imposed by the chemical compatibility between the

different printed stack layers, I developed for first time and describe in this thesis report a
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Figure 1.7: (a) Thermal evaporation of a 200 nm-thick aluminum layer on PI. (b) Spin coating of a 800
nm-thick layer of BCB over the sample. (c) Second evaporation of 200 nm-hick chromium layer on the
structure, and (d) squares patterned on it by photolithography and wet etching in order to allow humidity
penetration into the BCB sensing layer. (e) Finally, through BCB via holes were dry etched for contact
bottom electrode and the structure was released from the rigid carrier [49].

fully-inkjet printed PP-based capacitive gas sensors on foil. The sensor had a smaller foot print

than their IDE counterparts and presented improved performance for R.H. detection.

1.3.3 Microbeam gas sensors

Another approach to sense gas addressed in this thesis is based on mechanically movable

microstructures. The first example of a microbeam-based gas sensors is found in 1994, when

Thomas Thundat and co-workers at Oakridge National Laboratory in Tensesse USA started

exploring the use of microcantilevers as potential physical and chemical sensors [51]. After

that moments MEMS have been broadly investigated for chemical sensing. A thorough review

about cantilever-like MEMS for chemical sensing applications was published by Professor

Boisen from the Tecnical University of Denmark in 2011 [52]. This review included different

operation principles (surface or bulk stress in static deflection mode, or change of mass in

resonance mode) of both Si and polymeric beams. However, the great majority of MEMS

sensors reported were based on devices fabricated using standard clean room materials (like
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silicon) and techniques.

For the case of surface stress-based sensors, one of the two faces of the beam is functional-

ized with an specific sensing layer, which interact with the target analyte inducing a difference

in surface stress of the two faces of the cantilever which deflects the cantilever. This operation

mode is based on adsorption. The first example of such sensors is found in 1998, in a work by

Christoph Gerber and co-workers from IBM in Zürich (Switzerland) [53].

The considerations of surface stress applies only when the sensing layer is much thinner

than the beam underneath. Otherwise, the device operates under a different operation mode

based on bulk stress. By opposition to the previous described working mode, the absorption

(instead of adsorption) of the target analyte into the sensing layer plays now the main role. The

devices basing their operation in bulk stress are modeled as bimaterial beams. Some examples

using Si and other metals patterned using conventional clean-room techniques can be found

in literature for chemical sensing and humidity sensing [54, 55]. Singamaneni and colleagues

published a review dealing with bimaterial microcantilevers as a hybrid sensing platform [56].

Figure 1.8: Sketch showing the deflection of a single clamped cantilever due to stress induced by a sensing
layer coated on top. As the sensing film expands the cantilever bends down. The resulting stress in the
sensing layer is compressive as its expansion is hindered and balanced by the bending of the cantilever.
Similar and opposite behaviour occurs in contracting films [52].

Finally the third working principle utilized by microbeams is based on their resonant

frequency, which drops when the mass of the beam increases, allowing very precise detection

of minute amounts of analyte. MEMS resonant cantilevers have been integrated with other

transducers and CMOS circuitry for organic and inorganic gas and vapour detection [27, 28].

Unlike in the most part of the previous examples where the sensor read-out was optical, the

read-out circuitry used in the the last two references comes integrated in the device, improving

its compactness and cost.

Microbeams systems using polymers either as beam or substrate material

Regardless the working principle, the most part of the examples of microbeams described in

the literature involve inorganic bridges. Nevertheless, since 1990 there has been an increase in

work reporting polymer-based cantilevers. The main driving force to introduce polymers in

MEMS is that their Young’s modulus is two orders of magnitude lower than silicon, leading to

an increase in sensitivity for deflection-based applications (despite low Young’s modulus is not
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beneficial for resonant-based devices). Another important factor influencing the development

of polymer-based MEMS is the possibility to reduce cost of raw material and fabrication [52].

Few of those polymer MEMS have been exploited as chemical sensors.

The first polymeric microbeam was a cantilever fabricated by Pechman et al. in 1994 with

standard Novolak-based photoresist [57]. Some others authors have used SU-8 photo-resist

to fabricate microbeams, taking advantage of its low stiffness (Young’s modulus equal to 4

GPa) [58–60]. SU-8 beams have found more recently application as surface stress bio sensors

and bio-chemical sensors [61, 62]. Other examples of beams made of different polymers

(polyimide, PET, parylene) can be found in [63–70] Despite the previous examples, polymer

cantilevers are still in an early phase and there are still many challenges to solve. They could

be used in dynamic mode, but they should surmount issues related to material damping and

lack of stability with temperature and humidity.

Owing to their flexibility, large-area compatibility and low price, using polymers also as the

substrate material of microbeams systems could bring numberless advantages to the field of

microbeams-based sensors and actuators. However, these advantages come accompanied

of several challenges such as limitations in the process temperature or the lack of a reliable

fixed reference position due to the polymer softness. Despite these challenges, some groups

have ventured to develop inorganic microbeams using polymers as substrate material. For

instance, in the work presented in [71] by Prof. Conde’s team from INASC (Portugal) in

2008, microbridges (shown in Figure 1.9) were made of thin films of silicon on PET substrate;

resonant frequencies up to 2 MHz with quality factors of 500 under vacuum conditions were

reached through electrostatic actuation. An absolute pressure sensor was fabricated between

two polyimide foils by means of magnetron sputtering, photolithography and lift-off [72]. The

authors created a vacuum-sealed cavity for pressure reference and used piezoresistors for

detection. Also, the utilization of polymers as substrate material to fabricate MEMS at large

area was exploited in the case of the "smart MEMS sheet" for the electrostatic and thermal

actuated displacement of small objects on a flexible foil presented by Ataka et al. in 2013 at the

group of Prof. Fujita (University of Tokyo) [73, 74]. In this case, as well as in the previous ones,

the authors used standard microfabrication technologies to fabricate the movable structures.

The reason not to use printed materials is that they are in general less robust than materials

deposited from gas phase. On the other hand, as it was mentioned in the Introduction of this

chapter, printing techniques present good compatibility with polymers in terms of process

temperature, permit a reduction of the fabrication cost and make systems more compatible

with large-area and large-scale production . It turns out that not much work has been done in

that respect and none was found for gas sensing applications. However, few inspiring works

exist utilizing printing technology for physical sensors based on movable structures. They are

described in the next section.
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Figure 1.9: SEM-obtained micrograph of thin film silicon bridge on a PET substrate [71].

Microbeams polymeric systems including printing technologies

Among the different micro or milimeter beam-based systems including polymers and printing

technologies we can find, for instance, a PP capacitive accelerometer using a suspended

structure of inkjet-printed PEDOT:PSS and flexible substrates. The transducer strategy is

based on the shift of capacitance of the structure when subjected to acceleration due to the

displacement of the suspended electrode [75]. A similar geometry is found in [76], where the

authors described another PP capacitive accelerometer fabricated on PET substrate by means

of evaporation and etching, but using inkjet-printed polyestyrene-acrylate as etching mask,

reducing considerably the number of fabrication steps. In 2008 Someya’s group from the

University of Tokyo developed two different types of cantilever to be used as MEMS switches

using polyimide sheets and inkjet printing of Ag nanoparticles for electrical contact [77, 78].

The first one was a single actuated switch whereas the second one was improved to be double

actuated in a complementary way, being able to reach a commutation frequency of 50 Hz

at 60 V. They also reported a large-area flexible ultrasonic imaging system on polyimide foil

formed by an array of sensing cells. Despite every sensing cell consisted of piezoelectric

polymeric actuators, they were driven by an printed organic transistor active matrix [79],

demonstrating the compatibility of printing technologies with large-area polymeric systems.

Such compatibility was reassured and taken even further by adding roll-to-roll processing in a

collaborative work between the National Tsing Hua University in Taiwan, VTT in Finland and

Prof. Fujita’s group at the University of Tokyo [80]. The authors of the article proposed the use

of polyethylene naphthalate (PEN) as substrate and microbridge actuator for a novel MEMS

controlled paper-like transmissive flexible display device realized by roll-to-roll printing

process for the first time. The roll-to-roll process included flexography printing, gravure

printing, lift-off, and lamination techniques, and was proved for high-volume, low-cost, and

large-area solutions. Another example of low-cost material beams combined with printing

technologies comes from Prof. Whitesides’s team in Harvard university, who developed in 2011

a force sensor based on a laser-cut paper cantilever of few millimeters size, which included on

its base a screen printed carbon piezoresistor as a detection element for the deflection of the

beam [81].
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Finally, some authors have built 3D mechanical structures without using polymers as

structural support, but by directly printing ceramics or metals to form the structure itself.

This is the case of the millimeter-sized screen-printed cantilevers made of ceramics for force

sensors [82] or those millimeter-sized cantilevers made by screen printing gold, silver, PZT

(lead zirconate titanate) and other dielectric materials, developed at Southampton University

for energy harvesting [83].

Figure 1.10: SEM-obtained micrographs of (a) several inkjet-printed MEMS cantilever switches and (b)
close view of one device. Schematic representation of the operation of the switch in (c) OFF-state and (d)
ON-state [84].

Printed movable microstructures are also possible, as it was demonstrated in 2002 by an MIT

group that showed 2D and 3D mechanical structures, namely linear and rotary electrostatic-

drive motors, and in-plane and vertical electrothermal actuators using inkjet printing of up

to 400 layers of insulators, silver and gold with 100 µm feature size and high conductivity,

10:1 vertical aspect ratios and etch-released [85]. A different group also at MIT developed

inkjet-printed cantilevers with feature as small as 20 µm for characterization of the printed

material itself [86]. On top of that, in 2013 Prof. Subramanian’s group in UC Berkeley developed

inkjet-printed MEMS cantilevers switches (see Figure 1.10) by means of a relatively complex

process involving spin coating and the definition of via-holes also by inkjet-printing [84].

Finally less-standard printing methods such as microcontact have been also used to form

free-standing 3D structures [87].

Although the ground floor for printed MEMS is established, there are not examples using

fully printed microstructures at a large area. Furthermore, the applications of the devices are

limited to physical sensors or switches. No examples have been found for chemical sensing.

In this thesis I propose a fully inkjet-printed MEMS bridges system on polymeric foil for gas

and vapour detection. The device has been tested for humidity, responding to the bulk stress

principle described above, where the polymeric substrate acts a swelling sensing layer upon

absorption of ambient moisture.
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1.3.4 Thermometers on foil

Whether the detection of gas is based on physical process, such as physisorption into a sensing

layer, or on chemical reactions, temperature will always be a big player in the process. This

means that the temperature needs to be controlled at every moment during the gas sensing

process. For that reason, in this thesis work I will present also the development of thermoresis-

tors along with the printed humidity sensors on foil. In order to enable the integration of both

elements together on the same chip, the thermoresistors must be fabricated with the same

printing technology that the humidity sensors, i.e. inkjet printing and electrodeposition on

plastic foil.

There are different ways to sense temperature using microsystems, but the most popular

and straight forward is to use conductive materials which conductivity (or resistivity) varies

with temperature [88]. The devices exploiting such property are thus called resistive thermod-

etectors (RTD). Traditionally, ceramic substrates and platinum resistors have been used to

fabricate RTD. Nowadays we can find some RTD using also foil substrate. Among the published

work of interest, we can find "cost-effective" thermoresistors made of Pt on polyimide with

a temperature coefficient of resistance (TCR) of 0.00291 °C−1 [89]; thermoresistors with TCR

= 0.00188 °C−1 integrated on foil with gas sensors [31]; or miniaturized Ti/Pt/Ti resistors on

polyimide working from 0 to 400 °Cwith TCR = 0.00145 °C−1 for medical applications [90].

Lichtenwalner et al. presented also an array of flexible thermoresistors on polyimide oriented

along different directions as depicted in Figure 1.11 and fabricated from Pt and NiCr to be able

to measure bi-axial strain fields and temperature simultaneously by comparing the different

TCR and gauge factor of both materials as well as the different orientation of the devices [91].

The Pt version presented a TCR of around 0.0020 °C−1 whereas the one of the NiCr version was

between 0.00230 and 0.00385 °C−1. Strain gauge factors of between 1.4 and 1.7 were found in

the worse cases.

Figure 1.11: Picture of an array thermoresistors and strain sensors fabricated on foil with NiCr and
Pt [91].

Even though Pt is commonly used for thermometers due to its high linearity over a wide

range of temperatures, temperature sensors made of gold have also been integrated together

with humidity sensors on the same polyimide foil in [32]. The sensors, isolated by parylene,

presented a TCR = 0.00481 °C−1.
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It can be observed that the most part of the referenced works rely on expensive polyimide

polymer due to its high thermal resistance and on evaporated metals. Felba et al. reported

in [92] on silver nanoparticles lines inkjet-printed on glass slides and characterized their

thermal sintering process. Although the authors did not target at developing an RTD (but

at characterizing the printed materials instead), a curve "resistance vs temperature" was

presented displaying lines sintered at 240°C with a TCR of 0.00208 °C−1. However, inkjet

printing can be also compatible with low heat resistance flexible substrate such as PET or

paper that could be employed for specific applications that do not require exposure to high

temperatures, such as environmental monitoring. The use of printing technologies would

also decrease the cost of the fabrication process. The previous reasons encouraged our group

to develop an inkjet printed silver RTD on paper in 2011 [37]. The RTD presented however a

relatively low TCR of 0.0011 °C−1 and suffered high dependence on variations in the relative

humidity probably due to the lack of stability of the printed material (sintered at only at 150°C)

and the high moisture absorption capabilities of paper.

In spite of the previous issues, there are still plenty of room for improvement and no many

works dealing with printing RTD on foil are available nowadays. The feasibility and potential

of the field can be however reflected in the success story of the Southafrican-based company

PST Sensors that has developed its own process to print Silicon for thermoresistive detection.

1.3.5 Processes

Several devices have been described in the sections above where additive methods, mostly

printing, were used for patterning. The devices also required the use of a specific sensing layer

that is sometimes deposited from liquid phase. This technology is not always at a mature

stage and some groups are working to understand and improve it. In this section I review the

relevant works related to the technologies that I used in this thesis, namely inkjet printing,

electrodeposition and different process existing for deposition of sensing layers for gas sensors.

Inkjet printing (printable materials, parameters and sintering techniques)

Inkjet printing is a very versatile method that offers to the the user many different parameters

to tune. The morphology, geometry, mechanical and electrical properties of inkjet properties

depend on theses parameters which are at the same time dependent on the working surface

and the ink jetted onto it. Various articles have been published trying to understand and

describe the control and tuning of different parameters for inkjet printing. Among the differ-

ent parameters involved in the process, drop-to-drop spacing, temperature of the substrate,

surface treatment, firing frequency, etc. are the most important. Another issue that inkjet

printing has to deal with is the redistribution of solid materials towards the outer edge oc-

curring on a landed drop as a result of unbalanced evaporation rates of the solvent in the

drop. This phenomenon, known as the "coffee ring" effect, was first reported in 1997 and

subsequently studied by Deegan et al . [93–95]. The coffee ring effect is responsible for the

19



Chapter 1. Introduction

difficulty to fabricate printed lines with homogeneous thickness.

The correlation between the drop-to-drop space and the profile and width of inkjet-printed

metallic lines was studied in [96]. Also, the influence of the substrate surface energy on

printed lines profile and resistivity was described in [97]. Prof. Subramanian’s group in

UC Berkeley clarified the relation between the aforementioned parameters along with the

substrate temperature, firing frequency, etc. in properties of the inkjet-printed line such as the

edge quality (see Figure 1.3) or the coffee ring formation [9].

Another aspect that plays a big role in the quality of printed metallic patterns, specially in

terms of electrical resistance and mechanical properties is the curing and sintering process.

Different ways to cure and sinter metallic ink after deposition have been described in [98].

Thermal treatment is the most common and straight forward way of sintering conductive

inks. Nevertheless, when dealing with organic substrates, high temperatures above the glass

transition temperature of the substrate (Tg) are not allowed. In that case, near infra-red,

microwave radiation, DC and AC current [99], laser beam or other photonic methods become

more suitable methods for curing and sintering conductive inks.

In summary, inkjet printing of functional materials is subjected to a many different param-

eters not fully understood. Although very promising, this method remains challenging and

difficult to control especially when it comes to reduce the printing resolution, increase line

thickness homogeneity and decrease the resistivity of metallic lines without recurring to high

temperature thermal steps. Inkjet is also challenging to create multi-stack layers of different

materials due to the low thickness and high roughness of inkjet-printed films, and the need to

find chemically orthogonal solvents to not dissolve the bottommost layers.

Electroplating and adhesion treatments

One of the characteristic properties of inkjet printed patterns is their low thickness. In order

to increase this thickness, maintaining the additive character of the method, electroplating

can be performed using the printed line as seed layer for the growth of the plated material.

Electroplating can be used also to create bimorphs or as passivation layer for reactive metals.

Kao et al. treated the topic for electroless of Cu on inkjet-printed lines in 2010. However, in

this work, the substrate was alumina instead of polymer [100]. In the same year, Cauchois and

colleagues demonstrated electroless deposition of a 1.7 µm thick nickel layer on top of 600 nm

thick printed and sintered silver nanoparticles-based lines for wire bonding using polyimide

as substrate [101]. Electroplating can be performed directly on the substrate without need of a

metallic sensing layer. Micron- and submicron-scale patterns of copper on Si and polymer

surfaces was carried out by selective electroless deposition on the areas defined by colloids that

served as catalysts. Such areas were patterned and deposited by microcontact printing [102].

In [103] the authors used microcontact printing of self-assembled silane layers on PEN foil to

define the areas where nickel could not directly grow by electroless plating. The nickel lines

defined the gate electrode of a thin film transistor on foil. Other similar works describing the
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combination of microcontact printing and electroless deposition for fine patterning of metals

can be found in [104–107].

Adhesion is a common problem in polymer electronics. Already in 1992, Inagaki et al.

addressed this issue for polyimide foils and tried to solve it by means of oxygen plasma

treatment [108]. Oxygen plasma treatment activates the surface energy improving the adhesion

metal-polymer. More recently, many other groups have come back to the issue of using plasma

for surface and adhesion improvement of polymers in general [109], and for sputtered [110] or

inkjet-printed [111] copper layers. On the other hand, surface treatments can also target to

enhance printing quality by lowing the surface energy of the substrate. Smaller ink drops are

possible on substrates with lower surface energy.

Sensing layers coating

In order to have sensors for specific gaseous analytes, it is necessary to coat the transducers

with an specific sensing layer. These sensing layers are often organic polymers very sensitive to

solvent, light and high temperature, reason why they tend to be deposited towards the end of

the fabrication process flow. This fact presents certain limitations in the devices geometry. IDE

devices are advantageous in that sense since both electrodes are simultaneously patterned,

leaving freedom for the deposition of the sensing layer afterwards. On the other extreme,

parallel plates structures are not suitable for many sensing layers since the top electrode must

be deposited onto the sensing layer, which is "sandwiched" between the two electrodes, and

patterned to let the analyte penetrate into the sensing layer. The issue becomes even more

challenging for printed devices where the electrodes are deposited from a solvent-based ink.

Common methods for coating sensing inorganic layers are normal evaporation, sputtering

or screen printing. In the case of organic sensing layers, they are mostly deposited by spin

coating or spray coating [112], self-assembly [113], drop coating [13], or inkjet coating [26,107].

Although spin coating permit a very good reproducibility and fine control of the sensing layer

thickness, it is constrained to wafer level and it is not additive, so it lies out of our interest [114].

Spray coating is fairly reproducible, allows good control of the sensing layer thickness and

can be considered as additive. Nonetheless it requires a shadow mask for the sensing layer to

reach only the areas of interest and it is not appropriate to cover small features. Self-assembly

sensing layers applies mostly to organic molecules that self-organize in a very ordered and

packed way on top of the device substrate or electrodes. The chemistry of the process limits

its application to very specific scenarios, like well-known thiol-gold bonding. Moreover, the

thickness of the sensing layer is very small and fixed by the morphology of the used self-

assembled molecules, so it cannot be modified. Event though drop coating is a very simple

method, it lacks resolution and yields relatively uneven and thick sensing layers. Finally,

owing to its non-contact character, inkjet printing makes a good candidate to functionalize

fragile structures such as microbridges. On top of that, its digital nature allows simultaneous

deposition and maskless patterning of different sensing materials [115], as well as customized

combinations of them. Nonetheless, it must be taken into account that as in the case of drop
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coating, in inkjet printing the sensing layer is deposited from a solution. Thus it is subjected

to the solute reorganization and solvent rheology that causes the formation of coffee ring

stain [93–95]. The coffee ring stain yields sensing layers with non-homogeneous thickness and

uneven surface. Some effort is being carried out to surmount this problem by mixing solvents

with different boiling points and superimposing complementary layouts [116].

1.4 Thesis motivation and structure

Thesis motivation and achievements

Having as future vision the development of ubiquitous gas sensors, during my doctoral work I

took advantage of the properties of common polymeric foils and printed electronics for the

fabrication of low-cost, environmentally-friendly and flexible gas microsensors requiring low

power for wireless applications. The core of the thesis focuses on describing the development

of transducers for gas (and vapour) sensing, which includes also the fabrication of temperature

sensors and heating microelements. Different geometries of capacitive transducers have been

investigated and characterized after functionalization with custom-made test sensing layers,

mostly for relative humidity. These geometries include planar interdigitated electrodes (IDE),

parallel plates (PP) and movable microbridges.

One of the main flagship characteristics of the FlexSmell project is to develop low-cost and

environmental-friendly smart systems. Therefore, very low-power consumption devices were

conceived with a special concern in minimizing the use of polluting and expensive materials,

as well as resources during the fabrication process. Low-power consumption is at the same

time compatible with wireless applications, allowing the system to communicate remotely.

Capacitive microsensors seem suitable for such systems because they require very low-power

consumption. On the other hand resistive microsensors require higher power than their

capacitive counterparts, but they offer a larger range of sensing materials, facilitating the

enhancement of the system selectivity. Either way, the most part of gas microsensors available

nowadays are made using expensive rigid materials and high energy consuming clean-room

processes. To make the fabrication of existing gas microsensors comply with the needs of a

new kind of low-cost and environmental-friendly systems, it has to be as efficient as possible:

the fabrication must involve relatively low temperatures and the use additive techniques (such

as inkjet printing and electroplating) to optimize material usage. The former techniques are

also suitable for large-scale production methods which potentially leads to a reduction of the

fabrication cost. Low temperatures processing is compatible at the same time with the use of

a new range of organic materials, otherwise impossible to use at traditional microelectronics

process temperatures. Hence, polymers are the main kind of materials to be used in this

work for both substrate and sensing layers. Compared to standard inorganic substrates used

in microfabrication such as silicon and glass, polymers are very cheap, easy to handle and

compatible to large-scale production via roll-to-roll method. Their flexibility is a convenient

characteristic for smart packaging, among many other applications. The thesis work presented
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here intends to fill the existing technological gap in the field of gas microsensors by developing

low-cost performing resistive and capacitive sensors on flexible plastic foil by means of inkjet

printing technology.

Figure 1.12 summarizes the required points to be fulfilled in the project and the existing

relationship between them.

Figure 1.12: General specifications considered in the project. Different characteristics linked to each
specification and relations between them.

Although previous reviewed work showed gas microsensors fabricated on both rigid sub-

strate and flexible polymeric foils [1, 49, 50], the fabrication involved mostly expensive clean-

room microfabrication techniques at wafer level. In this thesis, I demonstrated devices with

comparable performances fabricated exclusively by printing and other additive methods such

as electrodeposition, compatible with large-area fabrication. The characterization of the

devices have been duly accompanied of theoretical models predicting and explaining in many

cases the observed behaviours.

The power consumption of capacitive sensors is relatively low compared to resistive sensors,

reason why the core of my thesis was focused on capacitive devices. The first studied devices

are IDE capacitive humidity sensors. Firstly, the relationship between the geometry of IDE

devices and their sensing behaviour has been theoretically studied generalizing existing mod-

els [45], and compared with that of parallel-plates devices. In both cases, the working principle
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consists of the diffusion of analyte molecules into a polymeric sensing layer inside a capacitor,

modifying its electrical permittivity and thickness, and as a consequence the capacitance

value. Then, different strategies to improve the performances of printed IDE transducers have

been explored. These strategies include passivation of the electrodes with either a dielectric

or a metallic chemical barrier, or miniaturization of the patterned electrodes. Electrodes

with a pitch smaller than 60 µm have been achieved, improving the state of the art of printed

IDE [35, 36, 38, 39]. Concerning the flexibility of the devices, the influence of bending in the

capacitance of IDE devices has been analytically determined and experimentally confirmed

for first time, allowing for a better understanding of the physics involved in the process.

Although technologically more challenging to fabricate than their IDE counterparts, parallel

plate-based structures are more compact and present certain advantages for gas sensing,

such as improved sensitivity and no parasitic influence of the polymeric substrate in the

sensing behaviour. The fabrication and characterization of the first fully printed parallel plates

capacitive gas sensor on plastic foil is described in this thesis.

In order to add extra functionality to the targeted multisensing platform, we have devel-

oped MEMS microbridges arranged in large arrays. Every microbridge behaves as a small

parallel plates capacitor where the top electrode is suspended. Thus, every microbridge can

be independently actuated, and if connecting many bridges in parallel, the device displays

a capacitance value of ∼ 1.4 pF. This structure is very versatile and could find multiple ap-

plications. We have demonstrated its operation as capacitive humidity sensors subjected to

a novel swelling-based working principle inherently different from the one of the standard

parallel plates and IDE-based chemocapacitors: upon the absorption of humidity the devices

buckle, modifying their capacitance. The fact of exploiting different working principle results

beneficial to ameliorate the future selectivity of a sensing platform.

Since the sorption process undergoing on humidity sensing is temperature dependent, a

printed thermoresistor has been integrated on the same chip with the IDE humidity sensors

for thermal calibration. The sensitivity of the thermometer (or temperature coefficient of resis-

tance, TCR) has been increased in several folds by electroplating it with nickel. Furthermore,

the detection of some analytes is not optimum at room temperature with certain sensing

layers. Therefore I targeted the development of a heating microelement able to reach ∼ 100°C

and readily integrable with such high temperature-operating sensing layers. Microhotplates

made from silicon in a clean-room are widely known. The transfer of this devices to a low-cost

technology, i.e. printed on foil, presents many challenges from the point of view of fabrica-

tion and power consumption. Using a different geometry, design and functionalization than

in [25], we managed to develop a microhotplate which largely outperformed the previously

reported in terms of power consumption. The devices consisted of a meander-shaped heating

micro-element, a laminated thin dielectric and IDE on top. Gold electrodeposition has been

demonstrated on the IDE to broaden the range of materials choice, facilitating the chem-

ical compatibility during subsequent fabrication steps. Thanks to a novel sensing layer of

conductive polyaniline polymer developed by our FlexSmell partners in the group of Prof.
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Persaud at the University of Manchester (UK), the microhotplate showed reliable resistive

detection of ammonia vapour with reduced drift and improved recovery at 95°C (compared

to room temperature), what consumed 35 mW. Resistive gas sensors are based on the change

of resistivity of some materials due to certain chemical or physical process undergoing inside

them in the presence of an analyte gas. They have available a large spectrum of sensing

materials such as metal oxides (MOX) or conductive polymers like is the case in this work.

The microhotplate could be also compatible with capacitive detection at a fixed high and

controlled temperature, as an alternative to the standard but inconvenient thermal calibration

necessary in gas sensors.

Finally, complying with the FlexSmell project expectations, all the devices (excepting the PP

capacitor-MEMS microbridges array which technology is not mature enough yet) have been

brought together on the same substrate to create a multisensing platform that was included

in an low-cost RFID smart label. The RFID label, developed by our partners at Holst Centre

(Holland) was able to store data from the sensors and transmit them wirelessly. The multi-

sensing platform counted with capacitive and resistive channels properly functionalized for

simultaneous selective sensing of temperature, relative humidity and ammonia vapour con-

centration. Detection of alcohol vapour is also planned but has not been totally accomplished

yet. More concretely, sensing layers consisting of conductive polymers of polyaninline (PANI)

and polypyrrole (PPy) have been developed by our partners at the University of Manchester

(UK) for resistive detection of ammonia vapour (already demonstrated) and alcohol vapour

(planned), respectively; and sensing layers of poly (ether urethane) (PEUT) and cellulose

acetate butyrate (CAB) have been developed by SAMLAB and our partners at the University

of Tübingen (Germany) for capacitive detection of relative humidity (demonstrated). Other

analytes of interest in food spoilage are detailed in Section 5.4.3 of Chapter 5. The detection

of such analytes were the field of research of other partners of the FlexSmell project. Overall,

this work supposes a step forward in the concept of the "internet of things" where ubiquitous

smart systems able to sense their environment will be able to interact between them and with

the people around.

Thesis structure

The Chapter 1 of this thesis aims at offering to the reader a general background of the funda-

mental and technological aspects of this work, as well as the context that motivated it. After

presenting the previous works relevant to the development of this thesis, I pointed out the

current needs in the field and its challenges. Finally, I informed the reader about the specific

motivations and content of this work, highlighting the novelty and advantages that it brought

to the field of printed low-cost sensing systems on foil.

The second Chapter deals with the theoretical aspects pertaining interdigitated (IDE) ca-

pacitors and their use as gas sensors in general by adding a polymeric sensing layer to the

structure. This includes a review of the geometrical parameters that lead to the optimal design

of devices, bearing in mind the different fabrication restrictions imposed by the used technol-
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ogy, i.e. inkjet-printing on polymeric substrate. It is also described the influence of circular

bending on the capacitance value of IDE structures.

In Chapter 3, I describe the design, fabrication (transducer and sensing layer) and charac-

terization of IDE-based capacitive vapour sensors. The sensors consists of silver electrodes

inkjet-printed on PET substrate. Electrodeposition of Ni was utilized for silver passivation.

Reducing the electrodes pitch was also possible by the introduction of a parylene-C dielectric

layer between both fingers combs. Finally, it is explained how the devices, inkjet coated with a

customized humidity sensing layer of cellulose acetate butyrate (CAB), were characterized in

controlled environments. The performances of the devices are discussed at the end.

Two different configurations of capacitive humidity sensors based on parallel plates (PP)

structures and fabricated using printing silver on PET foil are detailed in Chapter 4. In the

first configuration, the sensing layer is placed between two standard non-movable electrodes,

whereas in the second configuration, the top electrode is an array of suspended MEMS bridges

and the sensing layer is the polymeric substrate itself. Some fundamental theory that applies

to these structures is revised in this chapter, along with the sensing particularities, advantages

and fabrication challenges that every typology of sensor comes along with.

Chapter 5 foresees the fabrication of a multisensing platform by describing different resis-

tive sensors and their integration together. It is a well-known fact that humidity sensing is

influenced by temperature variations. This is the reason why Chapter 5 describes first of all

the design and fabrication of different resistive thermodetectors (RTD) to be integrated side by

side with the humidity sensors described in Chapters 3. Some theoretical aspects of electrical

resistance and its dependence with temperature are addressed too. Since high temperature

is sometimes beneficial in gas sensing for chemical desorption or increase of sensitivity, an

inkjet-printed microhotplate was developed on PEN foil for those sensing layers exhibiting

improved performances at temperatures above room temperature. The microhotplate has

been tested for resistive detection of ammonia. Finally, I present some multisensing platforms

where IDE capacitive and resistive sensors, electroplated RTD and resistive sensors based on

stacks of microheater-IDE-conductive polymer are integrated on the same substrate. The

sensors were customized for detection of different gases by the F lexSmel l partners at the

University of Tübingen (Germany) and University of Manchester (UK). The platform was

assembled into a printed radio frequency identification (RFID) tag developed by the FlexSmell

partner Holst Centre (The Netherlands) in collaboration with EPFL-SAMLAB.

Chapter 6 includes a general discussion of the thesis results and compare the performances

of the different devices presented in this thesis.

Chapter 7 draws general conclusions and highlights future perspectives of this field of

research.
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2 Fundamental Concepts of Capacitive
Humidity Sensors Based on Coplanar
Interdigitated Electrodes (IDE)

2.1 Introduction

Targeting the development of gas sensing systems on flexible substrates, some humidity

capacitive sensors on plastic foil were already found in literature and reviewed in the state of

the art in Subsection 1.3.2. An important part of these sensors utilizes the ability of certain

polymers to first adsorb and then absorb humidity and other gases, modifying the properties

of their dielectric layers. To maximize the interaction of the sensing layer and its environment,

the most commonly utilized capacitive structure consists of planar combed or interdigitated

electrodes (IDE) [31–34] rather than parallel plate structures [49, 50]. The goal of this thesis

is to develop printed gas sensors on foil for which I also utilized capacitive devices based

on these two geometries. In the next two chapters, I focus on devices composed of IDE and

stacked multilayer of polymers (substrate, optional passivation and sensing layer). To offer

a complete review of such sensors, I report in this chapter on the fundamental theoretical

concepts that determine their behaviour, keeping in mind the limitations of the technology

intended for their fabrication, i.e., inkjet printing of silver on flexible polymeric foils. The

fabrication and characterization of the devices will be described in the next Chapter 3. A large

part of the content of this chapter has been published in peer reviewed journals [117–119].

In general, capacitive gas sensors are based on the ability of certain structures to shift their

capacitance in presence of a target gas. Different to parallel plate capacitors (shown in Figure

2.1 (a) and described in detail in Chapter 4) where the electric field lines are confined exclu-

sively in the dielectric material placed between the two electrodes, IDE capacitors generate an

electric field in both dielectric layers underneath and on top of the electrodes plane. The layer

underneath the electrodes plane is referred as the substrate of the device, since it provides

mechanical support; whereas the dielectric/s deposited on top of the electrodes (usually a

polymer capable to absorb/adsorb gas) will be called the sensing layer (see Figure 2.1 (b)). In

this chapter, I describe a thorough theoretical analysis of the operation principle of IDE-based
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gas sensors in terms of their transducing and sensing mechanisms. The theoretical consid-

eration applying to parallel plate capacitors will be addressed in Chapter 4. To understand

and optimize the performance of the IDE-based gas sensors fabricated in Chapters 3 and 5

through an optimal design, I first describe the sensing principle, based on the physisorption

and diffusion of the analyte into the sensing layer and the substrate (see Figure 2.2), taking

previous works [29, 30, 48, 120, 121] as starting point. Chemical interaction between analyte

and the sensing layer could also occur in this kind of sensors, but they are not considered in

this work. The estimation of the influence of the diffusion process in the capacitance value

and sensor time response are addressed as well. Then, I generalize the models presented

by R. Igreja and C. J. Dias in [45, 46, 48] and Gevorgian et al. in [47] to calculate analytically

the capacitance of coplanar IDE structures, and applied them to our concrete materials and

geometrical cases. Igreja and Dias made use of the conformal mapping and partial capacitance

methods to calculate the capacitance of IDE capacitors with flat thin and regular electrodes,

and integrated between a flat substrate and a flat sensing layer. Gevorgian et al. introduced a

correction for thick electrodes. Apart from applying their model directly to these simplified

geometries, I expanded it to another more complex structure consisting of flat quasi-planar

IDE, where every comb has a different width and there is an extra dielectric layer between

electrodes. The latter structure corresponds to a device in which a new fabrication strategy

has been tested to decrease the pitch of its electrodes (distance between the centre of two

adjacent fingers) in a reliable and reproducible way (see Figure 2.9), while accomplishing at the

same time the passivation of the the substrate against moisture absorption. Gas absorption

in the substrate is an undesired effect that I tried to prevent either by performing differential

measurements, where a coated device is compared to an uncoated one used as reference,

or by passivating the substrate against penetration of the analyte. The fabrication of this

device, described in detail in Chapter 3, consists of the deposition of a thin dielectric layer of

parylene-C onto the first printed electrode comb prior to the printing of the second comb on

top, in such a way that both polarities are electrically insulated and cannot be in contact if

printing errors occur. Since each comb was printed on a different material, the fist one on

the substrate and the second on the insulating dielectric, the electrodes present two different

widths. On top of that, not only flat structures have been analyzed in this chapter. For the

case of the regular IDE structure, the model has been completed by including for the first time

the analytic evaluation of the capacitance for circularly bent electrodes at different radii of

curvature.

2.2 Sensing principle

The sensing mechanism concerning the typology of IDE sensors addressed in this chapter

works as follows: the target gas (water vapour in this case) is adsorbed and then absorbed

ideally only in the polymeric sensing layer as depicted in Figure 2.2. As a result, the sensing

layer swells (increasing thickness) and its dielectric constant εs changes, modifying the value

of the capacitance C . Apart from the obvious difference in mechanical flexibility between
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Figure 2.1: (a)Sketch of a typical parallel plate structure(top), along with its cross-sectional view depicting
the electric field distribution in the device (bottom). (b) Same sketch for interdigitated electrode (IDE)
and its main geometrical parameters.

ceramic and polymer substrates, we encounter at this point the other main difference between

rigid and foil devices. Whereas rigid substrates such as silicon or glass do not absorb gases,

polymeric substrates do. This behaviour can increase the sensitivity of the device, although

this is not always positive since substrates are intended to have merely structural functions

rather that being optimized for sensing. This aspect needs to be taken into account when

designing polymeric gas sensors.

In any case, when a sensing film (or substrate) of original thickness h1 swells upon absorp-

tion, its new effective thickness, he f f , is [29]:

he f f = h1(1+Qφ) (2.1)

On the other hand, according to [29], the effective dielectric constant of the sensing film (or

substrate) upon absorption of analyte can be expressed as:

εe f f = εr 1 +φ[(εa–1)–Q(εr 1–1)] (2.2)

where εa is the dielectric constant of the analyte in liquid state (76.6 for water), εr 1 is
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Figure 2.2: Representation of the working principle for the humidity sensor (example for the cross section
of three electrodes from Figure 2.1) where the vapour molecules are absorbed into the polymeric sensing
layer, which swells and modifies its dielectric properties, shifting the capacitance of the device.

the original dielectric constant of the film, φ is the volume fraction of the analyte in the

sensing layer and Q is an experimental coefficient representing non-ideal swelling. Q can be

considered close to 1 (ideal swelling) for rubbery elastic polymers. Other similar expressions

for the effective permittivity of the composite polymer-analyte can be found in [48, 122].

2.2.1 Sensitivity

Therefore, the total variation of the sensor capacitance in presence of gas consists of the

addition of two terms, one due to changes in the dielectric permittivity and another due to

swelling, represented in the first and second term of the right part of 2.3 respectively:

δC = ∂C

∂h
δh + ∂C

∂εr
δεr (2.3)

It is worth noting that during this thesis we test our capacitive gas sensors for relative

humidity (εa = 76.6) by using a customized sensing layer of cellulose acetate butyrate (CAB)

(εr ∼ 3.5). Due to the large difference between εa and εr and the small size of water molecules,

the contribution coming from permittivity changes in the sensing layer surpasses and masks

the contribution coming from swelling.
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Calculating δh = he f f –h1 from 2.1 and δεr = εe f f –εr 1 from 2.2 as:

δh = he f f –h1 = h1Qφ (2.4)

and

δεr = εe f f –εr 1 =φ[(εa–1)–Q(εr 1–1)] (2.5)

it is possible to obtain the physical sensitivity δC /φ against h for different values of εa and

εr .

This procedure is easy to apply to parallel plate capacitors as it will be seen in Section 4.2.1

(Chapter 4). However, it is very hard to use with IDE capacitors due to the lack of a close short

expression for their capacitance (as it will be shown in the sections below). Kummer et al.

bypassed that issue in an example of application of Equation 2.3 to a concrete IDE structure

presented in [29] . According to the authors, extensive finite element method simulations were

performed for their IDE geometry with different sensing layers. The capacitance of the IDE

was simulated with polymeric sensing layers of different thicknesses and dielectric constants.

The simulated capacitance data set was approximated with a mathematical fit to a function

having the sensing layer thickness and dielectric constant as sole variables. This function

could be plugged more easily in Equation 2.3. Such procedure could be applied to our concrete

IDE geometries, but this point lies out of the work of this thesis.

Partition coefficient and volume fractionφ The partition coefficient, K , is a chemical equi-

librium constant used to state the thermodynamic equilibrium condition of the the diffusion

process of certain analyte in a polymeric sensing layer. K is a measure of the solubility of

a gas in the solid sensing layer, and it is related to the volatility (or vapour pressure) of this

gas. It is defined as the ratio of the analyte concentration within the polymer cpol ymer to the

concentration of the same analyte on the gas phase cg as :

K = cpol ymer

cg as
(2.6)

It depends on the standard Gibbs free energy solvation ∆G0
s , the absolute temperature (in

K), T , and the universal constant of ideal gases, R, through the Arrhenius form [15]:

K = const ant ·e−
∆G0

s
2.303∗RT (2.7)

Very sensitive polymers to certain analyte are the associated to a high K value. The partition
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coefficient is related to the parameter φ used in Equations 2.1 and 2.2 through the partial

pressure of the analyte, Pa , its molar mass, M , its density in liquid phase, ρ, R and T as [29]:

φ= PaK M

RTρ
(2.8)

For the case of relative humidity (R.H.), the partial pressure Pa has been calculated for every

R.H . point using the definition of relative humidity (based on partial pressures) R.H . = Pa
Ps

100:

Pa = Ps ∗R.H ./100 (2.9)

where Ps is the saturated partial pressure calculated with the correlation presented in [123]:

Ps = (1.0007+3.46∗10−6P/100)∗6.1121∗e
17.502T

240.97+T ∗100 (2.10)

with P being the atmospheric pressure in millibars and T the ambient temperature in °C.

Note that in the Equation 2.8 above, M/ρ is associated to the volume, V , of the analyte

molecule (1 mol) (do not mistake ρ, the density in liquid phase with the density in gas phase).

Hence, according to the equation of ideal gas law, PVT = nRT (with n being the number of

moles and VT the total volume occupied by the gas):

φ= n

VT
V K = nv V K (2.11)

where nv is the concentration of analyte (in mol/volume). From the equation above, it

can be drawn that the volume fraction is proportional to the size of the analyte molecule, its

concentration and its solubility in the sensing layer.

2.2.2 Time response

The sensor absorption process is diffusion based, and assumed to follow Fickian behaviour.

Then, the amount (number of moles) of analyte in vapour phase diffused in the sensing layer

as a function of time, n(t ), can be approached by an exponential behaviour [48]:

n(t ) ≈ nm

[
1− 8

π2 exp
(−t

τ

)]
(2.12)

where nm is the total amount of moles in the sensing layer in equilibrium and τ is the

absorption equilibrium time or simply the time constant.
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As it can be observed in Figure 2.1 (b) and it will be described in Section 2.3.1, IDE generate

an electric field that reaches as far as the fingers pitch distance is (W +G in the figure).

Therefore in IDE gas sensors, the sensing layer is sensitive only below that distance, which I

will call the saturation thickness h1 ∼W +G . For this reason, the amount of analyte absorbed

in a sensing layer thicker than the saturation thickness has a proportional influence in the

capacitance only when the analyte reaches the sensitive area within the saturation thickness.

In equilibrium, such proportionality is given by the factor nm . Also for this reason, once a

sensing layer is thicker than the saturation thickness, to increase further its thickness does

not improve the sensor sensitivity (but it slows down its response since the analyte needs

more time to reach the sensitive area). Similarly, the swelling of thick sensing layers does

not influence the capacitance. On the other hand, thin sensing layers (below the saturation

thickness) depends on the amount of analyte at every time n(t ) although this dependency is

not proportional since the effective swelling of the sensing layer should be taken into account

in the capacitive response. In any case, if we define t = 0 as the instant when a new R.H. step

occurs after steady state is achieved, the shift of capacitance for a sensing layers thinner than

the saturation thickness is a function of n(t ), as stated by the next equation [48]:

∆C (t ) = f

(
n(t ) ' nm

[
1− 8

π2 exp
(−t

τ

)])
(2.13)

This function can be approached as linear for many cases where the swelling does not have

a big influence as it is the case of humidity sensing or sensing layers which thickness is very

close to the saturation thickness. The latter case is interesting because the closer the thickness

of the sensing layer is to the saturation value, the larger the amount of molecules that it can

absorb and effectively sense under a fixed concentration of ambiance gas, yielding to wider

shifts of C and hence to a higher sensitivity.

As it can be appreciated in Equation 2.13, the sensor capacitive signal would stabilize only

when the number of moles of analyte in the sensing layer n(t ) reaches the limit value nm . This

absorption process has a time constant τwhich corresponds to the 63% of the maximum value

of capacitance (reached at equilibrium) for every increasing step of R.H. τ depends on the

square of the sensing layer thickness and on its diffusion coefficient D as [48] as:

τ= h2
1

0.25π2D
(2.14)

The diffusion coefficient is given by the Arrhenius equation [30]:

D = D0e
−Ea
RT (2.15)

where D0 is the maximum diffusion coefficient, Ea is the activation energy for diffusion, R
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is the ideal gas constant, and T is the absolute temperature.

Therefore, a thicker layer implies slower sensor stabilization and a compromise between

sensor response time and sensitivity needs to be found. Note that the response time related

with the adsorption process can be considered negligible compared with the time scale of

absorption for practical thickness (of some microns) of the sensing layer. On the other hand,

the substrate of the reported sensors in Chapter 3 is also polymeric and interacts with humidity

in a similar way as the sensing layer does. Although this could be translated in an enhance of

sensitivity, the characteristics of the substrate are not usually optimized for humidity sensing,

so it introduces undesired parasitic effects mostly related with slow diffusion processes such

as long time response, hysteresis and non-linearity [31]. Finally, the time constant usually also

depends on the R.H. value through the diffusion coefficient D (especially for high values of

R.H.), but in our case, this dependence is neglected for practical reasons, since it is smaller

than the range of error measured for τ.

2.2.3 Sensing advantages of compact IDE

Sensors based on IDE with reduced pitch present several advantages for capacitive sensing

compared with less compact structures. For instance, the sensitivity of such printed sensors

improves for two reasons: on one hand, the nominal capacitance increases for the same area,

and accordingly the absolute sensitivity. On the other hand, being the electrodes more packed,

there would be a maximization of the interaction between the electric field and a thin sensing

layer, increasing also the relative sensitivity (since we saw that the electric field of such combed

structures extends basically to a height equal to the electrodes pitch [29, 44, 45, 48]). To keep

the the sensing layer thin is beneficial for a fast response of the sensor.

Within this thesis work I developed IDE with decreased pitch for gas sensing. The devices

had a thin dielectric film placed between the two IDE combs so the electrodes could be very

close without the risk of electrical contact and shortcircuit between the combs. In principle

the dielectric intermediate layer, considered insensitive to the target gas would decrease the

sensitivity of the device because it occupies space filled by the electric field lines. Nevertheless

its influence results negligible in practice, due to its thinness, very small compared to the

electrodes pitch in every reported case. The previous fact has been supported theoretically

by removing the parylene layer from the model presented in 2.3.2 and observing a very small

capacitance difference. In the same way, the overlapping portion of the electrodes do not

contribute to the shift in capacitance in the presence of the target gas, since the electric

field associated to it would be confined in the insensitive dielectric layer. Another sensing

advantage of the presented devices with a dielectric inter-layer comes from the fact that

both capacitor polarities are insulated. Therefore, the detrimental effect in the sensor signal

provoked by condensation of water between electrodes at high relative humidity level, does

not occur [17, 120, 124]. Last but not least, the dielectric partially passivates the substrate

against moisture so it does not absorb an undesirable high amount of water [32] compared to
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PET or other polymeric substrates. The reduced absorption of water into the substrate permit

the operation of one single device instead of differential mode measurements [31, 117].

2.2.4 Discussion on the principle of gas sensing using polymeric sensing layers

The process that drive the detection of the sensors described in this chapter has been assumed

to be physisorption. Although chemical interactions can occur for certain analyte and sensing

materials, these are not considered in this work. It has been established that the higher is

the concentration or the volume of the analyte molecules, the higher is the volume fraction

of analyte absorbed into the polymeric sensing layer, named φ (see Equation 2.11). Both

the swelling (Equation 2.4) and the change in the sensing layer permittivity (Equation 2.5)

are proportional to the volume fraction, so large shifts of capacitance would be expected for

high concentrations of large molecules. The other factor affecting the volume fraction is the

partition coefficient K (see Equation 2.6) that determines whether or not a sensing layer shows

affinity to certain analyte. The partition coefficient is one of the big players in the sensitivity

and selectivity of gas sensors. Furthermore, the change in the sensing layer permittivity is

also quasi-proportional to the difference in permittivity between analyte and sensing layer

(Equation 2.5), as long as the sensing layer is made of a rubbery polymer (which is the case

in this thesis). Due to the high relative permittivity of water compared to the sensing layer

or other analyte, capacitive sensors tend to be very sensitive to humidity. The permittivity

contribution made by humidity to the sensing signal is high to the point that the swelling

contribution can be neglected for most part of moisture detectors. Regarding the response

time of the sensor, thick sensing layer result in sensors slower than thin layer. The material of

the sensing layer is also a factor influencing the sensor time response through the diffusion

coefficient D presented in Equation 2.15.

2.3 Capacitance calculation of interdigitated electrode structures

Interdigitated electrode (IDE) is one of the most employed structures in traditional microelec-

tronics and MEMS, and starts being very popular in flexible electronics as well. In addition

to be used in the polymeric capacitive gas sensors cited in the section 2.1, IDE fabricated

on flexible polymeric substrates have been used as resistive gas sensors [17, 19, 21–25] and

strain sensors devices too [43, 125]. Nonetheless, the IDE structure offers benefits beyond

its functionality as sensors; it is also commonly used for the source and drain electrodes in

flexible transistors [126–128]. The understanding of the physics behind IDE is a key factor for

the right design of devices that use this structure.

The devices studied along this chapter are coplanar interdigitated electrodes (IDE) capaci-

tors as depicted in Figure 2.1. They will be employed as capacitive gas sensors as described in

Chapter 3. Compared with parallel plate structures used in other publications [49, 50], IDE

devices allow more direct interaction between the sensor and its environment. Moreover, IDE

configuration imposes less restrictive requirements than parallel plate in terms of processing
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for deposition of the sensing layer, since the sensing layer is the last deposited material and

does need to be adjusted for the deposition of an electrode on top.

With the objective of calculating the capacitance value of our functional multilayered IDE

structure, the theoretical study developed by Igreja and Dias [45, 46], based on conformal

mapping transformations and the partial capacitance method, has been selected as a reference

point. Conformal mapping consists on a series of space transformations to bring coplanar

electrodes into the shape of parallel plate, possible to solve with a closed formula. Partial

capacitance accounts for the partial contribution of every stacked layer to the total capacitance

of the IDE structure by superposing all the layers as if each one occupied the whole space with

a weighted permittivity at every thickness (see Figure 2.3b). This model is valid for devices

where the electrodes length is much larger than the electrodes spacing distance and the

electrodes thickness much smaller than their width. A correction for non-planar electrodes

was added then as in [47] to account for thicker electrodes (electroplated in our case). Although

this model provides a powerful analytical tool to predict the capacitance of the different IDE

designs, the transformation are expressed as complex special functions nested into other

special functions which are not always obvious to express analytically. The arguments used by

these special functions are the dimensions of the device at different steps of the transformation

(as it can be seen in Figure 2.4). Therefore, to express the capacitance as a closed equation

directly related to the dimensions of the device would result in a very long expression, reason

why in this section the capacitance value has been broken down into small equations (from

Equation 2.16 to 2.22) instead for the sake of clarity.

2.3.1 Totally coplanar IDE devices

In this section, I mainly reproduce the analytical model to calculate the capacitance of flat,

multilayer and planar IDE structures previously reported by Igreja and Dias [45] and I com-

plement it with the model for finite thickness electrodes developed by Gevorgian [47]. The

aforementioned theoretical models are based on conformal mapping and partial capacitance

techniques, and showed that the total capacitance of a multilayered IDE structure is obtained

by adding up the contribution that every pair of fingers makes within each layer. Figure 2.3,

obtained from [46] and [45] represents that affirmation.

The simplest case of study corresponds to Figure 2.3a, where the electrodes are patterned

on a substrate of finite thickness, surrounded by air and in the absence of a capping layer

on top. Then, using the concept of the partial capacitance, the total capacitance of the IDE

structure is given by [45]:

C = 2Cai r + (εsub −1)Csub (2.16)

where 2Cai r is the contribution from the infinitely thick layers of air above and below

the IDE structure with a dielectric constant equal to 1, and Csub is the contribution from
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(a)

(b)

Figure 2.3: Representation of the analytical model developed by Igreja and Dias to calculate the capaci-
tance of planar interdigitated electrode multilayer structures: (a) Equivalent circuit for evaluation of
the capacitance of a single layer with six electrodes [46] and (b) Splitting of a two-layered half plane
according to the partial capacitance technique [45].

the substrate with dielectric constant εsub . The capacitance provided by each layer, Cx (x

representing ai r or sub), has been proven to depend on its dielectric constant, thickness, and

the particular electrode geometry. It is also linearly dependent on the length of the electrodes,

L, as well as the number of electrodes, N , and can be expressed as [45]:

Cx = (N −3)
C I

2
+2

C I CE

C I +CE
(N > 3) (2.17)

In the equation above, C I refers to the capacitance of the electrodes located in the middle

of the IDE structure and CE refers to the contribution from the two outermost electrodes,

situated at the edges of the structure. The calculation of C I and CE has been executed using

the conformal mapping technique described in detail in [45] and represented by the five

consecutive space transformations shown in Figure 2.4.

C I = ε0εr L
K (kI )

K (k ′
I )

(2.18)

In the equation above, ε0 and εr are the relative permittivity of the air and the dielectric

layer (i.e., air or substrate) respectively; K (k_) is the complete elliptic integral of the first kind

with modulus k_; and k ′_ is the complementary modulus expressed as k ′_ =
√

1−k_2. On

one hand, for a dielectric layer with a finite thickness, such as the substrate in this study [45]:

kI = t2

√
(t 2

4 −1)/(t 2
4 − t 2

2 ) , where the variable ti = sn(zi ,k) is the Jacobi elliptic function of

modulus k; the value of the modulus k is equal to (ν2(0, q)/ν3(0, q))2, where ν2 and ν3 are the
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Figure 2.4: Conformal transformations for the calculation of C I . The fixed equipotential lines and their
transformations are marked as solid lines while the dielectric and its transformations are the shadowed
regions [45].

Figure 2.5: Conformal transformations for the calculation of CE . The fixed equipotential lines and their
transformations are marked as solid lines while the dielectric and its transformations are the shadowed
regions [45].

Jacobi theta functions; q = exp(−4πr ); r = hs/λ; the parameter λ= 2(W +G); and hs is the

substrate thickness. On the other hand, for a dielectric layer with an infinite thickness, such as

the air surrounding the substrate and the electrodes, kI∞ = si n(πW /λ).

The variable zi is equal to [45]:

zi = 4xi K (k)/λ (2.19)
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, and the values of xi can be obtained from the X-plane shown in Figure 2.4. They are:

x2 =W /2 and x4 =λ/4+ i hs , with i being the imaginary unit.

Similarly, the capacitance contribution of the electrodes in the external positions, CE , is

calculated as [45]

CE = ε0εr L
K (kE )

K ′
E

, (2.20)

where kE = 1/t3

√
(t 2

4 − t 2
3 )/(t 2

4 −1) and [45]

ti = cosh(xiπ/(2hs)) (2.21)

for dielectric layers of finite thickness; kE∞ = 2
p

2W /λ/(1+ 2W /λ) for infinitely thick

dielectric layers. In this case, the values of xi are x3 =G/2 and x4 =W +G/2 as it is shown in

the X-plane of Figure 2.5.

Igreja and Dias analized in [45] the capacitance evolution of a typical device coated with

a sensing layer of permittivity ε = 5, versus the parameter r = h1/λ= h1/[2(W +G)], which is

in reality a normalized thickness of the sensing layer h1 to the pitch of the electrodes. Their

results were compared with those reported in previous works by Gevorgian et al. [47] and Wu

et al. [129] as well as those obtained using finite element methods (FEM) (see Figure 2.6).

Figure 2.6: Capacitance as a function of r ; comparisons between available models and FEM. Simulation
parameters are given in the graph. In the legend, η=W /(W +G) [45].

In conclusion, we can say that the value of capacitance C is linearly proportional to the

number (N ) and length (L) of electrodes as well as to the permittivity of the substrate (εs) and

sensing layer (ε1). Although not linearly, C also increases with the ratio W /g and the thickness

of substrate (hs or equivalently rs) and sensing layer (h1 or equivalently r1). However, for the
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case of rs,1, C saturates above rs,1 ∼ 0.5, i.e., when the thickness hs,1 is around the same as the

structure pitch W +G . Hence, any layer thicker than W +G is considered as infinite in terms

of the influence of the electric field. That assumption implies that any change in the dielectric

layer taking place at a further distance than ∼ (W +G) above or below the electrodes plane

will not practically affect the capacitance of the structure.

Finally, we generalized the described model from Igreja et Dias for IDE with certain thick-

ness by following the work performed by Gevogian et al. in [47]. They account for the elec-

trodes thickness by modifying the electrodes width before applying the conformal transfor-

mations to the IDE geometry. The effective width Whe of the electrodes with a thickness he

becomes then:

Whe =W + he

π

[
1+ ln

(8πW

2he

)]
(2.22)

Validation of the model for coplanar IDE

Finite element method Although the model above is able to predict the capacitance of

typical IDE structures, it does not account for the parasitic contribution of the electrodes tip

or the sidewall capacitance of thick electrodes. This is the reason why it was established at

the beginning of this section 2.3 that the validity of the model was subjected to electrodes

much longer than the pitch distance and much thinner than wide. Although these conditions

apply to the devices studied in this thesis, the validity of the model cannot be confirmed

until the importance of these parasitic contributions to the total capacitance is evaluated

for the selected geometries. Finite Element Methods (FEM) is a powerful tool to confirm the

theoretical predictions of capacitance for every concrete case applied.

Figure 2.7: Distribution of potential field in a multilayered standard IDE structure, calculated with finite
elements methods. The resulting capacitance value for the different studied geometries matched well the
one obtained with the analytical method of conformal mapping described in this chapter, confirming
that the electrodes tip and sidewall parasitic contribution to the total capacitance can be neglected for
every practical example.
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Figure 2.7 shows the FEM-simulated distribution of potential field in a multilayer IDE

structure. The electrostatics mode of the software COMSOL 3.5 was utilized to calculate the

capacitance of different IDE structures, where the first comb is tied to the ground, the second

is defined as a port and the surrounding boundaries are modeled as zero charge/symmetry.

Using the port as input and selecting "Energy method" as the input property ensures that a

unit voltage is forced on the boundaries of the second comb drive, and the capacitance value

is integrated from electric energy density. The capacitance deduced by FEM matches the value

calculated with the conformal mapping method for all the fabricated geometries, confirming

the validity of the model and the negligible contribution of the parasitics terms mentioned

above for the fabricated devices.

Experimental validation Figure 2.8 shows the validation of the model described in this

section to calculate the capacitance of flat and totally coplanar IDE capacitors with different

thickness, by comparing theoretical values with experimental data points. Details about

the design and fabrication of the real devices are given in Chapter 3 Sections 3.2 and 3.3

respectively, however, we anticipate here that they were inkjet-printed and electroplated with

different thickness (1, 5 and 10 µm) of nickel. The electrodeposition of the capacitor lines

resulted in a capacitance value that evolved as presented in Figure 2.8, assuming isotropic

growth of the nickel plated on the silver electrodes. Despite increasing electrodes width (W ),

and reducing inter-electrode gap (G), electrodeposition of few microns of nickel did not induce

a change in the metalization ratio (η=W /(W +G)) large enough to allow a significant increase

in capacitance. On the other hand, the new component of capacitance arising between the

lateral walls of the thicker electrodes is not very important neither. The reason for these results

is the thinness of the electroplated layer in comparison to the rest of the sizes of the fabricated

device (few µm against 100 µm). As an example, according with the theoretical model, a

device with bare silver electrodes of 95 µm width separated 105 µm from each other as the

fabricated one showed in Chapter 3, would increase its capacitance value in only 13.9% after

electrodepositing 10 µm thick metal layer on top. In the same way, to obtain a 52% increase

in the capacitance value for the same electrodes, the necessary plated layer would become

40 µm thick. The last choice is not feasible in practice since thicker layers of nickel make

the devices less cost efficient and require very good adhesion between lines and substrate

to deal with higher induced stresses. Nevertheless, it would still be possible, for instance, to

enhance the capacitance value in 43% by electroplating just a 20 µm thick metal layer in 95

µm width electrodes, if we could reduce the inter-electrode distance down to 40 µm. Such a

gap reduction is technologically feasible and although challenging, it was achieved towards

the end of my thesis work. Finally, the metalization ratio η plays an important role in the

reproducibility of plated capacitors. Even though W +G is fixed at 200 µm, the control of

electrodes width and gap permitted by inkjet printing process is relatively poor, and introduced

important geometrical variations from one batch to another. These η variations influenced in

practice the capacitance as much as the extra thickness of the electrodes obtained through

electrodeposition. Figure 2.8 also includes the experimental data points for capacitance
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measured from the three different fabricated batches of devices, taking into account their

measured geometry. The experimental values, with an error of 95% confidence, matched the

theoretical prediction for each batch, with their mean differing in less than 10% from the

theoretical estimation.

Figure 2.8: Two different views of the curve that theoretically predicts the capacitance evolution with
electrodes thickness and metalization ratio η=W /(W +G). The experimental points correspond with
three different fabricated batches of IDE capacitors and differ in less than 10% from the theoretical
prediction. The top graphic highlights the change in capacitance with the metalization ratio and the
electrode thickness, while the graphic on the bottom has been tilted to reveal that all the experimental
data coincides with the theoretical values within their range of error [117].
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2.3.2 IDE devices with a dielectric layer between the combs

In the previous section a model for the capacitance calculation of standard coplanar IDE

structures was presented. According to this model, and considering the best resolution safely

achieved in this thesis for inkjet-printed lines, i.e. ∼ 60 µm, the fabrication of IDE devices with

a readable value of capacitance of few pF would require few mm2, a surface area relatively

high for a single microsensor. Therefore, a new strategy has been investigated to increase the

capacitance per surface area of IDE by decreasing the electrodes pitch: Figure 2.9 sketches the

geometry of an IDE gas sensor with a dielectric inter-finger layer serving to reduce electrodes

pitch without risk of electrical contact. Both, first (bottom) and second (top) combs can be

distinguished in the figure, as well as the thin separating dielectric layer. Being the thickness of

the dielectric layer very thin compared to the width and gap of the electrodes, it is reasonable

to assume that both combs are practical coplanar. As previously commented, the spreading

of the ink on the substrate is related to the interfacial energies of the system, which depend

on ink solvent, substrate material, roughness and applied surface treatments. As a result, the

fingers width is different for every comb. More details about the design and fabrication of

these devices is given in Sections 3.2 and 3.3 of Chapter 3.

Figure 2.9: Exploded view of the IDE gas sensing device utilizing a dielectric interlayer between combs to
decrease electrodes pitch while avoiding shortcuts [118].

It is possible to use the conformal mapping and partial capacitance technique described

above (section 2.3.1), to analytically estimate the capacitance value of this new geometry. A

suitable model would serve to evaluate the potential of the fabrication strategy and to optimize

the design of the devices fabricated in Chapter 3. Thus, I adapted the described model to

our concrete case of comb electrodes with two different widths and a thin dielectric layer in

between the combs. In this way, I expanded the original model in [46] and [45], generalizing

its capability for other geometries as described below. The equivalent electrical circuit of

the device (by analogy with Figure 2.3a) is shown in Figure 2.10. For the sake of simplicity,

the dielectric layer is modeled so that it shifts its position abruptly in the midpoint between

electrodes, letting the electrodes lie on the same plane as if there were grooves etched in
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Figure 2.10: (a) Electrical equivalent of the device based on the partial capacitance technique. (b) Detail
of the contribution to the total capacitance of every material layer. Adapted from [118]

the substrate. Such structure is just a simplification to facilitate the analytical modeling,

since the original surface flatness was not really altered. Because the dielectric layer is very

thin compared to the pitch of the fabricated electrodes, 2 µm against 40–120 µm, we do not

expect it to modify significantly the symmetry of the system, so that virtual ground walls can

be still placed in the mid-plane between electrodes. Therefore, the total capacitance of the

device, C , is calculated as the parallel of a group of capacitances formed by (see Figure 2.10(a)):

capacitance of the external first comb electrodes (of width W1) Ce1; capacitance of the external

second comb electrodes (width W2) Ce2; half capacitance of the internal first comb electrodes

Ci 1; and half capacitance of the internal second comb electrodes Ci 2.

In general for a device with an arbitrary even number N of electrodes, the total capacitance
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would be expressed by analogy with Equation 2.17 as:

C = (N −3)
Ci 1Ci 2

Ci 1 +Ci 2
+ Ce2Ci 1

Ce2 +Ci 1
+ Ci 2Ce1

Ci 2 +Ce1
(2.23)

Since we are dealing with a multilayer structure where the outer layers possess a higher

electrical permittivity than the inner layers, every capacitance component in Equation 2.23

can be expressed as the parallel of the contribution from every different layer - air, dielectric

(parylene-C), substrate and air - using the partial capacitance technique as in Equation 2.16.

In the hypothetical case where the permittivity increases while moving to the outer layers, the

method described in [46] should be used instead. The contribution to the total capacitance of

every layer depends of its thickness, h. Then

Ci 1 = 2Ci 1,ai r (∞)+ (εpar −1)Ci 1,par (hpar )+ (εsub −1)Ci 1,sub(hsub) (2.24)

Ce1 = 2Ce1,ai r (∞)+ (εpar −1)Ce1,par (hpar )+ (εsub −1)Ce1,sub(hsub) (2.25)

Ci 2 = 2Ci 2,ai r (∞)+ (εsub −1)Ci 2,sub(hsub)+ (εpar −εsub)Ci 2,par (hpar ) (2.26)

Ce2 = 2C e2, ai r (∞)+ (εsub −1)Ce2,sub(hsub)+ (εpar −εsub)Ce2,par (hpar ) (2.27)

In the four equations above, the subscript i , e, 1, 2, ai r , par and sub, stand for internal

electrode, external electrode, first electrodes comb, second electrodes comb, air layer, dielec-

tric layer (parylene-C) and substrate layer respectively. The estimation of every contribution

value is not straightforward and conformal mapping technique needs to be used as in section

2.3.1.

Note that while Equation 2.17 provides the capacitance contribution of a single dielectric

layer Cx (C I and CE refers to the contribution of internal and external electrodes through a

single layer of dielectric), Equation 2.23 provides the total value of capacitance (Ci 1,i 2 and

Ce1,e2 refers to the contribution of internal and external electrodes through all the dielectric

layers through Equations 2.24 to 2.27).

Validation of the model for IDE with dielectric interlayer

Figure 2.11 shows that the model for IDE with dielectric interlayer (2 µm-thick) and two

different widths (first comb 40 µm-wide and second comb 60 µm-wide) fits very well the

experiments except for the devices with the smallest pitch.

The reason is that there is overlapping between bottom and top electrodes for those last

mentioned devices, making impossible the theoretical capacitance estimation with the de-

scribed model. In any case, it is demonstrated that reducing the electrodes pitch leads to

significant enhancements of capacitance per unit area. More details about the measured
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Figure 2.11: Comparison between theoretically estimated and measured capacitance per surface area
versus inter-electrode space for IDE with dielectric interlayer [118].

geometry of the fabricated devices and the parameters introduced in the model are given in

Section 3.5.3 of Chapter 3.

2.3.3 Bent IDE devices

The introduction of plastic substrates in the microfabrication of IDE has suggested a high po-

tential for the development of functional flexible devices. However, in order to ensure proper

functionality of flexible IDE structures subjected to bending strains, the variation of their

electrical and mechanical properties upon bending must be fully understood and quantified.

Although some previous works have studied mechanical aspects related to stress and failure

modes of flexible electronics [130–132], no many studies exist on electrical characterization of

bendable devices. Some groups have studied the resistivity of conductive lines patterned on

polymeric substrates [133] or the influence of bending on the resistance of conductors such

as ITO [134]. Regarding capacitors, in [49] the authors observed experimentally the effect of

bending a parallel plate capacitor fabricated on flexible foil, but to the best of our knowledge

there was no experimental data or theoretical model addressing capacitance changes of bend-

able IDE capacitors prior to this thesis work. In this section, I present a new theoretical model

to predict the capacitance changes of uncoated IDE microstructures subjected to circular

bending. The proposed model published in [119] accounts for the electric field redistribution

taking place when changing the shape of the device from planar to cylindrical, as well as the

modification of the device geometry due to the surface strain caused by bending. The results

are supported by experiments on IDE microdevices fabricated with several dimensions on

different substrates. The devices were bent along the axis perpendicular to the electrodes (see

Figure 2.12) using an ad-hoc set-up. Because the model predicts the behaviour of bendable

IDE devices, it provides information to adapt the design of IDE structures to a targeted appli-

cation, by either maximizing (of interest for strain sensors) or minimizing (desirable for gas

sensors, transistors, or flexible passive devices) their capacitance variation during bending.

When IDE structures are subjected to circular bending, either outward or inward (Fig-
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Figure 2.12: Sketch depicting outward bending of an IDE structure along the axis perpendicular to the
electrodes (dy in the picture). Inward bending refers to the case where the electrodes are placed on the
underside of the substrate [119].

ure 2.12), two effects must be taken into account in the calculation of their capacitance:

(i)redistribution of the electric field due to the change of the electrode shape from coplanar to

cylindrical (ii) and the modification of the ratio between the electrode width and the inter-

electrode spacing due to mechanical strain on the surface of the substrate. The first part

of this section deals with the change of capacitance due to the redistribution of the electric

field. Then, in the second part of this section, the real dimensions of the bent electrodes are

predicted using solid mechanics. Finally, the model will be validated with experiments.

Calculation of the capacitance for circular bent IDE capacitors

To figure out the changes in capacitance provoked by the redistribution of the electric field

between electrodes while circular bending, the new following space transformation must be

implemented prior to those in Equations 2.18 and 2.20, presented in the previous section

(2.3.1):

xi = (R +∆RN P )log

(
li

R +∆RN P

)
(2.28)

The application of 2.28 is shown in Figure 2.13. The suggested transformation maps circles

in the first L-space to straight lines in the second X-space while preserving the distance of the

neutral plane [135]. By doing so, the distances in the X-plane corresponds to the dimensions

of a flat device having the same capacitance value as the circularly bent devices in the L-plane.

li are the coordinates of the space (L-plane) corresponding to the real bent dimensions and xi

represent their equivalents in the flat space (X-plane). R is the radius of curvature (defined

on the plane of the electrodes) and ∆RN P is the distance between the electrodes plane and
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Figure 2.13: Proposed conformal mapping transformation to pass from circularly bent to flat geometry.
The example shown is for outward bending of IDE [119].

the neutral plane, which is positive for inward bending and negative for outward bending. In

general for bending of a beam-like bilayer, the neutral plane is located on a distance from the

interface equal to [136]:

|∆RN P | = 1/2

∣∣∣∣Esh2
s −E f h2

f

Eshs +E f h f

∣∣∣∣ (2.29)

with hs , h f , Es and E f standing for the thickness and the Young’s modulus of substrate

and coating film, respectively. In the current application, the coating film (the electrodes)

is not continuous and is mostly considered infinitesimally thin, so that the neutral plane is

practically located in the middle of the substrate.

Within this study, the parameters describing the device geometry under bending constraints

are defined as: W for the electrodes width, G for the inter-electrodes gap, L for the electrodes

length, and h for the dielectric substrate thickness. Likewise, the set of parameters representing

the dimensions of the unstrained, flat IDE structure will be W0, G0, L0, and h0. Finally, W ′,
G ′, L′(= L), and h′ are auxiliary parameters used to describe the geometry of the virtual flat

structure resulting from the space transformation described by Equation 2.28. Note the

difference with the notation in the section 2.3.1, where there were no distinction between

these three parameters sets (X = X0 = X ′).

For convenience reasons, the distribution of the coordinates xi in Figure 2.4 (used also

in Equations 2.19 and 2.21), is different from the one in Figure 2.13. However, looking at

the figures it is straight forward to correlate both coordinates sets. Calling the former set ξi
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Figure 2.14: Theoretical estimation of the bending influence (inward and outward) in the capacitance
of IDE structures due exclusively to the geometrical distortion of the electric field. Comparison with
the nominal (flat state) value. In the legend, m/n represents the ratio W0/G0 presented in µm. All the
structures are simulated on a 50 µm thick substrate [119].

and maintaining the notation xi for the latter, ξ2 in Equation 2.19 is for instance equal to

Im(x2) =W ′/2 or ξ4 = Im(x1)+ i (x3–x4) =λ′/4+ i h′
s . The values of xi can be calculated from

the real geometry of the bent structure using Equation 2.28.

Figure 2.14 depicts the calculated effect produced by outward and inward bending on

the capacitance of typical IDE structures, due exclusively to the geometrical distortion of

the electric field. The behaviour of some of the structures are shown only for one bending

direction for the sake of clarity. The parameters varied were: the electrodes width (ranging

between 10, 45, 50, and 90 µm), and separation spacing between them (5, 10, 50, 90 µm),

resulting in width/spacing ratios of 0.1, 1, and 9. All the structures are considered as being on

a 50 µm thick polymeric substrate. The dielectric of the substrate and the electrodes length

are kept invariable.

The capacitance value is observed to increase for outward bending and decrease, almost

symmetrically, for inward bending. A comparison with the nominal (flat state) value is shown

as well. It is worth noting that the maximum capacitance variation occurs for devices exhibiting

a width-to-gap ratio equal to 1. In addition, for every studied structure, the capacitance

variation is very low for radii of curvature higher than the electrodes pitch. This is also the case

for substrates which are thicker than the electrodes pitch (see as an example the structure with

45 µm-wide electrodes, separated by a gap of 5 µm). Even though these results are of general

interest, the two last conditions apply for practical reasons to all of the experiments realized

in this work where large capacitors with small electrode pitch were required to observe a

capacitance change when bending. On one hand, it was not possible to bend large devices to

radii smaller than the pitch in the used set-up. On the other hand, the commercial foils used
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Figure 2.15: Graphical representation of IDE deformation while bending. Only the plane containing
the interface electrode/substrate, represented with a dashed line, is taken into account in the capaci-
tance computation. This plane is considered to be an infinitesimally thin composite layer containing
alternating portions of electrode and substrate [119].

as substrate in this work are also thicker than the pitch. Therefore, the contribution of the

bending-driven electric field distortion to the capacitance variation is very small and could be

neglected in the majority of practical cases.

Geometrical deformation of the electrodes due to the bending strain

To evaluate the influence that the bending-drive geometrical deformation of the electrodes

has on the total capacitance, we considered the geometry of the electrodes only in the plane

containing the interface between the metallic electrodes and the substrate. It is precisely

in this plane that the electrodes width and gap were taken into account for the previous

capacitance calculation. Figure 2.15 represents this aspect by showing a bent IDE structure

where the electrodes, with a finite thickness, experience maximum strain at the interface,

where they are constrained by the stretched substrate. Two different values of width and gap

spacing are defined: one of them at the bottom of the electrodes (WB and GB ) and the other at

the top (WT and GT ). However, only the size of the bottom part of the electrodes counted for

the calculation of capacitance using the Equations 2.19 and 2.21. The side wall contribution

of the electrodes to the overall capacitance is negligible for every practical case, because the

electrode thickness is much smaller than its width.

The plane containing the boundary between the electrode and the substrate was considered

to be an infinitesimally thin layer that can be seen as a composite material formed by well

bonded alternating parts of thin polymer and a thin metal film. However, the "thin metal film"

is in reality the interface between the polymer and metal (see Figure 2.15). For this scenario,

it is suitable to follow the "iso-stress" assumption [137], σ=σs =σm , where the subscripts s

and m correspond to the substrate (polymer) and the "thin metal" film, respectively. Using

Hooke’s law for continuous media, σ= Eε (with E being Young’s modulus and ε strain), and

the fact that ∆(W +G) = ∆W +∆G , it is easy to obtain the effective Young’s modulus of the

50



2.3. Capacitance calculation of interdigitated electrode structures

surface along the dy axis using Equation 2.30

Ee f f =
(W0 +G0)EsEm

EmG0 +EsW0
(2.30)

W0 and G0 are, respectively, the IDE original (non-stretched) width and inter-electrodes

spacing and Es and Em are the Young’s moduli of the substrate and the "thin metal film". The

stiffness in the bending direction is dominated by the substrate modulus whereas the stiffness

in the perpendicular direction, i.e. along the electrodes (dx axis), E⊥
e f f = (EmW0+EsG0)/(W0+

G0), is dominated by the "thin metal" modulus. In the composite material, there are two

in-plane Poisson ratios as well. One along the dx axis, ν⊥e f f = νmW0+νsG0/(W0+G0), and one

along the dy axis

νe f f = ν⊥e f f

Ee f f

E⊥
e f f

(2.31)

where νs and νm represent the Poisson coefficient of substrate and "thin metal film" [137],

respectively.

The strain in the electrode plane due to bending is according to [130–132] ε= hs(2R) and

is distributed along the electrodes and the polymeric gap. The previous expression refers to

a radius of curvature defined at the neutral plane. Equivalently, for a radius defined at the

surface of the electrodes like the one shown in Figure 2.13, ε= hs/(2R −hs). Both expressions

are nevertheless equivalent in the current study since hs ¿ R. Referring again to Hooke’s law

and the "iso-stress" assumption, σ = Es∆G/G0 = Em∆W /W0 = Ee f f ε = Ee f f hs/(2R), which

combined with Equation 2.30 makes it straight forward to obtain the following equations:

∆W =W0Es(W0 +G0)/(EmG0 +EsW0)hs/2R, (2.32)

∆G =G0Em(W0 +G0)/(EmG0 +EsW0)hs/2R (2.33)

Despite the fact that the plastic substrate does not change its total width when bent along its

length, it contracts above the neutral plane and compensates by expanding below the neutral

plane. Therefore the electrodes, conformal to the surface of the substrate, are also subjected

to a modification in their length L0, which depends on the Poisson’s ratio νe f f . Solving the

following integral
∫ L0−∆L

L0
dL/L =−νe f f

∫ y0+∆y
y0

d y/y , with y =W +G :

∆L = L0

[
1−

(W0 +∆W0 +G0 +∆G0

W0 +G0

)−νe f f
]

(2.34)

Thus, the dimensions of the IDE in the bent state can be figured out from the original flat
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geometry and Equations 2.32,2.33 and 2.34 as W =W0 +∆W , G =G0 +∆G , and L = L0 +∆L.

Note that the electrode deformation was assumed elastic with no failure modes occurring.

Utilizing the previous geometrical values as the variables li of Equation 2.28 and performing

the transformations described along section 2.3.1, we obtained the capacitance of the IDE

structures under bending conditions.

Validation of the bending model for IDE

Design of the IDE test samples for the bending model evaluation Figure 2.16 depicts an

optical image of one of the devices used to evaluate the bending model for IDE described

above. The IDE and the shape of the contact pads were specially designed to be clamped

in the bending set-up shown in Figure 2.17. The total surface area of the devices were 15

mm x 40 mm. Maximization of the IDE nominal capacitance was a critical design aspect for

the bending experiments. A high nominal value was desirable to minimize the influence of

parasitic contributions compared to the capacitance variation due to bending. The nominal

capacitance value was maximized by making the electrodes as long as possible, given the

clamping mechanisms of the set-up (i.e., 15 mm) and by including in the device as many

electrodes fingers as possible to fill an Ar cmi n = 6 mm (see Figure 2.17): this is 120 fingers for

IDE with a pitch of 50 µm, and 150 electrodes for IDE with a pitch of 40 µm. The IDE with a

pitch of 50 µm included electrode widths of 40 and 45 µm with a corresponding inter-electrode

spacing of 10 and 5 µm, respectively. The IDE with a pitch of 40 µm had both width and a

gap spacing of 20 µm. Such structures resulted in a capacitance value ranging from 40 to

120 pF. The samples were fabricated by means of evaporation and lift-off technique by our

partner Dr. T. Kinkeldei from the Electronics Laboratory at ETHZ (Switzerland). The substrates

used were 50 µm-thick polyimide (PI) (Kapton®-E from Dupont Teijim Films™), and 125

and 250 µm-thick polyetherimide (PEI)(ULTEM from Ajedium ™). More details about the

fabrication process of the sample can be found in [138]. Furthermore, one of the samples was

electroless-plated with ∼ 1 µm of Ni to increase the electrode stiffness.

Bending set-up A customized set-up was fabricated by our partners in EHTZ [119] and used

to clamp the test samples for validation of the model. The bending set-up consisted of two

plates, mechanical clamps mounted on them and a micrometer screw to precisely control the

distance between the two plates. As the two plates got closer, the strip-like IDE structures that

were mechanically clamped on the plates, buckled as depicted in Figure 2.17. Therefore, a

correlation exists between the displacement of the plates and the radius of curvature of the

sample. Figure 2.17 also depicts the set-up structure and the situations of maximum (not

counting the flat state) and minimum radius of curvature, 7.86 and 2.47 mm, respectively. As

it can be appreciated in Figure 2.17, it was possible to fit a circle to the middle part of the

bent foil for every distance between the plates. From optical images, we could easily measure

the resulting radius of curvature of the sample as well as the distance of the straight line (A

in the Figure 2.17) connecting both ends of the circular foil arc. Using basic trigonometry,
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Figure 2.16: Optical image of one of the devices measured in flat and bent state, indicating its size and
showing a magnified view of two examples of IDE geometry (W0/G0 = 20 µm / 20 µm and 45 µm / 5
µm) [119].

the distance of the resulting arc can be expressed as Ar c = 2Rsi n−1(A/(2R)). The minimum

arc distance, Ar cmi n , occurred for the minimum radius of curvature and was 6 mm in the

experiments. Therefore, Ar cmi n became the maximum limiting dimension of the test devices

along the dy axis (perpendicular to the electrodes), allowing the electrodes to bend circularly

at every radius. The values of capacitance were registered at 100 kHz using an LCR-meter

(Agilent E4980A), which was connected to small wires soldered to the contacts pads of the

samples. Despite the fact that all the metallic parts of the set-up were duly grounded, a

small parasitic capacitance was still present for every radius of curvature and had to be

subtracted after measurements. The zero parasitic calibration was performed by measuring

the parasitic capacitance between the clamps in the absence of any clamped IDE structure.

The measurement was repeated for the distances between the plates that corresponded to

each radius of curvature used when a sample was clamped.

General validation Figures 2.18 and 2.19 demonstrate the high degree of correlation which

was found between the predicted and measured capacitance values. The behaviour of some

structures is shown for both outward and inward bending whereas for others the signal is

represented only for one bending mode for the sake of clarity. Although the capacitance values

have been normalized to compare the different cases, the nominal values fit equally well the

model. The Young’s modulus of the substrate/electrode interface, Em , has been used as the

only fitting parameter for all cases. The results show how the capacitance value increases for

smaller radii of curvature during inward bending whereas it decreases for outward bending.

This behaviour is the opposite of the one found in Figure 2.14, and as discussed previously, it
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Figure 2.17: An optical image of the bending set-up with a device clamped in place along with a
magnified view of one electrode edge, and two optical images taken from the side showing the maximum
and minimum measured radii of curvature and the length of the longest fitted circular arc for each
case [119].

can be entirely attributed to the geometrical deformation of electrode width and gap spacing.

The influence of bending increases in every case with the substrate thickness, and although

not shown in Figure 2.18 the model also predicts an increase in the bending influence with the

ratio W0/G0.

Thin electrodes: Even though the Young’s modulus of a thin film of Cr is known to be

around 140 GPa, such values do not correspond with the physical meaning of Em in this work

because as the stress is applied to the substrate, Em refers exclusively to the substrate/metal

interface stiffness, as opposed to the electrode stiffness as a whole. This layer was treated

as an infinitesimally thin metal film in the model (see Figure 2.15). The value of Em which

fits best with all the experimental cases on the polyetherimide (PEI) substrate is 620 MPa.

For polyimide (PI) substrate Em was 1 GPa. Although those values are much lower than the

reported stiffness values for Cr, they are similar to those observed during direct stretching of

some samples under the microscope, where the electrode and the gap strains were compared.

The other numerical values used in the model were Es = 2.77 GPa for PEI and 5.55 GPa for

PI, νs = 0.32 for both substrates and νm = 0.21, according to the substrates manufacturers
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Figure 2.18: Theoretical and measured influence of circular inward and outward bending on the capac-
itance of IDEs fabricated on three different substrates: 250 and 125 µm thick PEI and 50 µm thick PI.
In the legend: E stands for experimental points and T for theoretical values; 250, 125, and 50 are the
substrate thicknesses in µm; m/n represents the electrodes W0/G0 ratio in µm; and I and O represents
inward bending and outward bending, respectively [119].

and a typical Poisson ratio value of thin Chromium films. Figure 2.18 shows how the bending

influence for thin electrodes remains small (few %) even for the minimum tested radius of

curvature of ∼ 2.5 mm, regardless of the geometry of the IDE or the substrate thickness. The

largest tested variation of capacitance at the minimum radius corresponds with the case of

W0/G0 = 40 µm / 10 µm for thin electrodes placed on a 250 µm thick substrate. The change in

capacitance is slightly below 3%. This situation leads to electrode width, gap, and length strains

of ∆W /W0 = 4.05%, ∆G/G0 = 9.09%, and ∆L/L0 = 1.02%, respectively. It would be possible

to decrease even further the capacitance variation, for instance, using thin electrodes with a

small ratio W0/G0 = 5 µm / 45 µm and fabricated on thin 50 µm substrates. The capacitance

variation would be less than 0.5% in this last case when bent to a radius of 2.5 mm. If a coating

layer were added to the substrate, the capacitance variation would become even smaller as

the electrode plane would move closer to the neutral plane.

Thick electrodes: In order to expand the validity of the model for stiffer electrodes, one

of the samples has been electroless-plated with ∼1 µm-thick Ni. The Ni layer conformally

covered the thin electrodes, adhering to the metal but not to the plastic substrate, hence

forming an extra layer on the sidewalls of the electrodes that provides additional stiffness.

The plated material is also believed to induce extra stress in the electrodes, which could also

act to rigidify them. The selected value of Em for the Ni plated electrodes was the Young’s

modulus of bulk Ni, 200 GPa. In any case, the bending behaviour varies only a little for any

Em much bigger than the plastic substrate modulus. As shown in Figure 2.19, the capacitance

variation is enhanced by stiffening with plating the electrodes while keeping the rest of the pa-
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rameters unchanged: W0/G0 = 40 µm / 10 µm on a 250 µm thick substrate. For the mentioned

geometry, the enhancement was of more than two folds, from ∼3% to ∼7%, after plating the

electrodes with Ni. The strain values became ∆W /W0 = 0.33%, ∆G/G0 = 24.02%, and ∆L/L0 =

0.94%, confirming that the increase in electrode stiffness results in a larger difference between

polymer and electrode strains and hence larger variations of W/G. A capacitance variation

of up to 10 or 15% could be achieved by modifying W0/G0 to 45 µm / 5 µm or W0/G0 = 48 µm

/ 2 µm, respectively. These high numbers are relevant for the development of strain sensors.

Further thickening of the electrodes would lead to even higher capacitance variations due

to the appearance of non-negligible sidewall capacitance contributions [125]. However, this

aspect is outside the scope of this thesis study.
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Figure 2.19: Theoretical (T in the legend) and experimental (E in the legend) comparison of the influence
of circular inward (I ) and outward (O) bending on the capacitance of IDEs fabricated on 250 µm thick
PEI with an electrode ratio of W0/G0 = 40 µm / 10 µm. In the legend, OP represents outward bending of
plated devices [119].

2.4 Conclusions

In this chapter the geometries investigated in this thesis work for capacitive gas detection were

introduced, with emphasis in interdigitated electrode (IDE) structures which are theoretically

more complex and less understood than common parallel plate capacitor. Motivated by

the need of modeling IDE-based gas sensors, I presented the theory related to the sensing

principle capacitive gas sensors in general. Then I continued the study by focusing on the the

calculation of the capacitance of the different IDE structures utilized in this thesis and their

behaviour upon bending. The models based on conformal mapping and partial capacitance

principle have been validated by means of FEM and experimental measurements.

In the first part of the chapter it was pointed out that the higher the difference between the

analyte permittivity and the sensing layer/substrate permittivity, the greater the sensitivity
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is due to changes in the total effective permittivity. In the same way, the higher the volume

of the analyte molecules is, the higher the sensitivity due to swelling of the sensing layer.

For the case of humidity detection, the permittivity of water is so high (εa = 76.7) that the

swelling component can be usually neglected. Due to the complex analytical expression of the

capacitance of IDE structures, quantitatively determine the sensitivity of IDE-based sensors is

not straight forward and lies out of the scope of this thesis. On the other hand, in Chapter 4

the equation describing the sensitivity of parallel plate structures is expressed mathematically.

However, qualitative estimations of the sensitivity of IDE-based capacitive gas sensors are

drawn through this chapter. It has been established that thick sensing layers are advantageous

for sensitivity through both swelling and permittivity contributions, but only up to a limit

thickness equal to the distance between two adjacent fingers. Beyond this thickness, the value

of capacitance and the sensitivity saturates. Nonetheless, since the time necessary to reach

concentration equilibrium in diffusion-based process depends quadratically on the thickness

of the medium where diffusion takes place, thicker sensing layer yield much slower sensor

time response than thin layers (see Equation 2.14).

The model described in the literature, [45–48], has been adopted to calculate the capac-

itance of multilayer planar IDE structures utilizing the conformal mapping and partial ca-

pacitance methods. Then, the same model was adapted for a new geometry of quasi-planar

IDE with a dielectric interlayer in between the combs. The outcome of the models is that the

capacitance value increases (not necessarily linearly) with the permittivity and thickness of the

substrate and sensing layer (up to a thickness equal to the fingers pitch), electrodes thickness

and ratio width to inter-finger space. The capacitance also increases linearly with the number

of finger electrodes (for a large number of fingers only) and their length. The validity of the

described model is limited to devices formed by long and planar electrodes. Therefore finite

element methods have been used to evaluate that the model is valid and accurate for the

real geometries developed in this thesis. Finally, the model has been expanded to adapt it

to the practical case of quasi-planar IDE fabricated during my thesis, where both combs are

separated by a thin dielectric film. The width of every comb was different. The evaluation of

the model was carried out by comparing theoretical prediction with experimental data coming

from fabricated devices with different electrode width, separation space and thickness. The

agreement between data obtained from fabricated devices and model confirm the validity of

the latter for design and optimization of the former.

Since this thesis deals with devices fabricated on flexible substrate, the influence of circular

bending in the capacitance of IDE microstructures has been theoretically and experimentally

established as well. The theoretical model, accounting for the coupling between electric field

distortion and the geometrical changes on the devices due to bending strain, predicted results

in good agreement with each of the experimental cases considered, including different sub-

strate materials and thickness, different IDE geometries, and different electrode stiffness. The

modification of the electric field distribution while bending has been determined by introduc-

ing an extra conformal mapping transformation prior to the previously reported in literature

used to model flat IDE structures. On the other hand, fundamental solid mechanics was used
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to determine the strain-driven deformation of the IDE. The proposed model provides, in this

way, information to adapt the design of IDE structures to either maximize their capacitance

variation during bending, of interest for strain sensors, or minimize it, which is desirable for

gas sensors, transistors, or flexible passive devices. Although all the cases presented in this

thesis deal with bending around the electrode axis, the developed method could be easily

expanded to account for bending around the perpendicular axis too. The model could also

be used for IDE devices coated by another polymer layer, a common situation in many gas

sensors or embedded devices. In the worse case scenario of bending circularly the electrodes

down to a radius of 2.5 mm (around the axis perpendicular to them) has a small influence in

the capacitance value of few %, for typical structures. This value would however introduce

a rather large inaccuracy of few % R.H. in the response of the gas sensors fabricated in this

thesis and described in Chapter 3 (the sensors have a relative sensitivity of around 0.07 %/1%

R.H. in the best case). Nonetheless, the influence of bending can be dramatically reduced by

design to ∼ 0.5% for ∼ 2.5 mm radius of curvature. Furthermore for gas sensing applications

a coating layer needs to be added to the substrate, moving the neutral plane closer to the

electrodes so that less stress would be induced on them, and smaller capacitance variations

would occur. The presented model could also allow to design a sensing layer geometry that

brings the neutral plane exactly to the electrodes plane, minimizing the effect of bending on

the capacitance value. Although it has not been studied, it is expected from theoretical esti-

mations that bending the electrodes around their axis (instead of around their perpendicular

axis) does not have a big influence in the capacitance neither.

The current work supposes a general predictive framework that can be applied to any kind

of material, inorganic, or organic, and deposition method, to determine the performances

of truly flexible electronic gas sensors based on IDE transducers. In the next chapter, these

points will be put into relief through the design, fabrication and characterization of different

printed IDE R.H. sensors on foil.

58
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Sensors on Foil Based on Coplanar
Interdigitated Electrodes (IDE)

3.1 Introduction

This chapter describes the realization and characterization of humidity sensors based on inkjet-

printed interdigitated (IDE) capacitors fabricated on flexible polymeric substrate. A large part

of the content of this chapter has been published in peer reviewed journals [117–119].

Compared with the previous works on IDE gas sensors on foil developed at the Institute

of Physical Chemistry at the University of Tübingen (Germany) [112] or in their following

collaboration with SAMLAB described in [31], polyethylene terephthalate (PET) has now

substituted polyimide (PI) as substrate material due to its advantageous price and current

use in the field of goods packaging. These properties suit the goals of the FlexSmell project.

Furthermore, inkjet printing of silver and electrodeposition of nickel have also now replaced

clean-room standard processes and materials. Inkjet printing and electrodeposition are

both additive processes [1, 2], which optimize the use of material by depositing it only on

required locations on the chip. Consequently, the fabrication of this type of electronics

becomes potentially more material and cost effective than traditional silicon electronics.

Furthermore, because inkjet printing is a non-contact and localized process, it makes possible

the fabrication of arrays of different sensing materials in such a way that the deposition of

each sensing material does not affect the other surrounding materials. This last property

is of crucial importance when developing multsensing platforms. The sensors presented

in this chapter are based on IDE capacitors to allow for the ultra low power consumption

typical in capacitive-based devices, compared to resistive ones. The IDE structure allows

easy functionalization of the sensor with a sensing layer directly deposited on top. This

geometry also maximizes the interaction of the sensing layer with its environment. The design

of the sensors was carried out according with the theory described in Chapter 2, targeting

relative small features and a geometry able to provide suitable values of capacitance (few

pF), sensitivity towards relative humidity (R.H.) (of around some fF / 1%R.H.) and response
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time (few minutes). The sampling and operation times imposed by food logistics are such

that few minutes response time and few weeks or months of working life are enough for the

developed sensors to fulfill the requirements of the FlexSmell application. The design of the

IDE sensor depends on the selected inkjet printing parameters [9, 96–98] and the possibilities

of electroplating nickel with different thickness on top of the electrodes.

In this chapter, I also evaluated the influence of electrodeposition of a thicker metal layer

on the stability of the sensor, its absolute sensitivity and its capacitive nominal value. This last

point is worth considering the low resolution and low thickness allowed by inkjet printing inks

with metallic nanoparticles, which makes it difficult to obtain very packed and tall electrodes

providing large capacitance values per surface area. Regarding long-term stability, nickel could

also help reducing drifts of the sensor response coming from chemical instability of silver.

Another of the strongest points of this printing/electrodeposition process is that it enables the

simultaneous fabrication of a humidity and temperature sensing platform by simply including

a resistor in the original layout of the capacitor. This last point is developed more in detail in

Chapter 5.

An important aspect in solution-based electronics is the adhesion of the ink to the substrate

once it dries. This aspect is specially critical when the substrate is flexible since bending

generates extra interfacial stress between the deposited material and the substrate, that can

result in delamination. The adhesion of printed silver on PET and PI foil and the effect of

substrate pre-treatment with oxygen plasma have been previously proven important [111,139].

They will also be addressed here for our concrete case of materials. A good adhesion of

the printed layer onto the substrate is a key point for successful electrodeposition without

delamination.

Although the IDE devices could be already used as humidity sensing using their polymeric

substrate as sensing layer [40, 112], the substrate is not optimum for sensing. Commercially

available plastic substrates (such as PET or PI) are highly hydrophobic and designed to present

low moisture intake, specially when their main application is packaging. Low moisture intake

is equivalent to low partition coefficient and hence low sensor sensitivity (see section 2.2).

Furthermore, since the substrate’s main role is to offer mechanical support to the sensor, its

thickness is usually selected to be too thick to allow a quick sensor response time. As it was

discussed in Section 2.2, this problem is specially acute for printed IDE where the fingers pitch

can not be reduced as much as on non-printed devices. The reason is that the electric field will

reach into the substrate and sensing layer as deep as the fingers pitch distance is. Low printing

resolution implies large pitches and thus a large zone of interaction between electric field and

substrate. In the case of substrates thinner than the pitch distance, the electric field would

interact also with the material underneath the substrate, modifying the sensing behaviour

for every experimental scenario (see Figure 2.1 in Chapter 2, Section 2.1). If the substrate

is thick enough to contain all the electric field lines, the sensor may be relatively sensitive,

but the analyte will need long time to diffuse into the thick substrate, delaying the response

of the sensor. To overcome the sensing disadvantages of the substrate as sensing material,
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following the electrodeposition step of nickel on the printed silver electrodes, a solution of

cellulose acetate butyrate (CAB) has been customized and inkjet-printed on the capacitive

structures to act as a thin humidity sensing film. To conclude, measurements of capacitance

value against changes in ambient relative humidity are presented. The performance of the

sensors (response time, linearity, hysteresis and sensitivity) are analyzed and qualitatively

explained for both single and differential mode, in which the parasitic component of the

substrate was subtracted from the complete sensor operation signal [31].

IDE with reduced size As it was mentioned above, increasing the nominal value per surface

area of IDE sensors is challenging due to the typical low resolution attainable by common

printing methods. Such resolution remains still far below the one allowed by photolithography.

This is a limiting factor in the miniaturization of printed devices, and also partly the reason

why the price of the technology has not reached its minimum yet. In printing processes in

general, and inkjet in particular, the active material (ink) is deposited on the substrate in liquid

phase. There exists a limitation concerning the minimum volume that can be ejected from the

printing nozzle to be deposited on the substrate; moreover, the ink spreading on the substrate

depends on the system interfacial energies and the drop impact [8]. Hence the minimum

area occupied by the functional ink is limited and depends on every concrete used material,

making difficult the control of the process. Due to their usual geometry, well-packed parallel

long electrodes occupying a large area, to realize IDE with high capacitance value implies

the fabrication of one of the most challenging structures to be printed. Much care during

fabrication and design is needed in order to print comb electrodes structures in a reliable way.

The level of care is critical if the devices are to be used actually as capacitors, since shortcircuits

between electrodes would turn the devices into resistors instead. Nonetheless, many authors

still point out the need of printing closely packed electrodes (see for example [35, 38, 43]). The

typical electrodes width and inter-electrodes gap included in the papers referenced above

ranged from 100 to 200 µm; only with special care and recurring to different treatments to

modify the substrate surface energy, a top resolution of 40 µm is reachable. More compact

devices would present several advantages, not only related to decreasing the foot print of the

devices and the corresponding material use and fabrication cost, but also in terms of sensing

performances; offering more flexibility in design parameters, supplying higher values of

nominal capacitance for a given surface area and allowing higher interaction between electric

field and sensing layer (see Section 2.2), which yield altogether to a larger sensitivity. For all

the exposed reasons, during this thesis work I tried to soothe the limitation in resolution of

printed IDE devices through the development of an alternative fabrication strategy conceived

to decrease the electrodes pitch (centre to centre distance of adjacent fingers) in a reliable and

reproducible way, and without creating shortcircuits between adjacent fingers. In this way,

I could increase the nominal value per surface area of the devices as well as the fabrication

yield. The strategy consists of the deposition of a thin dielectric layer onto the first printed

electrodes comb prior to the printing of the second comb in such a way that both polarities are

electrically insulated and cannot be in contact if printing errors occur. This technique renders
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the printing process less demanding and more reliable. The method is demonstrated by using

parylene-C as dielectric interlayer, whose deposition does not involve high temperatures

so that it is compatible with the utilization of inexpensive plastic substrate. Parylene-C is a

extremely chemically stable and tightly organized compound, so it acted at the same time

as a barrier against the undesired absorption of moisture into the polymeric substrate. In

collaboration with the Universtiy of Tübingen (Germany), our group has previously reported

on inkjet printed IDE capacitive humidity sensors based on silver ink on PET substrate, using

parylene-C as substrate passivation layer [140]. The use of parylene-C made unnecessary the

electroplating of the electrodes or the use of differential measurements to get a stable and fast

sensor output signal. In this work, I selected inkjet printing of silver nanoparticles based ink

as deposition method for proof of concept, and also because inkjet printing is one of the most

challenging printing methods to reliably reach a small resolution, emphasizing the usefulness

of the described strategy. Nevertheless, the exposed fabrication strategy remains suitable for

every printing process dealing with the deposition of liquid phase ink on a substrate.

Summarizing, I present the fabrication of very low cost and mechanically flexible IDE capac-

itive devices on foil, which operation was demonstrated, but not limited, to humidity detection.

The fabrication process involves mostly additive steps (inkjet printing and electrodeposition),

minimizing the waste of material. On top of that, a process to reduce the IDE pitch down to

fifteen folds while improving at the same time the fabrication yield was developed to increase

the capacitance value per surface area. In order to ameliorate the sensor performance, two

strategies were investigated: either plate the Ag IDE with Ni and subtract the parasitic effect

of the substrate layer, or extra anneal of the Ag IDE and utilize a parylene-C moisture barrier

to coat the substrate. The results of this work foresee applications requiring capacitive gas

sensors on plastic foil, where low cost, mechanical flexibility and very low power consumption

are needed.

3.2 Design

Using the theoretical model described in Section 2.3.1 of Chapter 2 and considering the avail-

able materials as well as the typical features size allowed by inkjet printing and electroplating

technologies, IDE transducer were designed to obtain sensors with a desired value of ca-

pacitance (few pF) and dynamic range (few fF) appropriate for reading the output signals

with standard electronic circuits such as the Σ∆ capacitance-to-digital converter AD7745,

AD7746 [31, 112], the capacitance-to-digital AD7150 from Analog Devices, or the microcon-

troller MSP430 from Texas Instruments. All that while keeping the foot print of the device as

small as possible.

Standard IDE devices For standard IDE devices like the one sketched in Figure 3.1, a capac-

itance of about 5 pF (before the electrodeposition step) was obtained including 20 pairs of

planar electrodes of 7 mm length each, occupying a total surface area of 8 mm × 8 mm and
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similar width than gap of ∼100 µm. This width and gap size is a safe value permitting good

fabrication yield. Smaller resolution was achieved in non-standard IDE or in later versions of

IDE devices presented in the multisensor platform described in Chapter 5.

Figure 3.1: Sketch of standard IDE with designed dimensions.

IDE devices with reduced size The geometry of the devices using a thin layer of parylene-C

between the two combs was described in Figure 2.9 of Section 2.3.1 of Chapter 2 to support

the validation of the theoretical model to predict their capacitance. The structure is repeated

in Figure 3.2 including the thickness of the substrate, parylene-C and sensing layers. Five

different geometries have been fabricated, labeled from A to E; the number of electrodes and

pitch (defined as the distance between the centre of two contiguous electrodes) corresponding

to every different geometry is summarized in Table 3.1. The sensing surface area of every

device is 3 mm × 3 mm.

Table 3.1: Summary of the design parameters for the printed IDE devices with dielectric interlayer.

Device Pitch (µm) Number of electrodes

A 40 74
B 60 50
C 80 37
D 100 30
E 120 25

Sensing layer The surface area of the sensing layer was slightly larger than the IDE in every

case to ensure its total coverage. This is, slightly larger than 8 mm × 8 mm for standard IDE

devices and than 3 mm x 3 mm for IDE with reduced size. The thickness can be selected
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Figure 3.2: Sketch of the exploited view of IDE fabricated with a thin dielectric layer of parylene-C between
combs to prevent electrical shortcircuits between them. The thickness of every layer is indicated in the
figure.

according to Figure 3.17, depending on whether high sensitivity or fast response is favoured,

as it was discussed in the Section 2.2 of Chapter 2.

3.3 Fabrication

The devices developed in this thesis are based on silver nanoparticles-based ink and polymer

solutions, inkjet-printed on plastic commercial polymeric foils. Due to the narrow window for

printing parameters imposed by the used printer (viscosity ∼ 10 mPa*s (or cP) and surface

tension ∼ 30 mN/m) commercially available silver ink or carefully tuned polymer solutions

were used to pattern the sensors and the sensing layers respectively. The printer used for all

the devices described in this thesis was the Dimatix Fujifilm DMP-2800™ shown in Figure 3.3,

with 10 pl drops cartridges.

Temperatures below 150°C were kept during the whole fabrication process to keep un-

altered the properties of the PET polymer used as substrate, which maximum processing

temperature is 150°C according to the manufacturer. In this section, I describe in detail the

fabrication process flow, materials and equipment used to fabricate printed IDE gas sensors

on foil.

3.3.1 Substrate preparation and parylene deposition

Standard IDE devices We fabricated printed and electroplated humidity sensors using flex-

ible foils as substrate. Polyimide (PI) Kapton®-E of 50 µm thickness from Dupont™and
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Figure 3.3: Commercial inkjet printer Dimatix Fujifilm DMP-2800™ for printed electronics.

Figure 3.4: Fabrication process flow of printed standard IDE sensors: (a) PET substrate treatment and
inkjet printing of the silver electrodes combs and (b) inkjet printing of the CAB humidity sensing layer.

polyethylene terephthalate (PET) Melinex® ST506 of 125 µm thickness, from Dupont Teijim

Films™, have been investigated as substrate candidate materials. Eventually, PET foil has been

chosen due to its low moisture absorption rate, low cost, commercial availability and good

adhesion/printing results. Furthermore, PET is currently used in the field of goods packaging.

The substrates were cleaned by immersion in acetone, isopropanol and deionized water. Right

after the cleaning process, the substrates were dried with nitrogen, dehydrated them for a

minimum of 1 h in an oven at 120 °C, and finally subjected them to microwave (2.456 GHz)

oxygen plasma treatment for 4 min at 400 W and 560 mTorr pressure, under a flow rate of 400

sccm in a plasma system PVA TePla PS210. The oxygen plasma treatment served to smooth the

polymer surface by slightly etching it and to modify its chemistry, resulting in an improvement

of wettability control of the silver ink on the substrate [110, 111]. The power and flow rate used

for the substrate plasma treatment were standard values used for "descum" process on silicon

wafers at low temperature. After several tests, I found 4 minutes the minimum necessary time

to obtain optimal printing results on the polymer.
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IDE with reduced size The substrate used in this case was only PET, and it was prepared

as in the standard IDE case with the exception that only 15 seconds of oxygen plasma were

enough to yield good printing results and to improve ink wettability and printability on the

substrate. The difference in time compared to the standard IDE case is due to the use of a

different silver ink to print the lines as it is described below. Afterwards, the samples were

introduced again in the oven for 30 min at 120 °C to slightly attenuate the influence of the

plasma on the ink wettability in order to obtain narrower printed lines. We believe that heating

up the polymer fulfills some bonding sites reducing the surface energy. To decrease the fingers

pitch of this improved generation of IDE capacitors, a layer of parylene-C was deposited

between the two combs of IDE and served as electrical isolation and a moisture barrier for the

substrate (see Figure 3.5(b)). The parylene layer was formed by chemical vapour deposition at

room temperature and under vacuum (few µm bar) in a Comelec C-30-S deposition system.

The deposited layer was very conformal, chemically tight and its thickness could be very

finely controlled. After the parylene-C was deposited on the first comb, we performed again a

short oxygen plasma treatment on the parylene under the exact same conditions used for the

substrate but for a longer time of 30 s. Then, the samples were brought back to the oven for

30 min at 120 °C. The second plasma/oven treatment had as goal not only the improvement

of silver printability by adjusting wettability, but also the adhesion enhancement of the CAB

sensing layer onto the parylene-C layer.

3.3.2 Inkjet printing patterning and optional electroplating

Previous to the printing step of the transducers, we made use of DoE (design of experiments)

methods to find the optimum printing parameters to achieve the best trade-off between con-

ductivity, edge smoothness and minimum line width and pitch [9]. The used DoE technique

was full factorial design. The most relevant printing parameters resulted to be: number of

printed layers, temperature of the substrate while printing, inter-drop space, drop jetting

speed, drop jetting frequency and the pre-treatment of the substrate with oxygen plasma. The

printing parameters were optimized for the printed electrodes on the treated substrate.

Another highly influencing factor is the type of ink used. Two commercially available silver

nanoparticles-based inks were tested onto the the substrates: DGP 40LT-15C from Anapro

(Advanced Nano Products) was used for standard IDE, and SuntTronic Jet EMD506 ink from

SunChemical was used for electrodes with reduced size. Whereas DGP 40LT-15C had a Ag

solid content of 30 to 35% and uses triethylene glycol monomethyl ether (TGME) as solvent,

SuntTronic Jet EMD506 had 20% of Ag solid content dispersed in ethanol and ethanediol. The

DGP 40LT-15C was more stable and presented less firing problems, however SuntTronic Jet

EMD506 allowed the patterning of narrower lines, a key aspect to achieve devices with reduced

size. The waveform of the potential applied to the piezoelectric nozzles to eject the drops of

ink is usually provided by the ink suppliers. Otherwise, it has to be tuned to obtain round drops

without tail. Figure 3.6 is an example of the waveform used to print SuntTronic Jet EMD506

ink, where all the different segments are marked. The role of each segment is described next:
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Figure 3.5: Fabrication process flow of printed IDE with reduced size: (a) PET substrate treatment and
inkjet printing of the first silver electrodes comb. (b) Chemical vapour deposition of a thin parylene-C
layer. (c) Inkjet printing of the second electrodes comb. (d) Inkjet printing of the CAB humidity sensing
layer. (e) Cross section view of steps (c) and (d) [118].

1. Negative voltage is applied to the piezoelectric material (PZT), drawing ink from the

cartridge into the pumping reservoir. A settling time follows afterward.

2. An increase in voltage deflects the PZT and eject the the ink out of the nozzle. The

steeper the first part of this segment is, the faster the ink is ejected. A hold period

follows.

3. Dampening segment used to prevent the printed head from sucking air back in. The

PZT is brought back to its original position.
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Figure 3.6: Waveform of the potential applied to the printer nozzle over time, used to print round and
tail-less drops of SuntTronic Jet EMD506 silver ink. Every segment of the waveform is highlighted in the
figure.

Standard IDE devices The patterning of standard IDE on PET by inkjet is depicted in Figure

3.4(a)). The lines were formed by printing two consecutive layers of DGP 40LT-15C ink onto a

substrate at 52 °C, using a drop-to-drop space of 40 µm and jetting with one single nozzle at 3

m/s and 1 kHz.

Afterwards, the optimized printed devices (in terms of adhesion, geometry and conduc-

tivity) were introduced in an oven at 150 °C for 40 min in air atmosphere to thermally cure

and sinter the conductive ink. These thermal conditions were the recommended by the sup-

plier. Once the conductive ink was properly sintered, the devices were optionally subjected

to electrodeposition process in a nickel sulfamate bath at 54 °C , under an electrical current

density of 20 mA/cm2. The growth rate was 185 nm/min at a current density of 10 mA/cm2.

Nickel was considered as a good potential candidate for electrodeposition metal because it is

inexpensive, easy to electroplate on silver and induces lower stress than copper. Nickel will

bring also sensitivity advantages not only to the sensors (as it is described in Section 3.5.5) but

to the thermoresistors included in the multisensing platform described in Chapter 5, owing to

the higher temperature coefficient of resistance (TCR) of Ni than of printed silver.

IDE with reduced size For the IDE with reduced size and parylene interlayer, the first elec-

trode comb was inkjet printed on the PET substrate (see Figure 3.5 (a)) using the SuntTronic

Jet EMD506 ink. The selected printing parameters were: two consecutive layers printed with a

single nozzle (four nozzles to print the contact pads) on a heated substrate at 45 °C , using a

drop speed and frequency of 6 m/s and 5 kHz respectively while keeping a distance between

drops of 40 µm and between printing head and substrate of 1 mm. Following printing, the

ink was sintered in a normal convection oven at 150 °C for 3 h. This extra long-time step was

needed to merge the nanoparticles together [98] and completely remove the organic content

inside the ink rendering the ink electrically conductive. Organic residual would yield to sensing

instability [140] otherwise. After the parylene deposition on the first comb, we proceeded to

the printing of the second comb of electrodes using the same ink, printing parameters and
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annealing process as for the first one (see Figure 3.5(c)). In order to improve the alignment of

the second comb, it was necessary to use the "thermal scaling" option of the printer (along the

direction perpendicular to the electrodes), which allows for the compensation of the pattern

size variation after subjecting the first comb to high temperatures during annealing. The

utilized scaling factor was 2500 ppm.

3.3.3 Sensing layer: preparation, tuning and printing

Cellulose acetate butyrate (CAB) was selected as humidity sensing material because it is well

known for its sensitivity towards humidity and its easiness of processing [112, 141–143]. On

the other hand, it is soluble in hexyl acetate, which is a non-toxic solvent that presents values

of surface tension (26.2 nN/m) and boiling point (171.5 °C) appropriate for inkjet printing

with our printer. The CAB humidity sensing layer was inkjet-printed onto the IDE capacitors

as represented in Figures 3.4(b) and 3.5(d). For its preparation, cellulose acetate butyrate

(molecular weight ∼ 70000) with 13.5 wt% acetyl and 37% butyryl content from Sigma–Aldrich

was dissolved over several days in hexyl acetate 99% also from Sigma–Aldrich. The surface

tension of the ink was measured with a tensiometer Kibron Aqua Pi. The concentration of

the prepared ink was also adapted to match the dynamic viscosity required for inkjet printing

as explained in Section 3.5.4. A viscometer Brookfield DVII+Pro was utilized for that purpose.

Once the solution was tuned to be inkjet printable (surface tension of 26.2 mN/m and viscosity

of 10.2 cP), it was necessary to adjust the voltage waveform applied to the piezoelectric nozzles

in the printing head until round ink droplets were formed and jetted. Then, the printing

parameters needed to be optimized to obtain non-clogged nozzles and a homogeneous

printed layer. In this case, special attention needed to be put in intensifying the nozzles

cleaning cycles because the CAB ink was prone to dry and clog the nozzles.

The printing parameters were the the same for all the developed devices: four nozzles were

fired on a substrate at 38 °C, using a drop jetting speed around 8 m/s, a jetting frequency 2

kHz, a drop-to-drop space of 20 µm and a distance between printing head and substrate of 1

mm. When printing polymers, I observed a high dependence of the jetting quality with the

temperature of the ink when it is jetted, probably due to strong variations in viscosity. The

temperature of the cartridge head was set at 50°C. The number of printed layers was defined

in accordance with the desired thickness of the final dry CAB layer as depicted in Figure 3.17

in Section 3.5.4. I printed 24 layers, which corresponded with a dry layer 8 ± 3 µm in thickness.

This thickness ensured a relative quick sensor response and a value of sensitivity large enough

to detect capacitance shifts with the available electronic equipment. On top of that, 24 layers

did not make the printing process too time consuming. Figure 3.7 presents a picture, taken

with a white light interferometer, of a portion of the sensing layer coating an IDE capacitor.
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Figure 3.7: Image of a sensing layer of CAB inkjet-printed onto an IDE capacitor. The image was taken
with a white light interferometer. The silver part was much more reflective than the CAB, so the CAB did
not appear on the areas with silver underneath [117].

3.3.4 Contacts opening

Since the parylene layer covered the whole substrate, before connecting the devices for charac-

terization, the contact of the bottom electrode must be opened. For the time being, a manual

scratching was done, but is large scale production is faced, plasma oxygen treatment could be

applied through a mask to remove the parylene-C above the contact, while leaving unaltered

the rest of the device. The stripping ratio of parylene-C in the oxygen plasma oven used for

substrate surface modification at 500 W was estimated in 129 ± 16 nm/min.

3.4 Characterization methods

3.4.1 Adhesion tests

In order to assess the level of adhesion between the silver lines and the different substrates (PI

and PET), two different tests have been carried out. The tests took place at ambient conditions.

The first test corresponded basically with the standard ASTM F 1842-09, where six squared

cuts, spaced 2 mm apart, were made on a printed (and sintered as in 3.3) silver layer of around

200 nm thick. Both Anapro DGP 40LT-15C and SuntTronic Jet EMD506 inks were tested on

PET and only the Anapro on PI. Then, adhesive tape Scotch Magic, 19 mm wide from 3M

(green) was stuck to the cuts for 90 s by applying uniform pressure with the fingers, and finally

removed without jerking. A bare eye evaluation was enough to classify the results according

to the scale in the standard. On three of the six samples of PI that were tested, microwave

oxygen plasma treatment was performed on the substrate before printing the silver on it.
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In the case of PET substrate, the removal strength of the adhesive tape was not enough to

peel the printed metal layer off at all, making impossible the evaluation of the influence of

plasma on this substrate. Therefore, a second approach represented in Figure 3.8 was tried,

but only on the DGP 40LT-15C ink, since it was the one used to pattern standard IDE with thick

electrodeposited layer on top, and thus the one requiring the best adhesion. In this approach,

the silver was inkjet-printed between two square pieces of clean PET of 1 cm2, forming a

multilayered structure. In this case, the sintering of the ink took place overnight at 150 °C to

ensure the total removal of the solvent inside the "sandwiched" silver layer. Afterwards, an

adhesion test dolly was perpendicularly stuck to each outer side of the structure using instant

glue from Pattex which was let to dry overnight. Finally the dollies were pulled apart using

an Instron pulling set-up at a speed 0.06 mm/min. The force and displacement of the pulling

dollies necessary to separate the two PET films was registered so the fracture stress was easily

calculated from the area occupied by the layer of ink. Among all the tested devices, we selected

13 representative samples for the non-plasma treated substrate and 6 for the plasma treated

substrate.

Figure 3.8: Sketch showing the distribution of layers for one sample of the tensile pull test, performed to
assess the adhesion between PET substrate and inkjet printed silver ink [117].

3.4.2 Evaluation of the sensor geometry

After their complete fabrication, the devices geometry was evaluated using an optical mi-

croscope and a scanning electronic microscope (ESEM XL 30 FEG working at 2.0 kV). The

profile and thickness of the metallic lines and the sensing layer were analyzed using a white

light interferometer (Wyko NT 110 from Veeco) and an alpha-step system (from Tencor). The

resistivity of the lines was obtained from their geometry and resistance, which was measured

by means of the four wires method to eliminate the probes and contacts parasitic resistance.
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3.4.3 Humidity measurements

For static measurements (capacitance versus R.H.), I used a climatic chamber (Bench-Top

Temperature and Humidity Chamber, Espec) able to reproduce controlled temperature and

humidity conditions with a precision of 0.5°C and 2% R.H. respectively. The climatic chamber

was larger and more user-friendly than the customized chamber. Therefore, although it

facilitated the handling and connection of the devices inside, its stabilization time was too

large to permit transient measurements.

The transient response of the capacitive sensors was tested against changes in the humidity

level. For that purpose, the devices were first degassed at 85 °C under vacuum conditions for 4

h. This step served to desorb residual gases trapped in the sensors, providing a reliable starting

point for differential measurements. Then, the devices were connected to the electronic

measurement equipment via a special connector (39-53-2144 - Socket FFC/FPC, ZIF, 1.25 mm,

14 way from Molex) suitable for clamping foil-shaped devices. Finally, for dynamic transient

measurements the sensors were introduced in a customized humidity measurements set-up,

which allowed for the automatic control of wet and dry airflow inside a small gas chamber at

room temperature. The small size of the chamber (∼ 170 ml) allowed a quick stabilization of

the R.H. conditions inside the whole chamber. The total air flow was 500 ml/min.

Two LCR-meters (HP 4284L and Agilent E4980A) were used to measure the corresponding

capacitance values after every 5 to 7 s. at the same time that R.H. and temperature values

were registered by a commercial sensor (Sensirion SHT15). The data points were then stored

using a PC interfaced with a GPIB cable and a LabView program. The employed frequency,

100 kHz, was easily compatible with standard read-out equipment [31, 50], and was not too

high to hinder the polarization of the dielectric layers of the structure. Post-measurements

data treatment was carried out with a PC to obtain differential values of capacitance.

3.5 Results and discussion

3.5.1 Adhesion between printed silver and substrate

Figure 3.9 shows the optical picture of two representative samples of PI and PET, pre-treated

or not with oxygen plasma, after the first adhesion test (ASTM F 1842-09) was performed.

This method did not give a quantitative value of adhesion strength, but it was valid for a

qualitative comparison between the different cases of study. It can be observed that when

applying the adhesive tape to the PI substrate, some damage appeared on the surface of the

metallic layer. This surface damage seemed to be independent of whether or not the substrate

was previously treated with oxygen plasma, and it corresponded with the classification 2B of

the standard. Hence, oxygen plasma pre-treatment on the PI substrate did not improve the

adhesion performance. On the other hand, when performing the same test on PET substrate,

the metallic surface did not present any modification or damage, demonstrating that the

adhesion of the sintered silver ink on PET was significantly better than on PI. No differences
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between plasma treated and non-treated PET samples were observed in this first test neither.

Figure 3.9: Optical pictures of (top) polyimide and (bottom) PET samples after adhesive tape test was
performed to evaluate the adhesion strength between the substrate and the silver layer. Two different
cases were considered, substrate pre-treated (on the left) and no pre-treated (on the right) with plasma
oxygen, yielding similar peeling results. In the case of PET, the good adhesion prevented the observation
of any damage on the metallic surface [117].

Figure 3.10: Graphic of force versus displacement for an adhesion test measurement in which two
samples of PET were stuck together by a layer of sintered silver ink and then, tensile pulled apart until
they separated. In this graphic, the fracture point corresponds with a displacement of 0.5 mm at an
applied force of 214 N. The inset shows the optical picture of the inner surfaces of two PET foils after they
split apart in the pulling machine. We can observe how the ink was detached almost completely from
either of the two foil surfaces indistinctly [117].

The second adhesion test used for PET substrate consisted of a tensile pulling test. Figure

3.10 shows the curve "pulling force versus displacement" of a PET/DGP 40LT-15C silver/PET

sample until splitting in the interface PET/silver occurred. The inset of Figure 3.10 is an
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optical picture showing the inner surfaces of two PET foils after they were split apart in the

pulling machine; the foils are stuck to the pulling dollies. We can observe how the silver was

detached almost completely from either of the two foils surfaces indistinctly. The total area

covered by the detached silver layer should ideally be the same as the area of the printed

ink onto the substrates, i.e. 1 cm2. However, this area was usually smaller for many of the

samples, indicating that at some spots the two foils separated at the middle of the metal layer

instead of at the interface PET/silver. Because the values of fracture stress provided hereafter

were calculated considering the totality of the printed ink area, they might be underestimated.

Nevertheless, this method remains suitable as a first quantitative approach and for comparison

between cases of study. The results showed that the plasma treatment did not improve the

adhesion of the printed silver on the PET substrate: the final mean tensile fracture stress was

2.4 ± 0.4 MPa for the treated substrate and 2.4 ± 0.1 MPa otherwise (standard error of the

mean). To statistically confirm this result, a t-test was performed for the two ensembles of

data (plasma treated and untreated PET), which happened to be normally distributed. The

result of the t-test (assuming different variance for every ensemble) was 0.981, confirming that

all the samples belonged to the same population with a certainty of 98.1%.

3.5.2 Fabrication of standard IDE capacitors

Using the optimized printing parameters described in Section 3.3.2, we got standard IDE

printed on PET with a minimum line width and gap size of 95 ± 3 µm and 105 ± 3 µm,

respectively (see Figure 3.11), with a line thickness of about 180 nm. The coffee ring effect

[93–95] was decreased significantly with the addition of the second printed layer of ink as

depicted in 3.12(b). The achieved resistivity was approximately 100 µΩ*cm. Despite the fact

that microwave oxygen plasma treatment did not help to improve the metal-to-substrate

adhesion (see Section 3.5.1), it showed advantageous results in improving the smoothness of

the lines edges (see Figure 3.12(a)).

Afterwards, we successfully accomplished the electrodeposition of IDE with thickness

ranging from ∼100 nm to 15 µm on PET and up to 5 µm on PI. This limitation in thickness

was due to the increasing stress induced in thick layers, which eventually forced the metallic

lines to delaminate from the substrate. The better adhesion between printed silver and PET

substrate (see section 3.5.1) permitted the growth of thicker layers of Ni on PET than on PI. We

chose 1, 5 and 10 µm as representative values of thickness for the evaluation of the fabricated

IDE structures. Figure 3.12(c) is a micrograph, obtained by the secondary electron detector of

a scanning electronic microscope (SEM), presenting a capacitor line after electrodepositing

13 µm of nickel onto it. The rounded-shaped edges and irregularities on the surface of the

device resembled the typical shapes found on the original printed structure, despite the coffee

ring effect was significantly reduced. This fact suggests isotropic growing of nickel along

the three directions. Figure 3.12(d) depicts the profile of another electroplate line of ∼ 1

µm thick, obtained with a white light interferometer. Once 1 µm thick layer of nickel was

electrodeposited on the silver lines, their resistivity was about 14 µΩ*cm. This resistivity is
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Figure 3.11: Optical pictures of flexible arrays of silver inkjet-printed IDE capacitors on flexible PET foil,
and magnified views of a similar device and its electrodes. The devices in the array were short circuited to
allow the subsequent electrodeposition step. The electrodes width and pitch are 95 ±3 µm and 105 ±3
µm, respectively.

close to the one of thin film nickel [144].

The capacitance value of the different fabricated devices was presented in Figure 2.8 in

Section 2.3.1 and they were 5.41 ± 0.72 pF for ∼0.92 µm-thick electrodes, 5.87 ± 0.50 pF for

∼5.2 µm-thick electrodes and 5.95 ± 0.34 pF for ∼8.75 µm-thick electrodes.

3.5.3 Fabrication of IDE capacitors with parylene interlayer between combs

Different IDE capacitors were successfully fabricated on flexible PET foil with a dielectric

parylene-C layer between both capacitor polarities. As expected, even when both electrode

combs overlapped due to printing defects (see Figure 3.13), the combs were not electrically in

contact so the devices remained fully functional and conserved their capacitive nature. The ge-

ometry and resulting capacitance values of the different fabricated devices are shown in Table

3.2. Note that the experimental geometry was very similar to the expected one, summarized

in Table 3.1 in Section 3.2, evidencing a relative good control during the fabrication process.

Figure 3.14 consists of optical pictures of the devices at two different fabrication steps: right

after parylene deposition, where only one comb was printed; and after aligning and inkjet

printing the second comb onto the parylene layer.

Figure 3.15 (a) was already used in Chapter 2, Section 2.3.2 to validate the theoretical model

used to calculate the capacitance of IDE with parylene interlayer. Since it contains the data
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Figure 3.12: (a) Difference between the edge of lines printed with optimal and non-optimal parameters.
(b) White light interferometer-obtained image of printed lines. The reduced but still present "coffee ring"
effect is visible.(C) Micrograph (obtained by secondary electron detector of a SEM) presenting a printed
device electroplated with 13 µm of nickel. (d) Image of an electroplated capacitor line around 1 µm thick
obtained with the interferometer. The width of the line is around 100 µm [117].

Figure 3.13: The overlapping of two electrodes with different polarity due to a typical printing defect. This
situation would normally shortcircuit the device, but it did not affect the functionality of this capacitor
because the two different polarities were insulated by a thin layer of parylene-C [118].

summarized in Table 3.2, the graphic is presented here again to demonstrate the potential of

the exposed fabrication method to increase the capacitance value per surface area of inkjet

printed IDE devices. Such value got an enhancement of 4 folds for non overlapping electrodes

and a factor 15 for overlapping electrodes, compared to the IDE with 120 µm pitch (case

"E" of Table 3.2) which was the closest geometry to the standard IDE. But the potential of

the method reaches even further: according to the theoretical estimation, if we were able
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Table 3.2: Different IDE fabricated with reduced size with their experimental geometrical parameters
and capacitance value.

Device Pitch Gap 1st comb Gap 2nd comb Cexper i m Ctheor y

(µm) (µm) (µm) (pF) (pF)

A 40 ± 1 43 ± 3 Overlap: 7 ± 3 15.3 ± 0.7 -
B 60 ± 3 81 ± 6 12 ± 7 4 ± 2 4.24
C 81 ± 3 124 ± 7 34 ± 8 2.1 ± 0.2 2.23
D 99 ± 4 160 ± 8 52 ± 9 1.5 ± 0.1 1.56
E 120 ± 2 201 ± 4 73 ± 6 1.18 ± 0.04 1.15

to achieve non-overlapping electrodes with gaps as small as 1 µm, it could be possible to

enhance the capacitance value per surface area to almost a factor 10. The theoretical curve in

the graphic was obtained including the measured geometry of the devices: the electrodes were

considered bidimensional (they were about 200 nm thick); the width of the bottom electrodes,

printed on PET, was measured and its mean value was 38 µm with a standard deviation of

2 µm. On the other hand, the top electrodes, printed on parylene-C were 56 ± 4 µm wide.

The inter-layer of parylene-C between combs was 1.8 ± 0.4 µm. The electrical permittivity at

the frequency range of interest (around 100 kHz) for the parylene-C layer was considered 3

and the one for the PET substrate 2.9, according to the fabricant. The model fit very well the

experimental values for every geometry except for the devices with smallest pitch, labeled as

"A". The reason is that for "A"devices, there is overlapping between bottom and top electrodes,

making impossible the theoretical estimation with the model described in 2.3.2. Figure 3.15

(b) shows a series of optical pictures of the top and both electrodes combs for each geometry.

Even though the positioning reproducibility of the utilized printer was rather poor, ± 25 µm,

I managed to have a proper alignment of the top comb after few trial-and-error iterations

for the printing head placement, in combination with the implementation of the thermal

scaling option mentioned in the Section 3.3.2. For a less manual process, other commercially

available printers could be used, offering better alignment of about ±5 µm as it is the case of

the Dimatix™DMP3000 or even ±3 µm achievable by the printers Ceradrop X-Serie or PIXDRO

IP410.

3.5.4 Tuning CAB sensing layer for inkjet printing deposition

CAB has been inkjet-printed onto the printed capacitive structures and worked as the sensing

layer. In order to obtain an inkjet printable solution, different concentrations of CAB were

dissolved in hexyl acetate. According with the manufacturer of the inkjet printer, the surface

tension and the viscosity of a printable fluid need to be in the ranges 28–33 mN/m for the

former and 10–12 cP for the latter. The surface tension of the CAB solution was measured

and it did not show significant dependence with concentration, its value being always 26.2

mN/m. On the contrary, the measured viscosity value of the solution depended on the CAB

concentration as depicted in Figure 3.16. An empirical fit has been applied to the experimental
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Figure 3.14: Optical picture showing an array of devices with the different geometries described in Table
3.2, at two different fabrication steps: (a) After printing the bottom electrodes comb on PET substrate,
and (b) after printing the top comb on parylene-C [118].

data points, giving the following relation:

ν= 2.104e0.0969C (3.1)

where ν is the dynamic viscosity of the solution, C the concentration of CAB and the con-

stant 0.0969 has units of liter/gram. According to the fitting on Figure 3.16, the concentration

of the CAB ink chosen for inkjet printing the sensing layer should be ∼16.25 g of CAB per liter

of solution, corresponding to a viscosity of 10.17 cP.
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Figure 3.15: (a) Comparison between theoretically estimated and measured capacitance per surface area
versus inter-electrodes space. (b) Optical pictures of only the bottom, and both printed combs for every
different printed geometry [118].

It is possible to estimate the contribution to the total thickness made by every single layer

of printed ink. For this calculation, we can assume that the substrate surface area equivalent

to d 2, being d the drop-to-drop space, is occupied by the volume of one single drop of ink,

VD (or four quarters of drop as sketched in the inset of Figure 3.17). This assumption allows

making calculations without knowing the total surface area of the layout [145]. However, it

requires the surface of the layout to be large enough to neglect the inaccuracy provoked by ink

spreading at the edges of the patterns. The thickness of the dry sensing layer corresponding

with one printed layer of ink comes then from the next expression:

hs,1l ayer =
VC AB

d 2 = CVD /ρC AB

d 2 (3.2)

where VC AB is the volume of dry CAB existing over a certain surface d 2, VD is the volume of

one single drop of ink, C is the concentration of CAB in the ink and ρC AB is the density of dry
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Figure 3.16: Variation of the viscosity of the CAB solution with CAB concentration (experimental points
and empirical fit [117].

CAB. Substituting the parameters in the equation above for the following numerical values:

20 µm drop-to-drop space, 10 pl drop volume, 16.25 g/l concentration of CAB in the ink and

1.25 g/cm3 density of CAB; hs,1l ayer resulted 325 nm. Figure 3.17 presents the sensing layer

thickness against the number of printed layers, assuming that the thickness of every single

layer adds up linearly. Experimental data corresponding with the average thickness of several

coated devices are also included in the same figure along with their standard error with a 95%

of confidence. Both experimental and theoretical data matched well overall.

3.5.5 Humidity measurements

As discussed in the introduction, although the fabricated devices could be readily used as

gas sensors using only their polymeric substrate as sensing layer, the lack of optimization of

the substrate for sensing applications would lead to poor performance in terms of sensitivity

and response time. Therefore, the IDE were coated with an appropriate gas sensitive layer.

For the sake of simplicity, we functionalized the devices for relative humidity (R.H.) detection

by inkjet printing a test sensing layer of CAB. After the sensing layer deposition, the sensors

experienced an increase in their nominal capacitance of ∼8% and larger sensitivity to R.H. In

this section, I review the response of the different fabricated IDE capacitive sensors against

changes in R.H. at room temperature. First I will show the behaviour of standard IDE devices,

their stabilization by electroplating and the improvement of their signal by using differential

methods. Then, I will present the R.H. sensing response of the IDE sensors with decreased

size and parylene interlayer, highlighting their sensing advantages.
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Figure 3.17: Dry sensing layer thickness versus number of printed layer, theoretical model and experimen-
tal data averaged from different measured devices. The inset is a top view sketch showing the substrate
surface area occupied by a printed ink drop [117].

Standard plated IDE devices: Single mode operation

Sensors based on IDE electroplated with 1 µm of nickel were measured under different humid-

ity steps (from 20 to 80% R.H.) obtained directly from the wet and dry air flow balance into the

chamber. The R.H. level were programmed to change every 25 min. Both, uncoated and coated

(with 7.5 ± 0.4 µm thick CAB layer) capacitors reacted to these changes in humidity as depicted

in Figure 3.18. In Figure 3.18 (a), it is shown the static behaviour of the sensors (capacitance

versus R.H.). It can be observed that, as expected, the coated device supplied higher value and

larger variations of capacitance. However, both sensors presented non-linear response and

high hysteresis. This behaviour is associated to the slow response of the substrate, which is far

from stabilization at the end of every R.H. step, as it can be seen in the transient response of

the sensor depicted in Figure 3.18 (b). The output of the devices was normalized here to their

nominal value of capacitance, C0. The explanation for slow response of the substrate is found

in its large thickness (and the large sensor spatial wavelength, 2(W +G), that rendered the most

part of this substrate sensitive to the analyte). Considering the absorption of vapour molecules

in the substrate layer as a diffusive-based process (see theory in Section 2.2 of Chapter 3),

the thicker the absorbing layer, the longer the time it would require to reach concentration

equilibrium with the ambiance. The 25 min-long steps used in this experiment were thus not

long enough to attain the equilibrium of the water molecules inside the 125 µm-thick PET

substrate. Quantitative predictions of the sensor response time would require a deeper study

of the interaction between the analyte and the polymeric layers of the sensor and goes beyond

the scope of this work. However, the sketch in Figure 3.19 aims at explaining in a qualitative

way the evolution of the diffusion process: the cross section of an uncoated two IDE device is

shown in three different relative humidity conditions at different moments. Arrows represent

the net diffusion gas flux flowing through every virtual layer in the substrate. The diffusion flux

in one dimension (the vertical direction z) is usually given by the Fick’s first law of diffusion as
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J =−DδC /δz, where D is the diffusion coefficient and C is the concentration of gas at every z

point.

(a)

(b)

Figure 3.18: (a) Capacitance versus R.H. (up to 80% R.H.) for a pair of IDE capacitors (one uncoated and
one coated with CAB) electroplated with 1 µm of nickel. It can be observed that as expected, the coated
device supplied higher values and larger variations of capacitance. However, both signals are non-linear
and present hysteresis. This behaviour is associated to the non-stabilization of the signal at the end of
every step of R.H. observed in (b). (b) Transient response of the pair of IDE capacitors of (a) for different
steps of R.H. The signal is normalized to the nominal value of capacitance C0, and the values of R.H.
(10-20-10-40-10-60-10-40-10-20-10%) are taken directly from the wet and dry air flow balance [117].

By analogy, in this example the number of drawn crosses represents the concentration C ,

and every layer in the substrate should be considered as having a infinitesimal thickness δz.

The time step between every situation is too short (ti+1 − ti = δt ) to allow the equilibrium of

gas concentration inside the whole substrate (considered infinitely thick), and only contiguous
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Figure 3.19: Sketch explaining the influence of the large substrate thickness in non-linear response
and hysteresis phenomenon in the R.H. sensor output: the cross section of a small two IDE device is
shown in three different situations corresponding to three different ambient relative humidity conditions
at different moments. Arrows represent the net flow of gas flowing through every virtual layer in the
substrate. The time step between every situation is too short to achieve the concentration equilibrium of
gas inside the whole substrate (considered infinitely thick), and only contiguous layers interact at every
time [117].

layers interact at every time step. This situation corresponds to the one sketched in Figure 3.18.

At every time step, when changes in R.H. occur, only the most superficial layer (top layer) of

the substrate reaches equilibrium with the ambiance. In the second situation, R.H. increases

from 10 to 20%, the molecules in the top layer at time t1 (black crosses) continue diffusing into

the substrate while the top layer reaches a new equilibrium with the outside (following Henry’s

law) at t2 (red crosses). It is possible to observe at this point that the total number of molecules

around the electrodes plane at 20% R.H. exceeds the double of molecules at 10% R.H., which

justifies the faster-than-linear increase in capacitance shifts presented in the first steps of

Figure 3.18. In the last situation, the R.H. comes down to 10%; "black crosses" are not affected

for this change so they continue their diffusion into the substrate whereas "red crosses", in the

top layer at t2, simultaneously diffuse inside the substrate and flow outside the device to reach

equilibrium with the ambiance. Counting the crosses around the electrodes at time t1 and t3,

it is easy to realize than even though R.H. is 10% in both cases, the number of crosses is higher

at the last moment. This effect can explain the hysteresis phenomena and is also observed

in Figure 3.18. It is straight forward to expand the same reasoning to the situation in which

a sensing layer is placed on the substrate. For this scenario, the electrodes plane would lie

underneath this first layer, making the shift of capacitance slower at the beginning, when the

analyte is far from the electrodes, and accelerating it progressively as the analyte approaches

the electrode plane. After this point, the process would present an analogous behaviour to the

above described.

Standard plated IDE devices: Differential mode operation

As it has been explained, the large thickness of the substrate involves very high stabilization

time and masks the actual contribution of the thin sensing film. Differential measurements,

in which the signal of an uncoated device, C0, is subtracted from the whole sensor signal, C ,

can be used to solve this parasitic effect. Note that for the devices presented in this work, the

printed sensing layer is thin enough to let us assume that the diffusion process of gas into
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the substrate occurs as in the uncoated device, justifying the use of the differential method.

Figure 3.20 shows differential measurements of capacitance, normalized to the differential

nominal value (∆C )0 = (C −C0)0. As before, the measurements were taken over time under

different steps of humidity level ranging from 10 to 70%. Figure 3.20 (a) corresponds to a pair

of non-electroplated devices. Despite the fact that the differential signal looks saturated and

linear for low R.H. steps, it is not stable over time or at high R.H. levels. On the other hand,

Figure 3.20 (b) shows the signal from the same devices presented in Figure 3.18, where 1 µm of

nickel was electroplated on the electrodes. Despite the signal remaining noisy for high levels

of humidity, an important improvement in stability could be observed.

Figure 3.20: Differential measurement of capacitance normalized to the differential nominal value
(∆C )0 = (C −C0)0. The measurements were taken over time under different humidity steps (from 10 to
70%) for (a) a pair of non-electroplated devices; and (b) the same devices presented in Figure 3.18, where
1 µm of nickel was electroplated [117].

The sensitivity tested over different devices resulted 0.86 ± 0.07 fF per 1% R.H. (or equiva-
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lently 0.078 ± 0.006% of (∆C )0 per 1% R.H.) for bare silver electrodes; and 1.5 ± 0.3 fF (or 0.14

± 0.03% of (∆C )0 per 1% R.H.) for 1 µm thick plated nickel electrodes. The applied error is the

standard with 95% of confidence.

Finally, we measured a last pair of devices with 5 µm-thick nickel electroplated layer. The

sensor response is presented in Figure 3.21 and shows a high degree of stability over time

and along different measurement cycles. The sensor signal was practically saturated and as a

result, the linearity and stability of the sensor were sensibly improved. In this case, the output

of the printed sensor is presented along with a commercial sensor (see experimental in Section

3.4.3) and the performances are comparable. The achieved sensitivity is 2.36 ± 0.08 fF per 1%

R.H. (2.3 ± 0.5 fF / 1% R.H. for several measured devices) corresponding with 0.216 ± 0.007%

of (∆C )0 = 1.09 pF per 1% R.H., or 0.040 ± 0.001% of the nominal value C0 = 5.87 ± 0.25 pF per

1% R.H. The applied errors were again the standard with 95% confidence. The coefficient of

linearity was 0.9971. The hysteresis was calculated from the maximum mismatch encountered

between increasing R.H. steps (represented as "up" in the figure) and decreasing R.H. steps

(representing as "down" in the figure) data; its value was found to be less than 4.4 fF or 0.4% of

(∆C )0.

The final response time, associated with the absorption process, was calculated according

to the equation 2.13 described in Section 2.2 of Chapter 2, corresponding with the 63% of

the maximum value of capacitance (reached at equilibrium) for every increasing step of

R.H. shown in Figure 3.21 (a), and is equal to 24 ± 3 s (standard error with 95% confidence).

Equivalently, we can define the response time for desorption, as the one corresponding with

the 37% of the maximum value of capacitance for every decreasing step of R.H. Its value

was similar to the absorption time, 22 ± 4 s. The response time can be defined as well in an

alternative manner as the time necessary to rise from 10% to 90% of the stable maximum

value of capacitance. In this case, both absorption and desorption time response resulted in

∼4.5 min. In any case, apart from the dependence of the response time with temperature (the

temperature is kept constant in these experiments), it also depends on the R.H. value (specially

at high values of R.H.) through the activation energy term Ea in the diffusion coefficient D (see

Equation 2.15). Nonetheless this dependence is neglected here because it is smaller than the

range of error encountered for the response time τ. For more precision in the determination

of τ, a faster sampling of time needs to be performed during the measurement of capacitance.

The experiments leasing to the results in Figure 3.21 were realized between 10 and 70% R.H.

Beyond this level, CAB loses stability as a consequence of the clustering of molecules of water

in its interior. This problem has already been treated somewhere else [142] and solved by

cross-linking the CAB [143].

Passivation of the printed silver electrodes with nickel could be a justification for the

improvement in the stability of the electroplated sensors. Although this phenomenon is

not totally understood and more studies are needed, we hypothesize that when the printed

electrodes are in direct contact with the ambiance, silver is likely to interact with humidity,

oxidizing and/or releasing some possible trapped organic residual from the ink. Further
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Figure 3.21: a) Differential measurement of capacitance normalized to the differential nominal value
(∆C )0 = (C −C0)0 versus time. Measurements were taken at room temperature for a device with 5 µm-
thick layer of nickel over a period of time divided into two cycles of different humidity steps (from 10
to 70%). In this case, the output of the printed sensor is presented along with a commercial sensor.
(b) Normalized differential values of capacitance against R.H. "up" ("down") stands for increasing
(decreasing) humidity level. 1st and 2nd indicate the measurements cycle. The slope of the line gives the
normalized sensor sensitivities corresponding with every axis [117].

studies made on similar IDE structures in collaboration with the Institute of Physical Chemistry

from the University of Tübingeng in Germany [140], demonstrated that the stability of the

devices could be improved by extra annealing, supporting the hypothesis of the presence of

organic residual trapped into the silver ink. In any case, the stability of IDE has been studied

only for the short-term. In the long-term, plating could prevent oxidation and migration of

silver in presence of water. Indeed, I observed oxidation and change in colour of non-plated

IDE after some months in ambiance conditions while the devices plated with Ni did not show

any sign of oxidation or deterioration. Besides, extra stiffness provided by a thicker metal layer
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could reduce strains arising on the electrodes plane due to polymer swelling at high humidity

levels. Since the printed silver layer is very thin and porous [101, 146], non-electroplated

electrodes would result especially vulnerable to all these effects. Reviewing the performance

of every device exposed above, we conclude that the absolute sensitivity (in farads) as well

as the sensitivity relative to the baseline differential value, (∆C )0, increased sensibly with

the thickness of the electrodeposited layer. This would not be the case if we consider the

sensitivity relative to the nominal value of the capacitor C0, because C0 would increase with

the thickness of the electrodes faster than (∆C )0, impeding the rising of sensitivity. In any case,

it would be possible to drastically increase the sensitivity of the devices by reducing their size,

making W +G comparable to the thickness of the sensing layer, and this is exactly what I am

addressing in the next section.

3.5.6 Single mode operation for device coated with parylene-C (reduced size)

In order to evaluate the performances of IDE with decreased size and parylene-C interlayer,

and demonstrate their improved performances compared to the standard IDE, the sensors

were measured in similar conditions. Figure 3.22 represents the steady state measurements

(after sensors stabilization) of capacitance versus R.H. value up to 80%. The response was

linear, with a coefficient of linear determination R2 of 0.992 ± 0.012 up to 70% R.H. and 0.987

± 0.012 up to 80% R.H.

Figure 3.22: Steady state response of the capacitive humidity sensor for different upsweep and downsweep
values of relative humidity, and linear fitting up to 70% R.H. [118].

The absolute sensitivity, obtained as the slope of the curve in Figure 3.22 is 5.5 ± 0.2

fF / 1% R.H., much above the 0.86 ± 0.22 fF / 1% R.H. (bare silver electrodes), 1.5 ± 0.3

fF / 1% R.H. (1 µm thick nickel electrodes) or 2.36 ± 0.08 fF / 1% R.H. (5 µm thick nickel

electrodes) encountered in the the standard IDE devices with similar surface area represented

in the previous Section. The relative sensitivity was 0.073 ± 0.003% / 1% R.H. for a nominal

capacitance value of 7.548 pF, almost twice the value of standard IDE case (0.040 ± 0.001%

/ 1% R.H. of 5.87 pF). It can be observed that the hysteresis, i.e. the difference between the
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R.H. upsweep and downsweep curves is negligible, making the sensor highly reversible. Figure

3.23 shows the transient behaviour of the sensor, which has been subjected to two different

groups of increasing and decreasing R.H. pulses. The sensor response time, defined as the

necessary time to move from 10% to 90% of the maximum stable signal during absorption,

was found to be ∼ 4.5 min (comparable to the response time of the standard IDE devices).

Contrary to the case of standard IDE devices, the sensor was stable in time without the need

of electrodeposition, probably due to the barrier effect that parylene-C has for the substrate,

or to the extra annealing (3 hours instead of 40 minutes at 150 °C) of the silver patterns

that favored their complete sintering and removal of any organic residual coming from the

ink formulation [140]. Nonetheless, the top electrodes on non-coated samples, which were

exposed to the air, showed oxidation after few months. Furthermore very long annealing times

may not be suitable for some low heat resistant polymeric substrates, keeping the option of

electroplating appealing for certain applications. The IDE sensors with parylene interlayer

also came back well to the baseline value and presented reproducibility along the different

pulses cycles to which it was subjected.

Figure 3.23: Transient response of the sensor (on the right axis) against two cycles of upsweep and
downsweep pulses of relative humidity from 10 to 80% (left axis) [118].

3.6 Conclusions

As a conclusion of this chapter, capacitive-based humidity sensors have been fabricated

on flexible foil by means of only additive methods. The sensors could be separated in two

categories. The first category (standard IDE) consisted of an interdigitated electrode structure

made of silver nanoparticles, inkjet printed on a PET substrate and electroplated with a thicker

layer of nickel. The selected silver ink exhibited better adhesion performances on PET than on

PI regardless of pretreatment with oxygen plasma, which was however useful to increase the
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smoothness of the printed lines edges. In the second category of sensors (IDE with decreased

size), I targeted the fabrication of IDE fabricated using similar technology but with decreased

size and improved fabrication yield thanks to the introduction of a thin parylene-C film

between both electrode combs. The parylene-C layer worked as electrical insulation, allowing

printing very compact electrodes without any risk of shortcircuits. The value of capacitance

per surface area obtained for devices with well aligned and non-overlapped electrodes was

increased by a factor 4 compared to standard IDE, reaching a value of 0.45 pF/mm2 for an

electrode pitch of 60 µm and an inter-electrodes gap as small as 12 µm.

Afterwards, the potential of the aforementioned devices for sensing has been evaluated for

relative humidity capacitive sensing, by inkjetprinting on top a test layer of customized CAB,

whose electrical permittivity and thickness is sensitive to relative humidity. For the standard

IDE I utilized another uncoated device as a reference for differential measurements of relative

humidity in an atmosphere of air. An analysis of the working principle of the differential

mode showed that differential measurements drastically improved the linearity and hysteresis

of the sensor output, since they enabled the cancellation of the parasitic influence of the

substrate, which is usually too thick to allow a quick stabilization of the sensor response. High

sensor stability has been obtained only for nickel electrodeposited devices. Moreover, it is

worthwhile to remark that electrodeposition on inkjetprinted patterns is a smart solution for

the simultaneous fabrication of temperature and gas sensing platforms. The temperature

sensor performance would also benefit from the electroplated layer. Chapter 5 addresses

this point. This plating technology could also be used in general for chemicapacitors and

chemiresistors, widening the choices of functional sensing materials and transducers able to

discriminate different gases by using an array of printed gas sensors.

Last but not least, even though electrodeposition did not significantly increase the nominal

value of capacitance, it also played a role in improving the relative differential sensitivity. In

any case, further reduction of the device size would yield to an important increase in the

sensor sensitivity and this is what I demonstrated with the IDE devices with decreased size.

The improvement of the sensitivity is due to two reasons: increase of nominal capacitance

per surface area, and maximization of the interaction between the electric field and the

thin sensing layer. The characterization of the sensors in both steady and transient state

offered devices with linear behaviour up to 70% r.h., stable and reproducible signal, and an

improved absolute sensitivity of 5.46 fF/1% R.H. for devices smaller than the standard IDE. It

is worth noting that the parylene-C layer acted at the same time as a passivation barrier for the

substrate, lessening the need for differential mode measurements. The step electrodeposition

for stabilization of the devices was substituted in the case of IDE with decreased size for

extra annealing time of the electrodes [140]. However, we observed oxidation on non-plated

lines after few months in contact with the air. Furthermore very long annealing times may

not be suitable for some low heat resistant polymeric substrates, keeping electrodeposition

or deposition of a second layer of parylene-C on printed lines interesting options for some

applications requiring long-term use.
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In future efforts, the width of the inkjet printed electrodes could be further decreased by

using 1 pL ink drops instead of 10 pL, or alternative printing methods such as microcontact

printing [87, 102] or hydroelectrodynamic inkjet printing [147, 147]. In the same way, the gap

between electrodes could be even smaller than the 12 µm achieved in this thesis (see Table 3.2).

In this case, the decrease in thickness of the parylene-C layer to few hundreds of nanometers

should be needed in order to keep the validity of the model, which is perfectly feasible. The

described technique could be applied for other kind of sensors, such as sensors for other gases

or mechanical strain. In this work and for sake of simplicity, we functionalized our sensors for

relative humidity (R.H.) detection with a test CAB sensing layer. However, the sensing layer

can be optimized for R.H. by cross linking CAB [143], or its composition can be modified to

sense other gases.
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4 Inkjet-Printed Capacitive Humidity
Sensors on Foil Based on Parallel
Plates

4.1 Introduction

In this chapter, I present the realization and characterization of fully inkjet-printed gas mi-

crosensors on flexible plastic foil based on parallel plate (PP) capacitive structures. Two

different structures have been developed: the first one is the standard PP capacitive gas sensor

configuration where the gas sensing layer is "sandwiched" between the top and the bottom

electrode [146]. The second one is based on a large array of PP-MEMS microbridges where the

polymeric substrate act as swelling-driven sensing layer [148]. The differences between both

structures and their advantages compared to prior works on capacitive sensors is highlighted

and discussed.

Fully printed standard PP R.H. sensors The majority of capacitive gas microsensors re-

ported in the literature are fabricated on rigid substrate and based on interdigitated electrode

(IDE) structures [27–29]. The reason is that IDE structures are better adapted to CMOS process

because they usually make use of only one metalization layer from the CMOS stack on top

of which the specific sensing layer can be deposited during a simple post-processing step.

The company Sensi r i on has commercialized sensors produced with such technology. How-

ever, in IDE structures, the electric field lines pass trough the insensitive substrate, creating a

capacitive contribution in parallel to the contribution from the sensing layer that seriously

degrade the sensitivity of the device. This phenomenon was explained in [122] where the

authors proposed to use a parallel plate structure to increase the sensitivity of the humidity

sensor. This sensor was also integrated in a CMOS stack where an empty layer was formed by

etching between parallel conductive plates and filled afterwards with a polyimide sensing layer

using inkjet printing through a small window on the top plate. They measured a sensitivity

of 0.31% of change in capacitance per 1% relative humidity (R.H.). Nevertheless, the authors

also encountered a high temperature sensitivity of the sensor of 0.19% °C−1 and hypothesized
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that unfilled regions within the sensing layer and deflection of the top membrane due to

thermal expansion could be the reasons. The top electrode needed to be patterned to let the

analyte reach the sensing layer and diffuse laterally, determining a sensor response of ∼ 70

seconds. Other example of parallel plate humidity sensor involving a complex patterning of

the top electrode was presented in [149]. The sensor was optimized for a fast response time of

1 second and had integrated a polysilicon heater to measure high levels of R.H.

The situation of gas sensors made on foil is similar in terms of the sense that the most

commonly used geometry is IDE. Although some articles describe PP humidity sensors on

foil [49, 50], the most part of the groups opted for fabricating IDE structures [1] to benefit

from the easy deposition of the sensing layer and its full exposure to the analyte without

complex top electrode patterning. However, the issue of the interaction of the electric field

with the substrate for IDE described on silicon structures can be worsened when using plastic

substrate. The reason is that polymers absorb gas in a similar way as the sensing layer does, so

the contribution of the substrate to the total capacitance is not constant anymore, but varies

with the presence of analyte. While this can be seen as an advantage in terms of sensitivity,

the substrate is not always optimized for sensing so its sensitivity may degrade the sensor

performances in terms of selectivity and specially response time. As mentioned in Section 3.1,

the described situation is more critical for printing technologies where the patterning resolu-

tion is usually limited to ∼ 100 µm. To eliminate this influence of the substrate, differential

measurements have been successfully performed before in [31] and evaluated for printing

devices in Section 3.5.5, yielding good results. However, they required an extra uncoated device

as reference. Another approach evaluated in Chapter 3 to reduce the degradation of the sensor

signal due to the substrate consisted of utilizing a thin sensing layer and a thick substrate pas-

sivated against moisture. Although the elicited two strategies were proven successful to obtain

relatively fast sensors, they both yielded low sensor sensitivity. Another implication of using

printed IDE structures is that they require many electrodes to get a reasonable nominal value

of capacitance, resulting in large devices of several squared millimeters. PP capacitors could

be used to eliminate the undesired interaction of the substrate on the sensor output because

in this geometry the electric field lines are fully confined into the sensing layer between the

electrodes (see Figure 2.1 in the introductory section of Chapter 2). This situation reverts also

in a high sensitivity. Moreover, by reducing the thickness of the dielectric between the parallel

plates, the nominal capacitance of PP structures is increased. However, the fabrication of fully

printed PP structures is specially challenging due to usual chemical incompatibilities between

the sensing layer and the solvent of the ink used to define the top plate electrode. This solvent

can affect the sensing layer modifying its sensing behaviour. Even worse, the solvent of the ink

can render the device non-operational by dissolving the sensing layer, creating electric paths

between the top and the bottom electrode.

In the first part of this chapter, I demonstrate the fair chemical compatibility between

the electrode ink and the sensing layer through the fabrication and characterization of fully

inkjet-printed PP capacitive humidity sensor on PET foil (see Figure 4.1 (a)). It was also

highlighted that the use of inkjet-printed PP structures for gas sensing drastically reduces the
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patterning requirements for the electrodes compared to IDE geometries or PP fabricated by

means of clean-room technologies. The reason is that the porosity and uneven surface of the

inkjet-printed silver top electrode makes them non-continuous and permits the penetration

of the analyte into the sensing layer, making unnecessary the patterning of complex combed

electrodes or grids onto the sensing layer. This low demanding patterning resolution facilitates

the miniaturization of the inkjet-printed sensors, very challenging for the case of printed IDE.

Smaller devices have smaller footprint and involve less material usage. The utilization of inkjet

printing allows the deposition and fine patterning of a broad range of materials in very thin

layers, introducing significant improvements in the nominal value, sensitivity and response

time of PP capacitive sensor. Finally, the printed sensing devices were characterized against

pulses of relative humidity (R.H.) and their performances were analyzed. The fabricated

devices, with a surface area as small as 1 mm2, were able to supply a nominal capacitance

value of around 3.5 pF and a offered 5 to 8 times better sensitivity than the IDE devices reported

in Chapter 3 without the need of performing differential mode measurements or depositing

moisture barriers on the substrate.

Figure 4.1: Sketch comparing a (a) standard and (b) a MEMS-based parallel plates capacitive gas sensor.

Fully printed PP-MEMS R.H. sensors In the second part of this chapter, I report on a sec-

ond approach for capacitive sensing of R.H. consisting on the development of fully printed

suspended MEMS microbridges on PET substrate. I call this devices PP-MEMS to differentiate

them from the standard PP devices presented at the beginning of this chapter. Contrary to

standard PP devices where the sensing operation is based mainly on changes in the permit-

tivity and thickness of a sensing layer in the presence of gas, the PP-MEMS are based on a

new working principle for gas sensing based on the swelling of the polymeric substrate which

acts as the sensing element. This principle complements well the IDE and the PP sensors

described in Chapter 3 and in this chapter since it shows no dependence with the analyte

permittivity. While the former sensors are good to detect molecules with high permittivity

(such as water), the second is more sensitive to large molecules that occupy more volume and

induce higher swelling in the substrate.
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In spite of the fact that inkjet printing on plastic substrate has been investigated as a

promising technique to develop bi-dimensional and non-movable devices at high throughput,

low-cost and large area, the technology has been barely exploited for surface micromachin-

ing of movable structures. Few previous works can be found where inkjet-printed movable

microstructures were fabricated on rigid substrate: merely to characterize the mechanical

properties of printed metals [86] or briefly presented as MEMS [85] without electrical char-

acterization. Only very recently, in 2013, an inkjet-printed MEMS has been reported in [84],

where the authors described the fabrication of cantilever-based switches through a relatively

complex process involving also spin coating and the definition of via-holes. On the other hand,

MEMS are gaining interest in the field of large-area or flexible systems due to the possibility

to employ them in many new applications. In these scenarios, polymers need to be used as

substrate material. For example, the fabrication of a "smart MEMS sheet" for the displacement

of small objects on a flexible foil was recently presented by Prof. Fujita’s team at the University

of Tokyo [73]. However, these MEMS were fabricated using clean room processes which limit

their realization on a large-area and increase their production cost. The application of printing

techniques to the fabrication of large-area and flexible MEMS production has been introduced

in a work combining inkjet-printed organic transistors with millimetric polymeric actuators

on a large-area reported in [79, 150] by Prof. Someya’s group at the University of Tokyo, for the

fabrication of flexible ultrasonic systems. In that case, the inkjet printing was applied only to

fabricate the organic transistors, but not the actuators.

In the second part of this chapter, I take advantages of inkjet printing to develop arrays of

fully printed MEMS microbridges on polymeric foil through four steps, all of them occurring

at temperature lower than 120 °C. As in the case of standard PP, the PP-MEMS devices were

realized using a surface micromachining process based on inkjet printing of every necessary

layer, sacrificial, electrical and structural. The geometry of the microbridges could be adapted

through simple modifications in the printing layout and number of printed layers. Extra

bridge stiffness was also obtained by electroless plating Ni on the silver printed bridge. Every

microbridge was electrostatically deflected for characterization and finally their operation

as capacitive sensors for relative humidity (R.H.) has been demonstrated. The application of

the device as a capacitive sensor became possible owing to the high capacitance value of 1.5

pF provided by many microbridges connected in parallel. The PP-MEMS microbridges were

arranged in arrays of 2 mm x 2 mm surface area formed by 80 individual microbridges of 120

µm x 80 µm size each.

Compared to a membrane-like device providing an equivalent capacitance, the array devel-

oped here finds advantages in terms of fabrication simplicity and mechanically robustness.

On top of that, due to the small mass of every independent microbridge, the device would

present smaller sensitivity to accelerations than a large membrane.
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4.2 Fully printed humidity sensors on foil based on standard paral-

lel plate (PP) structure

4.2.1 Design and theory of standard printed PP humidity sensor on foil

The geometry and design of the fabricated standard PP relative humidity (R.H.) sensors is

depicted in Figure 4.4 (d). The devices consisted of a thin dielectric sensing layer "sandwiched"

between two square-shaped electrodes. The bottom electrode is directly printed on the

substrate whereas the top one is printed on the dielectric sensing layer. A grid was initially

patterned on the top electrode as in [49] to let the environmental moisture to reach the sensing

layer. This kind of standard PP sensor is named type I. In the section 4.2.3 below I demonstrate

that the porous nature of the inkjet-printed silver along with the uneven profile of the top

electrodes make unnecessary the top electrode patterning. Standard PP sensors with an

non-patterned continuous top electrode were also fabricated for comparison and named type

II sensors, simplifying the printing process and permitting the development of smaller devices.

As it was stated in the introduction to the chapter, one of the biggest advantages of such PP

devices is that the electric field is confined within the thin sensing layer between top and

bottom electrode, making them insensitive to dielectric changes in the substrate. Therefore,

the behaviour of the standard PP gas sensors is intrinsically different from that of interdigitated

devices described in Chapter 2 and Chapter 3. Contrary to the case of interdigitated electrode

capacitors, the calculation of the capacitance, C , of parallel plate capacitors is straight forward.

If the surface area of the electrodes (plates) is A and they are separated by a dielectric of

thickness h and dielectric constant (or relative permittivity) εr then:

C = ε0εr
A

h
(4.1)

where ε0 is the dielectric constant of the vacuum.

Applying Equation 4.1 to Equation 2.3 (Section 2.2 of Chapter 2), and combining with

Equations 2.4 and 2.5 from the same section, it is possible to deduce the variation of the

standard PP sensor capacitance in presence of gas (in steady state) by taking into account

the two main physical effects occurring in the device: change in the dielectric constant and

thickness of the sensing layer due to absorption of the analyte (see Figure 4.2).

δC = ∂C

∂h
δh + ∂C

∂εr
δεr (4.2)

=−ε0εr A

h2 δh + ε0 A

h
δεr (4.3)

=−ε0εr A

h
Qφ+ ε0 A

h
φ[(εa–1)–Q(εr –1)] (4.4)
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where εa is the dielectric constant of the analyte in liquid phase (76.6 for water), φ is

the volume fraction of the analyte in the sensing layer and Q is an experimental coefficient

representing non-ideal swelling. Q can be considered close to 1 (ideal swelling) for rubbery

elastic polymers like is the case of the cellulose acetate butyrate (CAB) polymer used as sensing

layer in the presented device.

Figure 4.2: Sketch describing the working principle of standard parallel plate (PP) capacitive humidity
sensors.

Making use of Equation 4.4, it is possible to plot the physical sensitivity ∆C /φ against h for

different values of εa and εr . The physical sensitivity refers to the normalized sensitivity of the

sensor regardless the amount of present analyte, reflected in the term φ. φ affects equally the

swelling an the dielectric constant contributions as it can be seen in 4.4. Figure 4.3 (a) shows

the physical sensitivity for a dielectric constant εr = 3, which is a typical value for polymers

used as sensing layer like the CAB used in here, and for two different analytes with typical

example values of permittivity εa = 1.5 and 4 [29]. If a third analyte with εa = εr = 3 were plotted,

only the swelling component would be present. In the same way, for an analyte of εa ' 6,

the dielectric and swelling components would cancel out and the analyte would appear as

"transparent" for the sensor. It can be noticed in the graphic that the swelling component is

independent of the analyte because the influence of the analyte molecular volume has been

canceled by dividing ∆C by the volume fraction φ . It can be also observed that in general, the

sensitivity increases for thin dielectric layers, which are also advantageous for reducing the

sensor response time according to the theory stated in Section 2.2 of Chapter 2. The graphic

in Figure 4.3 (b) shows similar results to the graphic in (a) but for the permittivity of water,

i.e., εa ∼ 80, which corresponds to our experimental situation for R.H sensing. The dielectric

constant of R.H. is so high that the swelling component can be neglected.

4.2.2 Fabrication of standard printed PP humidity sensor on foil

The fabrication process flow of the sensors is represented in Figure 4.4. It started with a

polyethylene terephthalate (PET) foil, 125 µm-thick, Melinex® ST506 from Dupont Teijim

Films ™ that was cleaned with standard solvents: acetone, isopropanol and deionized water.

The substrate was then dehydrated in a convection oven at 120°C for one hour. Afterwards,

the bottom electrode was inkjet-printed using a Dimatix DMP 2800™ printer from Fujifilm
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Figure 4.3: Theoretical estimation of the change in capacitance per analyte volume fraction against
different thickness of the dielectric sensing layer for a) analytes with similar permittivity, and b) water
[146].

with a 10 pl drops cartridge (see Figure 3.3 in Chapter 3) and nanoparticles-based silver ink

DGP 40LT-15C from Advanced Nano Products (Figure 4.4 (a)). The silver ink was sintered

in a convection oven at 150°C for 30 minutes. Figure 4.4 (b) shows the subsequent inkjet

printing of the R.H. sensing layer of cellulose acetate butyrate (CAB) on the bottom electrode.

The sensing layer was developed as in Section 3.3.3 of Chapter 3 and was dried in the oven

for 20 minutes at 90°C. Finally, the top electrode was aligned with the bottom electrode and

inkjet-printed onto the sensing layer as depicted in Figure4.4 (c). The silver of the top electrode

was thermally sintered by introducing the device in the oven for 1 hour at 90°C. Such low

temperature was adopted to not alter the properties of the CAB sensing layer.

Figure 4.5 shows different views of the PP R.H. sensors. Two kinds of configurations were

fabricated: the type I included a grid patterned on the top electrode for gas intake and the

type II possessed a continuous top electrode, without any patterning. The dimensions of the

fabricated sensors were in agreement with the design excepting the width of type II devices,

which resulted ∼ 850 µm instead of 1 mm (see Figure 4.4 (d)). The CAB sensing layer was 7.5

µm-thick. Thinner sensing layer would be beneficial for sensitivity (Figure 4.3) and response

time (Equation 2.14 in Section 2.2), but lead to fabrication yields problems as it is explained

below. The resulting capacitance values at room temperature were 3.8 ± 0.2 pF (at 40%
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Figure 4.4: Process flow of the fabrication of fully inkjet-printed parallel plate capacitive gas sensors: a)
inkjet printing of the bottom Ag electrode, b) inkjet printing of the CAB sensing layer, c) inkjet printing of
the top Ag electrode, d) final design with dimensions of the two types of sensor, with (type I) and without
(type II) patterned grid on the top electrode for gas intake [146].

R.H.) for type I devices and 3.6 ± 0.2 pF (at 35% R.H.) for type II devices. Our goal for the

fabrication of the two types of sensors was to asses the real need of a patterned top electrode

by demonstrating that the used nanoparticles-based silver, inkjet-printed on a uneven layer

(CAB in this case), had enough defects and pores to let the water molecules reach the CAB

sensing layer without the need of any patterning.

It can be observed in Figure 4.5 that the surface of the top electrode is full of ridges, probably

due to the high roughness of the CAB sensing layer underneath and/or chemical interaction

between the CAB and the solvent of the ink (partial dissolution of the CAB by the solvent).

Figure 4.6 contains a white light interferometer (Wyko NT 110 from Veeco) image of the top

electrode where the ridges can be seen with more detail, on top that an ZEIS LEO 1550

scanning electron microscopy (SEM) was used to observe the microscopical morphology of

the top electrode. A high porosity and the presence of voids can be observed. Finally, several

images of the cross section of the PP device can be seen on the bottom part of the Figure.

The cross section images of the PP structure obtained with the SEM reveal that the ink of the

top electrode partially penetrates into the sensing layer, probably because of holes and other

defects existing on the surface of the CAB layer and because of the partial dissolution of the

CAB by the solvent on the top electrode ink. The dissolution of CAB may have occurred in spite

of the small amount of solvent deposited at every printed drop and the efforts realized to find

a commercial silver ink chemically orthogonal to the CAB layer. The previous reasons were in

any case the limiting factor to the thickness of the sensing layer, that could not be reduced

much below 7.5 µm maintaining a fair fabrication yield. Very thin layers are desirable to

enhance the nominal capacitance, sensitivity and response time of the sensor, but they would
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Figure 4.5: Optical pictures (top view) of the fully inkjet-printed humidity sensors. Top and bottom
(trough the transparent PET substrate) views, magnifications and details of every different layer, including
type I (grid) and type II (no grid) configurations [146].

facilitate shortcircuits between top and bottom electrode. In this sense, some work needs to

be made to increase the yield and reproducibility of devices by improving the homogeneity of

the sensing film surface, decreasing the amount of solvent used to deposit the top electrode or

increasing the chemical stability of the sensing material by cross-linking it. The cross-linking

of CAB was reported in [143].

4.2.3 Characterization of standard printed PP humidity sensor on foil

The fabricated devices were characterized against increasing and decreasing staircase and

pulses of R.H. (of 15 minutes of duration) ranging from 15% to 85 ± 2% in the customized gas

mixing system presented in Section 3.4.3 in Chapter 3, where a total 500 ml / min flow of a

controlled mix of dry and wet synthetic air flowed inside a small gas cell at room temperature.

The value of capacitance was registered at a frequency of 100 kHz with a LCR meter E4980A

from Agilent. A commercial sensor Sensirion SHT15 was used for comparative purposes.

The sensors signal against upsweep and downsweep changes in R.H. at room temperature

is presented in Figure 4.7. Both types of sensors responded almost linearly to R.H, especially

below 60% R.H. for which range the R2 coefficient was 0.97. Clustering of water molecules

in the CAB layer can be one of the reasons of the lack of linearity at high R.H. [143]. No

significant hysteresis was observed between upsweep and downsweep cycles, suggesting

quick stabilization of the sensing layer and good reversibility of the sorption process. The

sensor time response can be extracted from its transient response represented in Figure 4.8 for

99



Chapter 4. Inkjet-Printed Capacitive Humidity Sensors on Foil Based on Parallel Plates

Figure 4.6: Different images of the inkjet-printed top electrode of PP device including top view optical
picture of the electrode (top left), optical picture of a cross section of the device (bottom left), profile of the
top electrode taken with a white light interferometer (top middle) and images obtained with a SEM of
the top view (top right) and cross section views (bottom right) of the device.

the type II sensor. A comparison with a commercial sensor is also included in the graphic. The

average time constant of every kind of sensor was 25 ± 2 seconds for type I devices and 17 ± 2

seconds for type II. The time constant was defined in Section 2.2 of Chapter 2 as the necessary

time to rise from 0 to 63% of the maximum signal (stabilized). The time response of the sensors,

defined as the necessary time to rise from 10 to 90% of the maximum stable sensor signal is 50

± 20 and 70 ± 30 seconds for type I and type II devices respectively for the step 15 to 30% R.H.

Therefore, there is not a real difference in response time between type I and II devices. The

mismatches should be rather attributed to the low fabrication reproducibility between the

different tested devices. The sensitivity of the sensors is 11.3 ± 0.4 fF / % R.H. for type I and 8.8

± 0.4 fF / % R.H. for type II devices. This mismatch resulted from the different nominal value

of both configurations since the relative sensitivity (in the 100% R.H. range) is 33 ± 3% for type

I and 27 ± 3% for type II. Compared to the IDE sensors developed in Chapter 3, these sensors

are around 3 times faster, maybe due to total lack of parasitic effect of the substrate. They

also present twice higher absolute sensitive than the most sensitive IDE fabricated (those with

a dielectric interlayer characterized in Section 3.5.6) for 9 times less surface area, and their

relative sensitivity is around 4.5 times greater.
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Figure 4.7: Measurements of capacitance against upsweep and downsweep variations of R.H. at the
sensor steady state. Comparison between type I and type II devices [146].

Figure 4.8: Capacitance (left axis) of the type II devices versus time for different cycles consisting of
upsweep and downsweep R.H. pulses (right axis) registered with a commercial sensor [146].

Calculation of the partition coefficient

In Section 2.2 of Chapter 2 it was introduced that the partition coefficient, K (Equation 2.6),

quantifies the capability of a polymer to absorb certain gas. Its relationship with the volume

fraction φ (Equation 2.8) was also highlighted. Now, it is straight forward to extract φ at

every experimental point of R.H. from the ∆C data in Figure 4.7 and Equation 4.4. Hence it is

possible to calculate the experimental value of K for our particular interaction between water

and the 7.5 µm-thick CAB layer executing Equation 2.8:

φ= PaK M

RTρ

where the molar mass of water has been considered M = 18 g/mol, its density in liquid phase,

ρ = 1000 Kg/m3, the absolute temperature (in K), T = 298 K, and the universal constant of ideal

gases, R = 8.314 J/(mol K). The partial pressure Pa of water has been calculated for every R.H .
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point using the definition of relative humidity (based on partial pressures) R.H . = Pa
Ps

100 as in

Equation 2.9 in Section 2.2. Ps is the saturated partial pressure calculated with the correlation

presented in [123] (see Equation 2.10):

Ps = (1.0007+3.46∗10−6P/100)∗6.1121∗e
17.502T

240.97+T ∗100

where P is the atmospheric pressure in Pa and T the ambient temperature in °C (25 °C).

Figure 4.9 shows the calculated partition coefficient of water in our inkjet-printed CAB layer,

K , at room temperature and different values of R.H. for type I and type II devices. No clear

trend was observed with R.H. for the levels tested so K was assumed R.H. independent. Thus

K was equal to 420 ± 50 for type I devices and 350 ± 30 for type II devices. Both values lay

in the same error margin, proofing no influence of the grid in the concentration of analyte

absorbed in the sensing layer and no interference of the printed silver top electrode in the

sorption process. Hence, we can establish a final common K calculated from the totality of

the experimental points equal to 390 ± 50.

Figure 4.9: Partition coefficient of water in the inkjet-printed CAB sensing layer at room temperature for
different level of R.H. Comparison between type I and II devices.

Summarizing, from the obtained values of response time, sensitivity and partition coef-

ficient for type I and II devices, it can be inferred that contrary to evaporated metals, the

porosity of the inkjet-printed silver employed in the top electrode makes further patterning

unnecessary to allow the penetration of analyte into the sensing layer. However, the variability

of the inkjet printing process utilized to deposit the sensing layer, as well as the limited batch

of tested devices introduced an error range which was too large to be totally conclusive. In any

case, it can be stated that the difference between both types is not significant for our practical

purposes. If more precision were required, other printing methods such as flexography or

screen printing could be used at least for deposition of the sensing layer. Due to the high sur-

face roughness that it induces, inkjet printing also limits the minimum sensing layer thickness

needed to get reasonably high fabrication yield. The reported sensors have proven robust

enough to withstand the typical handling and bending occurred during all the tests without
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special precautions.

4.3 Fully printed humidity sensors on foil based on parallel plate

MEMS (PP-MEMS) microbridge structure

4.3.1 Design and theory of printed PP-MEMS humidity sensors on foil

The PP-MEMS R.H. sensor presented in the second part of this chapter consisted of an array

of 80 microbridges like the one sketched in Figure 4.10. The bridges could function separately

or could be connected in parallel to operate together. Each bridge was designed to be formed

by a 200 nm-thin, 65 µm-wide silver bottom electrode; and a thicker (∼ 2 µm) 80 µm-wide

suspended silver top electrode that acted as well as movable microbridge. This thickness

was selected to provide the bridge with certain mechanical robustness, critical during the

step of photoresist release. The suspended microbridge was fabricated with the help of a

sacrificial layer of photoresist placed in between the two electrodes and removed afterwards

as described in the Section 4.3.2 below. The thickness of the sacrificial layer was expected

to be ∼ 5 µm, and corresponded with the height of the microbridge before being released.

Sacrificial layers thinner than 5 µm resulted in poor fabrication yield due to the collapse of

the bridge during the removal of the sacrificial material (stiction). The expected capacitance

value of every single bridge was of ∼ 20 fF, calculated using the Equation 4.1 as if every bridge

were a parallel plate capacitor. This assumption is valid since the bridge is metallic and has a

rectangular bottom electrode below. The surface area of the equivalent PP capacitor is thus

the superposed area of the bridge with its bottom electrode, i.e. A =WB ∗WT in Figure 4.10.

Figure 4.10: Sketch of the structure, materials and dimensions of the developed PP-MEMS R.H. sensor on
foil before being released [148].

In the fabricated array that can be seen in Figure 4.13, the bridges were arranged in 10

columns separated by a distance of 200 µm. Each column was composed by 8 rows of micro-

bridges placed in line and separated by a distance of 240 µm. The bottom electrode was a

continuous line shared by the 10 microbridges in the same row. In order to reach a capacitance
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value easily readable with standard laboratory instruments, the 80 bridges in the device were

connected in parallel. All the bottom electrodes were connected together by large pads placed

at both sides of the array. Similarly, all the bridges were contacted by pads placed above and

below the array. The size of the contact pads was 1 mm x 1 mm. The total expected capacitance

was of 1.5 pF.

The presented microbridge was shaped as a beam. Thus, standard beam-theory can be

applied in first approach to model its deflection. Also, since the structure can be treated

as a parallel plate structure, the parallel plate model for MEMS can be used to model its

electrostatically-driven deflection. This model states that in static mode, the mechanical force

on the bridge FM is equal to the electrostatic one FE . Assuming that the deflected beam is

subjected to an elastic deformation, its behaviour can be assumed as the one of a spring. Then,

the mechanical force applied on the bridge is given by the Hook’s law

FM = ke f f d (4.5)

where d is the deflection of the beam and ke f f f is the effective spring constant of the beam.

On the other hand, the electrical force exerted on each of the two parallel plates charged with

a total charge Q is defined as:

FE = 1

2
EQ (4.6)

where E is the total electric field existing between the plates, and the term 1/2 accounts

for the fact that the electrostatic force exerted on one plate (the suspended in this case) is

generated by the electric field generated exclusively by the other plate i.e. E/2.

The total electric field between two parallel electrodes subjected to a total difference of

potential V is by definition

E = V

g −d
(4.7)

where d is the deflection of the bridge and g the original gap in between the plates (see

Figure 4.10). Then, isolating Q from the definition of capacitance (C =Q/V ), and combining it

with Equations 4.5 and 4.7, we obtain:

FE = 1

2

CV 2

(g −d)
(4.8)

Considering that the capacitance of every microbridge depends on its geometry according

to Equation 4.1, and looking at the geometry in Figure 4.10, we have that for every deflection
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C = ε0εr WB WT /(g −d), and Equation 4.8 becomes:

FE = 1

2

V 2

(g −d)2 ε0εr WB WT (4.9)

with ε0 and εr being respectively the dielectric constants of vacuum and the dielectric

between the plates, air in our case (εr = 1); and WB and WT being the width of bottom and top

electrode as depicted in Figure 4.10.

According to the condition stating that in static deflection, the mechanical force on the

bridge FM (from Equation 4.5) is equal to the electrostatic one FE (Equation 4.9), the next

relationship must be prevail at every potential applied to the bridge:

ke f f d = 1

2

V 2

(g −d)2 ε0εr WB WT (4.10)

The effective spring constant ke f f is proportional to E I /L3, where E is the Young’s modulus

of the bridge material, I is the bending moment of inertia of the microbridge and L its length.

If the microbridge were to be used as a resonator, the resonance frequency could be com-

puted as:

fr = 1

2π

√
ke f f

me f f
(4.11)

where me f f is the effective mass of the microbridge.

4.3.2 Fabrication of printed PP-MEMS humidity sensor on foil

All the chemicals employed during the fabrication of the MEMS array were purchased from

Sigma-Aldrich and used without further modifications unless otherwise stated. The fabrication

of the device along with an optical picture after every step is sketched in Figure 4.11. It started

with a 125 µm-thick PET substrate Melinex® ST506 from Dupont Teijim Films ™ that was

cleaned by successive immersion in acetone, isopropanol (both VLSI grade) and deionized

water baths for 10 minutes. After drying with nitrogen, the substrate was subjected to a

thermal treatment for 30 minutes at 140 °C for dehydration and thermal stabilization. Then,

we treated the substrate with low frequency (13.56 MHz) oxygen plasma for 35 seconds at 50

W to increase the substrate surface wettability. An undesired side effect of the oxygen plasma

treatment was a large spreading of the ink on the substrate, resulting in very wide printed lines.

This effect was considerably reduced while maintaining good wettability by heating up again

the substrate in the oven for 5 minutes at 120 °C. After plasma treatment, the bottom electrode

was inkjet-printed through two layers of silver-nanoparticles ink (SuntTronic Jet EMD506 from

105



Chapter 4. Inkjet-Printed Capacitive Humidity Sensors on Foil Based on Parallel Plates

SunChemical) with 20% solid content using a drop-to-drop space of 40 um (Figure 4.11 (a)).

The utilized printer was a Dimatix Fujifilm DMP-2800™ with 10 pL drop volume cartridges

(see Figure 3.3 in Chapter 3).

Figure 4.11: Sketch (left) and corresponding optical image (right) of every step of the PP-MEMS micro-
bridges fabrication process [148].

After sintering the printed bottom electrode at 140°C for 30 minutes in a convection

oven, the sacrificial layer was formed by inkjet printing two layers of commercial photoresist

Microposit® 1813® from Shipley diluted 90:10 (% weight) with propylene glycol monomethyl

ether acetate (PGMEA) to make it inkjet-printable by the utilized printer (see Figure4.11 (b)).

The drop-to-drop spacing used to form the sacrificial layer was 20 µm, the temperature of the

ink in the nozzle was 55°C, and the speed and frequency of the firing were 9 m/s and 7 kHz

respectively. Special care was taken during the alignment of the resist on the bottom electrode

to ensure its total coverage and to avoid future shortcircuits between the top and the bottom

electrodes. After the resist was annealed on a hot plate at 115 °C for 10 minutes, the previous

silver ink was inkjet-printed on it to form the top electrode-microbridge. The annealing of the

resist served to render it chemically resistant to the solvent of the silver ink. Nine consecutive

layers with a drop-to-drop space of 20 µm were printed to form the microbridge, which was

afterwards sintered on a hot plate at 115°C for 30 minutes (Figure 4.11 (c)). Although this

sintering temperature was rather mild and led probably to bridges with poor mechanical

properties, difficulties to dissolve the resist when it underwent temperatures higher than

115°C impeded me to increase the sintering temperature. Optional electrodeposition of

Ni was also demonstrated at this point to thicken the bridge if necessary (Figure 4.11 (d)).

Finally, the sacrificial layer was removed by dissolving it in acetone (Figure 4.11 (e)). Stiction

problems were avoided by performing freeze-drying process: the acetone under the bridge

was progressively replaced by isopropanol and finally by cyclohexane (HPLC grade), which was

frozen on a Peltier element (freezing point 6.47°C) and sublimated under nitrogen atmosphere,

avoiding capillarity forces that could pull down the bridge.

Using inkjet printing made it easy to control the geometry of the microbridges. For instance,

the height of the bridge as well as its thickness were controlled by selecting the number of
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printed photoresist or top electrode layers respectively. Figure 4.12 shows the relationship

between the thickness and the number of printed layers for the sacrificial photoresist layer

and the silver microbridge. The final selected values were ∼ 5 µm-thick photoresist and ∼ 2

µm-thick top electrodes. The previous values were chosen based on empirical observations,

seeking to maximize the fabrication yield. Although Figure 4.12 (bottom) indicates that 6

printed layers were sufficient to print ∼ 2 µm-thick top electrode, the flow of the ink toward

the pillars made necessary to print 9 layers as indicated in the process flow above. The final

released bridges had a typical height of ∼ 2.5 µm-thick, which is smaller than the thickness of

the sacrificial layer. The reason is that the bridges moved down after being released. The length

of the bridges was 120 µm and the width ranged from 60 to 80 µm. The bottom electrode was

65 µm-wide.

Figure 4.12: Thickness of the inkjet-printed sacrificial layer and consequently of the height of the unre-
leased microbridge (top) and thickness of the bridge (bottom) versus number o printed layers [148].

Figure 4.13 shows images of several arrays of MEMS microbridges successfully inkjet-

printed on PET foil. The figure contains optical image and magnified view of an array of

printed PP-MEMS microbridges (left). SEM-obtained image of the array with magnified view

(top right) and white light interferometer-obtained image view (bottom right) of the same

array showing its 3D topography. The SEM used was a ESEM XL 30 FEG and the interferometer

a Wyko NT 110 from Veeco. The accumulation of ink between the bridges during the printing

process formed pillars-like structures which were not found to be unfavorable for the proper

operation of the device.
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Figure 4.13: Optical image and magnified view of an array of printed PP-MEMS microbridges (left).
SEM-obtained image of the array with magnified view (top right) and white light interferometer-obtained
image view (bottom right) of the same array [148].

4.3.3 Characterization of printed PP-MEMS humidity sensor on foil

Electrostatic deflection of the PP-MEMS

In order to confirm that the microbridges were properly released and that they could be

operated as suspended structures, a voltage was applied between the bottom electrode and

the microbridge itself to electrostatically deflects it. The deflection of the bridges was measured

using a white light interferometer Wyko NT 110 from Veeco.

Figure 4.14 shows these experimental data for a bridge presenting a distance of 1.6 µm

between its top and its base. The experimental data were plotted along with a theoretical

estimation of the bridge deflection with the applied voltage obtained by solving the Equation

4.10. The effective spring constant ke f f was used as the only fitting parameter of the curve. It

was considered constant for all the deflections, and its best fitting value resulted k = 76 ± 4 N/m.

This value takes into account the material of the bridge, its sintering conditions, the bridge

geometry and anchoring effects. That value can be changed by varying all those parameters,

making possible to adjust the stiffness of the bridge to the required application. The effective

spring constant of the printed microbridge was expected to be lower than for a microbridge

fabricated using standard metalization methods (such as evaporation), due mainly to the

lower Young’s modulus found for printed silver (22 GPa [86]) compared to evaporated thin

film silver (74.8 GPa [151]) or to bulk silver (83 GPa). The difference is likely a result of the

nanostructure of the printed film.

With the dimensions indicated in the Section 4.3.1 and the determined ke f f , the expected

resonance of frequency for the microbridge would be, assuming the density of printed silver

to be 10.45 g/ml [152], is ∼ 133 kHz.
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Figure 4.14: Deflection of a PP-MEMS microbridge against different voltages applied between top and
bottom electrode: experimental points and fitting curve with deduced effective spring constant (top).
Profile of the microbridge measured with a white light interferometer at some selected values of applied
voltage [148].

PP-MEMS used as relative humidity sensors

As mentioned in the Introduction, the PP-MEMS sensor working principle is inherently differ-

ent from the one of standard PP capacitive sensors. The PP-MEMS sensor makes use of its

polymeric substrate that swells upon gas absorption. Our hypothesis is that when the substrate

swells, it bends and the bridges buckle up increasing the distance between the bottom and

the top electrode as depicted in the inset of Figure 4.15. The capacitance value of the array

should therefore decrease accordingly offering a mean for gas sensing. The results shown in

Figure 4.15 (where C’ < C) seem to agree with our assumptions. The tests were carried out for

relative humidity for the sake of simplicity but the principle applies to every gas in general that

could penetrates in PET. Indeed, according to Equation 2.4, the swelling of a polymeric layer is

proportional to the volume fraction φ, which would be higher for larger molecules. Therefore,

we would expect the sensor to be more sensitive to large molecules such as volatile organic

compounds (VOCs) than to small molecules like water. On top of that, PET has low moisture

intake. Since there is not sensing layer between top and bottom electrodes where the electric

field is distributed, and the dielectric constant of dry and humid air is always almost the same

and equal to 1, the PP-MEMS bridges capacitance is not influenced by the permittivity of

the analyte. Although it has not been tested, this fact suggests a big advantage compared

to standard PP or IDE gas sensor, based on changes of permittivity, where water is usually a
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big interference even at small amounts due to its high permittivity. In that way, PP-MEMS

sensors are a perfect complement for standard PP or IDE capacitive sensors. The functionality

of the sensor towards more specific analytes could be expanded by coating the bridge with

a customized sensing layer. This would induce stress on the bridge itself too. Non-contact

printing methods such as inkjet or laser induced forward transfer (LIFT) would be suitable

methods for such purpose. Alternatively, the substrate could be functionalized or passivated

at the same time to tailor the selectivity of the sensor.

As it was mentioned, for the sake of simplicity to proof the concepts, in this thesis work the

sensing tests were carried out for R.H. To perform the tests, the device was introduced in a

climatic chamber (see Section 3.4.3) able to provide controlled steps of relative humidity (25%,

45% and 65% R.H. in this case) at a fixed temperature of 30°C. After sensor stabilization for 30

minutes, the capacitance value was registered at 100 kHz for every step using an LCR-meter.

The device was tested for two downsweep cycles and one upsweep cycle, displaying a linear

behaviour with a coefficient R2 = 0.9757 with a precision due hysteresis of 4.3% R.H. The

sensitivity of the sensors was -1.92 ± 0.14 fF / 1% R.H. These values indicate a performance

poorer than the one of standard PP devices. However, as explained above, R.H. may not the best

analyte for the PP-MEMS device to display their best performance. With the characterization

of the PP-MEMS sensor for R.H., I just intended to show a proof of concept of this novel sensing

principle

Figure 4.15: Capacitance value versus relative humidity displayed by the PP-MEMS array operating as a
humidity sensor, along with a sketch of the hypothesized bridge behaviour [148].

According to the first term of the right part of Equation 4.3, − ε0εr A
h2 ∆h, the smaller the

microbridge height, the higher the sensitivity of the PP-MEMS gas sensor. Such equation is

still valid since we are still dealing with a PP structure. Nonetheless, the term ∆h needs to be

defined for the swelling-buckling-based operation through a suitable theoretical model.

Compared to equivalent devices based on the deflection of a continuous membrane, the

array developed here is easier to fabricate, more robust and more insensitive to accelerations,
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owing to the small mass of every independent bridge.

4.4 Conclusions

Parallel plate (PP) capacitive structures have been used for gas sensing, concretely for relative

humidity (R.H.) detection. Two different geometries based on two different working principles

were described. The first one consisted of standard PP capacitor where the dielectric between

the electrodes/plates is the sensing layer. Changes in dielectric constant and thickness of

the sensing layer upon absorption of R.H. are translated in capacitance shifts. The second

geometry is based on large arrays of PP-MEMS microbridges. The polymeric substrate acts in

this case a swelling-driven sensing layer that makes the devices to buckle up splitting apart

the PP electrodes. Hence, the capacitance of the device is decreased as a result. Although not

proven yet, changes in permittivity are not expected to have any influence in the capacitance

of the PP-MMES devices. A theoretical study of the working principle of the transducers and

the sensing principle is presented for both geometries, elucidating the differences between

parallel-plate, IDE and PP-MEMS capacitive gas sensors.

The sensors have been fabricated in both cases by means of inkjet printing of silver on

flexible PET foil, and have been characterized for R.H. variations. For standard PP sensors, their

geometry along with the large porosity of the printed top electrode permitted the fabrication

of simpler and more miniaturized devices than in the case of their IDE counterpart reported

in Chapter 3. The presented devices showed also better performances than IDE R.H. sensors:

high linear response up to 60% R.H., 30% relative sensitivity for full R.H. range and time

responses shorter than 30 seconds were achieved without the need of differential methods.

Thinner sensing layer would improve further the performance of the device. However, the

practical minimum film thickness permitting a good fabrication yield is in this case limited

to few µm by the nature of the inkjet printing process and the lack of homogeneity of inkjet-

printed films. Since the top electrode is deposited from liquid ink, the ink may have partially

dissolved the sensing layer or penetrated trough voids or defects reaching the bottom electrode.

The occurrence risk of top and bottom electrodes shortcircuit gets higher when the sensing

layer is thinner. Some future work should be carrier out to decrease the thickness of the

sensing layer and to increase the fabrication yield by improving the sensing layer homogeneity

and/or the chemical resistance of the CAB sensing layer through cross-linking it [143]. Inkjet-

printed CAB was used here as a test sensing layer for proof of concept, and despite the fact

that it offered good performance in terms of sensing and fabrication compatibility, the sensor

performance could be improved even further by using an optimized sensing material, or a

deposition method permitting good thickness control, such as flexography or screen printing.

Another mean to achieve good chemical compatibility between the top electrode ink and the

sensing layer would be to modify the solvent of the ink. Different nanoparticulate metals like

gold or copper are commercially available in solutions with different solvents. Ultimately,

microcontact printing could be used to patter the top electrode without worrying about

solvent compatibility, since it allows the transfer of thin dry layers making use of Van der Waals

111



Chapter 4. Inkjet-Printed Capacitive Humidity Sensors on Foil Based on Parallel Plates

forces [87, 102–106].

For PP-MEMS sensors, the electrostatic actuation of independent bridges was first of all

confirmed, then I demonstrated the possibility of interconnecting the 80 bridges of the array

in parallel to provide readable capacitance values of 1.5 pF. The potential of the array MEMS

microbridges was evaluated for capacitive detection of humidity. However, an increase in

sensitivity would be expected for larger molecules. By coating the bridges with a customized

sensing layer or by functionalizing/passivating the substrate, the operation of the sensor could

be expanded to detection of others analytes. Non-contact printing methods such as inkjet or

laser induced forward transfer (LIFT) would be suitable methods for such purpose. However,

a theoretical model to predict the sensor response to gases is currently missing and should be

elaborated for future improvements. The model developed in [153] to predict the bending of

flexible substrates coated with a metallic layer due to thermal mismatch could be adapted

to this scenario. Finally, by optimizing the pull-in voltage of every microbridge or tailoring

their geometry, the device could also find application as an array of MEMS switches, sensors

or actuators.

The work reported int this chapter suggests the potential of combining different sensing

layers in several PP structures for fabrication of selective sensors arrays. The presented

technology enables the development of very low cost, low power flexible gas sensing devices.

Chapter 5 will expand and materialize this concept through the fabrication of a multisensing

platform to be in integrated in a wireless smart label.
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5 Inkjet-Printed Multisensing Platforms
on Foil for RFID Applications: Inte-
gration of Capacitive and Resistive
Sensors with Thermodetector and
Microhotplate

5.1 Introduction

I present along this chapter the development of an inkjet-printed multisensing platform com-

patible with a radio frequency identification (RFID) label for monitoring of perishable goods.

Both the multisensing platform and the tag were fabricated on a foil substrate. Their integra-

tion can be achieved using foil-to-foil integration techniques. The multisensing platform takes

advantage of the know-how developed during this thesis in printing standard IDE structures

on foil (see Chapter 3), and utilizes this know-how for developing capacitive and resistive IDE

sensors, as well as fabricating printed resistive meanders to be used as temperature detectors

(RTD) and microheaters. All these elements are integrated on the same substrate to address

the simultaneous detection of different gas analytes (humidity, ammonia and other volatile

organic compounds) and temperature, owing to the combination in the same array of different

transducing principles (capacitive, resistive and hotplate), sensing layers and measurement

approaches such as differential read-out. The typical characteristics of inkjet printing pointed

out in Section 1.1, namely its maskless, contactless, localized character and its easiness for lab

scale prototyping, resulted to be especially advantageous in the fabrication of this multisens-

ing platform, on which the integration of many diverse transducers and sensing layers need to

be accomplished. Capacitive IDE relative humidity (R.H.) sensors with same architectures to

those described in Chapter 3 but with improved stability and resolution are included in the

tag. Since the ambient temperature plays an important role in gas sensing in terms of both

sensitivity and response time, it should be monitored or controlled during operation at every

moment. Therefore I first describe in this chapter the development of a simple platform where

a RTD is integrated with an IDE R.H. sensor as reported in [154]. The RTD resulted useful

113



Chapter 5. Inkjet-Printed Multisensing Platforms on Foil for RFID Applications:
Integration of Capacitive and Resistive Sensors with Thermodetector and Microhotplate

to calibrate the capacitive R.H. sensing as well as to obtain information about the ambient

temperature as a sensing parameter itself. Compensating the influence of temperature in gas

sensing is possible in some cases by monitoring the ambient temperature during gas measure-

ments and comparing the measured parameters with the data obtained in a previous thermal

calibration. In other cases however, it is required to actively control the temperature by heating

up the sensing layer above room temperature, in order to modify the kinetics of interaction

between the analyte and the sensing layer for enhanced sensing performances. Furthermore,

heating up the sensing layer could be used as well as a mean to cancel the influence of ambient

temperature on the response signal of gas sensors, simply by maintaining a higher-than-room

temperature during the entire sensing process. For that reason, the inkjet-printed resistive

structure developed for the RTD has been adapted to operate as a microhotplate as described

in the second section of this chapter. The microhoplate has been combined with the resistive

read-out of a sensing layer (chemiresistor), adding extra versatility to the sensing system by

generalizing its operation for resistive gas detection (besides capacitive). The operation of the

microhotplate in combination with the chemiresistor has been demonstrated for detection of

ammonia using a conductive polymer (polyaniline) sensing layer developed by our FlexSmell

partners from the research group of Prof. K. Persaud at the University of Manchester (UK) [155].

At the end of the chapter the different elements mentioned above have been integrated on a

common substrate forming a multisensing platform composed of two IDE capacitors, one

to be left uncoated and one to be coated for differential mode detection (see Section 3.5.5

in Chapter 3), a RTD for temperature detection and compensation, a small IDE structure

chemiresistive detection operating at room temperature and a microhotplate integrated with

a second chemireresistor using a polyaniline (PANI) layer for ammonia detection at 80 - 95°C.

The multisensing platform is fully compatible and readily integrable on a flexible RFID label

for perishable food monitoring, accomplishing the goal of the FlexSmell project.

Resistive temperature detector (RTD) for temperature detection and thermal compensa-

tion of relative humidity (R.H.) sensors Both the temperature and the humidity conditions

of perishable goods should be tightly controlled during their distribution to ensure their fresh-

ness. Besides being temperature a very important parameter to control by itself, the influence

of temperature in gas sensing is a well known fact. In Section 2.2 it was described that temper-

ature is a factor that affect both sensitivity and response time of capacitive sensors through the

thermal dependence of the partition (Equation 2.7) and diffusivity (Equation 2.15) coefficients

respectively. Some people have studied the influence of temperature in R.H. sensing and the

influence of the measuring frequency on it [40]. We have reported on the topic in [154]. The

first subsection of this chapter presents the simultaneous fabrication of arrays of R.H. sensors

and RTD, both of them inkjet-printed on flexible substrate. The R.H. sensors are based on the

planar standard IDE described in Chapter 3 with optimized resolution (120 µm instead of 200

µm pitch) and with the same inkjet-printed CAB sensing layer. The RTD rely on the variation

of electrical resistance with changes in temperature shown by some metals [88]. They were

formed by meander-shaped lines as for the flexible RTD realized by standard microfabrication
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methods reported in [32, 90]. Although silver inkjet-printed line-shaped resistors have already

been presented in the literature [92], the substrate used was glass and the authors did not

target sensing purposes, but the study of the thermal sintering of silver nanoparticles ink. The

authors found a temperature coefficient of resistance (TCR) of 2080 ppm/°C for lines sintered

at 240°C.

The combination of printed RTD with IDE R.H. sensors allowed the compensation of the

R.H. signals variations at different temperatures through an appropriate calibration. The whole

fabrication of the system is carried out at foil level and involves exclusively the utilization of

additive methods, namely inkjet-printing and electrodeposition. The electrodeposition of

nickel described in Section 3.3.2 was demonstrated to improve the RTD sensitivity (or TCR).

On the other side, an extra annealing of the IDE capacitors [140] made unnecessary their

plating for stable operation as in Section 3.5.5, at least for short to medium-term operation. For

long-term operation, plating of a passivation material such as nickel onto the inkjet-printed

silver electrodes still remains a better option since it prevents oxidation.

After inkjet deposition of the CAB sensing layer on the IDE, the sensors have been char-

acterized for R.H. and temperature sensing and their performances analyzed. Single mode

operation has been used for R.H. sensing characterization for simplicity, since the focus here

is not on the IDE sensing performance for R.H., but on its combination with the RTD. The final

sensors have been encapsulated at foil level and the encapsulation was shown not to modify

the sensors performance in terms of sensitivity or response time. Further details about the

fabrication of the encapsulation can be found in [154], or as a part of the thesis work of my

colleague A. Vásquez Quintero.

Microhotplates for chemiresistive sensors In the second part of this chapter I report on the

design, fabrication and characterization of an inkjet-printed silver microhotplate integrated

on polyethylene naphthalate (PEN) foil with an inkjet-printed IDE. The microheater was

separated from the IDE by a thin insulating organic layer. The features of printed microheaters

were improved through the development of different generations where the thermal perfor-

mances have been optimized through careful redesign of the heater shape and dimension.

Improved long-term stability of the sensors could be enabled by electrodeposition of nickel on

the heater [156] or gold on the silver IDE. The IDE was used then as a chemiresistor by placing

on top a layer of polyaniline (PANI) (a conductive polymer which conductivity changes in

the presence of ammonia) doped with poly(4-stryenesulfonic acid) that was synthesized and

deposited on the IDE by vapour-phase deposition polymerization by our FlexSmell partner E.

Danesh at the University of Manchester (UK) [157]. The proper operation of the PANI layer to

detect ammonia in air required high temperature of 80 to 100°C, supplied by the microheater

underneath, demonstrating the functionality of the presented device in particular and the

feasibility of low-cost and low power consumption printed micro-hotplates on polymeric foil

for gas sensing applications in general.
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Some works have reported on how integrated heaters improve the performance of capacitive

humidity sensors fabricated on silicon [149]. Some other publications reported on integrated

heaters in the domain of Metal Oxide (MOX) micro gas sensors. MOX gas sensors with on-chip

heater have been fabricated on traditional rigid substrates [13], and few works can be even

found dealing with MOX micro gas sensors fabricated on flexible substrate [1, 20]. Since MOX

sensors usually require high temperatures (about 200-300°C) to achieve a good performance,

heat resistant and relatively expensive polyimide was chosen as the substrate material for the

reported MOX on foil. They were also fabricated using standard clean-room technology, which

are costly and require special clean-room facilities. Other foil-like chemiresistors were already

based on PANI and a heating element for ammonia detection (some of them even fabricated

by printing techniques). In all the cases, high temperature was necessary to facilitate the

ammonia desorption from the PANI. For instance, Crowley et al. presented in 2008 screen

printing of silver electrodes using inkjet-printed polyaniline nanoparticle films as sensing layer

for conductimetric detection of ammonia [23]. They used a commercially available external

foil heater to improve the sensing performances at 60 to 80°C but the continuous heating

resulted detrimental for the nominal conductivity. E. Danesh and Prof. Persaud developed

in 2012 sensitive (sub-ppm) and reversible ammonia sensors using a polyaniline/carbon

black composite sensing layer on polyimide substrate. They used a ceramic sub-miniature

heater to heat it up to 80°C [158]. More recently, Claramunt and colleagues have reported

in [25] an ammonia sensor consisting of a polyimide flexible substrate, onto which an array

of silver interdigitated electrodes was inkjet-printed on one side, and a common heater on

the backside. The interdigitated electrodes were coated with carbon nanofibers decorated

with metal nanoparticles. The heater was used to clean the nanofibers and make the sensors

reversible. The large surface of the heater (few mm2) and the high thickness (50 µm) of the foil

separating the heater from the sensing layer, resulted in a relatively high power consumption of

around 150 mW to achieve the optimal sensing temperature of 110 to 120°C. Nevertheless, the

sensor showed only 3% change in resistance upon exposure to rather high concentrations of

ammonia (500 ppm). In this work we improve the state of the art by fabricating inkjet-printed

microhotplates of 1 mm2 with a novel sensing layer able to sense sub-ppm concentration of

ammonia at 80-95°C, requiring only 25-35 mW.

In summary, in this chapter low-cost sensing systems consisting of two IDE capacitors

to detect R.H. and a RTD to detect temperature and allow thermal compensation of the

capacitor, have been firstly fabricated on flexible PET foil by using only additive methods,

namely inkjet-printing and electrodeposition. The devices have been encapsulated at foil

level for protection and eventually characterized. Then, I described the development of two

generations of inkjet-printed microhotplates on PEN substrate consisting on silver heater

and IDE, separated by a thin layer of patternable dry photoresist. The whole process was

compatible to large mass production at sheet-to-sheet level. Their suitability for resistive

detection of very low concentrations of ammonia in sub-ppm range has been demonstrated

in dry and humid conditions using a polymeric acid-doped PANI sensing layer developed

by our FlexSmell partners at the University of Manchester (UK). The thermal performance
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of the hotplates was examined using micro-thermocouples in collaboration with FEMTO-ST

Laboratory in Besançon (France). Finally, all the previous elements have been integrated on

a common PEN substrate to build up a multisensing platform to be functionalized by our

FlexSmell partners at the University of Tübingen (Germany) and University of Manchester

(UK). The multisensing platform is compatible and was integrated with a flexible RFID label

developed by our FlexSmell partners at Holst Centre (The Netherlands) in collaboration with

EPFL-SAMLAB. We will shortly succeed in that way to fulfill the goals of the FlexSmell project

by developing a smart sensing system compatible with wireless communication for smart

food packaging applications.

5.2 Printed RTD for temperature detection and thermal compensa-

tion of relative humidity (R.H.) capacitive sensors on foil

5.2.1 Design of RTD and R.H. interdigitated electrode (IDE) sensors

A meander-shaped resistive thermodetector and a R.H. IDE capacitive sensor have been

simultaneously patterned on foil using inkjet-printed silver nanoparticles-based ink and

electroplated nickel as shown in Chapter 3. The geometry and dimensions of the platform are

represented in the sketch of Figure 5.1 (a) along with an optical picture of the final printed

device in (b). The expected resolution of the patterned lines were 100 µm and 20 µm for width

and gap respectively. The better expected resolution compared to standard IDE in Chapter 3

can be attributed to the use of a different ink as described later in 5.2.2. The IDE capacitors

were formed by 28 fingers of 4 mm length each, occupying a surface area of 4 mm x 3.5 mm

without taking into account the contact pads. It was designed to supply a capacitance of ∼
3.5 pF according to the theoretical model in Section 2.3.1. The meander-shaped resistive

thermodetector (RTD) had a total length of 317.9 ± 1.6 mm, designed to supply a resistance of

∼ 7 kΩ. It occupied a surface area of ∼ 11 mm x 3 mm.

5.2.2 Fabrication of RTD and R.H. IDE sensors

The fabrication of the R.H. and temperature sensing platform is based on the fabrication

process used for the standard printed/plated IDE on foil as described in Section 3.3. The

process flow along with an extensive study of the encapsulation can be found in [154].

Experimental

Substrate preparation The fabrication of these devices is very similar to that of the standard

IDE devices described in Section 3.3 of Chapter 3. The fabrication started with a polyethylene

terephthalate (PET) Melinex® ST506 foil, 125 µm-thick, from Dupont Teijim Films™ that was

cleaned by successive immersion and rinsing in acetone and isopropanol (purity > 99.9%) for

5 min, followed by immersion and rinsing in deionized water for other 5 min. After cleaning,
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Figure 5.1: (a) Sketch and (b) optical image of the printed sensing system of foil including two IDE
capacitor for R.H. detection and a thermoresistor. The materials and dimensions of the system are
sketched in (a) [154].

the substrate was dried with nitrogen and dehydrated in a convection oven for 1 hour at 120°C.

Finally, low temperature 2.456 GHz microwave oxygen plasma treatment was applied to the

substrate for 1 minute at 400 W under a flow of 400 sccm and 560 mTorr pressure in a system

PVA TePla PS210 to achieve enhanced surface wettability and improved printability.

Inkjet printing of transducer and sensing layer To form the IDE and the meander RTD,

silver nanoparticles-based ink SuntTronic Jet EMD506 from SunChemical) with 20% Ag solid

content was printed on the substrate heated-up at 45°C using a Dimatix Fujifilm DMP-2800™

printer with 10 pL drops cartridges. The optimum printing parameters were: two printed

layers with drops ejected at 5 kHz with a speed of 7 m/s and spaced 40 µm one from each

other (drop-to-drop space). The silver was sintered in a convection oven at 150°C for 3 hours.

The selected temperature was recommended by the ink manufacturer, and coincided with the

118



5.2. Printed RTD for temperature detection and thermal compensation of relative
humidity (R.H.) capacitive sensors on foil

maximum process temperature of the PET foil. However, we chose an extra long annealing

time to ensure the removal of the organic residual contained in the silver lines, seeking to

increase their chemical stability [140]. Afterwards, the lines corresponded to the RTD were

subjected to electrodepostion of nickel in a nickel sulfamate bath at 54°C, under an electrical

current density of 20 mA / cm2. Finally, a humidity sensing layer of cellulose acetate butyrate

(CAB) was fabricated by dissolving 65 mg of CAB in 4 ml of hexyl acetate (purity > 99%) as

stated on Section 3.3.3, and by subsequently inkjet printing the solution on the IDE. After

printing, the solution was dried for 30 min at 85°C in a convection oven forming a solid thin

film of CAB. The CAB sensing layer served to test the functionality of the IDE transducers for

R.H. detection. The fabricated sensors were optically evaluated with an optical microscope

and their profile measured using a white light interferometer Wyko NT110 from Veeco and an

alpha-step system from Tencor.

Encapsulation The developed sensors were further fully encapsulated using lamination

techniques following a process developed by the Ph.D. student A. Vásquez Quintero at our

laboratory [154]. The encapsulation layers were also flexible polymers to comply with the

flexibility of the system. The encapsulation process took place at low temperature of less than

85°C, compatible with the limited thermal stability of the polymeric materials employed. The

encapsulation was important since it served as protection of the sensors (especially of the

sensing layer) against dust particles, liquid droplets, handling, scratches, etc. Two different

strategies were investigated for the encapsulation of the sensor (see 5.2).

Figure 5.2: Sketch of the different strategies investigated to encapsulate the sensing platform: (a) using
dry photoresist + adhesive + porous membrane and (b) without using dry adhesive [154].

The first one consisted of the stack of 50 µm-thick dry film photoresist PerMX2050™ from

Dupont™ combined with 50 µm-thick dry adhesive ARClear® 8932. Both layers are deposited

and patterned as a frame around the sensors. Finally, a top 135 µm-thick acrylic copolymer

porous membrane was laminated on top of the frame (Versapor® 10000R from PALL). The

porous membrane was gas-permeable. The second encapsulation strategy omitted the use
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of the dry adhesive, saving one lamination step and reducing the total thickness of the stack.

However, oxygen plasma surface treatment was needed to achieve good adhesion between the

top membrane and the dry film photoresist without the use of the intermediate dry adhesive.

Results of fabrication

Figure 5.1 (b) depicts an optical picture of the fabricated platform with close views of the

IDE and the meander lines. The profile of the bare-printed silver lines and printed-plated

silver-Ni lines is shown in Figure 5.3. The images were taken with a withe light interferometer

and showed printed lines with a thickness of 230 ± 30 nm and bell-shaped cross section; and

printed-plated lines of a thickness of 1.0 ± 0.5 µm and quasi-rectangular shape.

Figure 5.3: Images obtained with a white light interferometer displaying the profile of the bare-printed
IDE capacitor (left), and the Ni-electroplated thermoresistor lines (right) in (a) perpendicular cross
section view [154] and (b) 3D surface mapping view.

The smallest width achieved for the printed lines was 99.1 µm with a standard deviation of

2.3 µm and the smallest separation between them was 20± 5 µm (see Figure 5.1 (b)). Compared
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to the standard IDE printed with the silver ink Anapro DGP40LT-15C presented in Section

3.5.2, the lines width is similar but the fingers pitch has been decreased from 200 um to 120

µm owing to the reduction of the inter-electrodes space. As a consequence, the capacitance

per surface area was also enhanced from 0.11 (or 0.12 for plated electrodes) to 0.23 pF / mm2.

Compared to the first IDE comb printed with the same Suntronic Jet EMD506 ink in Section

3.5.3 for IDE with reduced size, the width of the lines presented here was higher (99.1 µm

against 38 µm) due to a more extensive use of the oxygen plasma treatment. This effect was

pursued to increase the ratio width to gap and hence the capacitance value per surface area

(see Figure 2.8 in Chapter 2).

Figure 5.4: Optical pictures of (a) the printed RTD used in this section and (b) the printed RTD used with
improved line resolution used in the multisensing platform in Section 5.4.

The measured resistivity for the printed and printed-plated lines was 50 ± 9 µΩ*cm and

90 ± 40 µΩ*cm, respectively. The high deviation in the resistivity of the plated lines is the

result of the poor control of the plated layer thickness achieved during the electrodeposition

process due to the relative large voltage drop occurring across the resistance. Thus, the

outermost meanders are progressively thicker than the innermost ones. This situation is

clearly represented in the right graphic of Figure 5.3. This issue could be easily solved in

the future by adding more contact points for electrodeposition towards the middle part

of the meander. Figure 5.4 consists of two optical pictures of different RTD based on the

same meander-shaped structure. The one of the left corresponds to the one included in the

described platform whereas the one on the right has improved resolution and was used in the

multisensing platform described below in Section 5.4.

The measured resistance and capacitance of the printed devices at ambient conditions

(room temperature and 45%R.H.) were 7.0 ± 0.3 kΩ and 3.69 ± 0.9 pF, respectively. In spite

of the increase in resistivity of printed-plated lines compared to bare-printed lines, their

resistance decreased to 2.78 ± 0.18 kΩ due to the increase in the lines thickness. Finally, the

measured thickness of the dry CAB sensing layer was 6.7 ± 0.2 µm. The top and bottom view

of an array of complete platforms (including encapsulation) is shown in the optical pictures of

Figure 5.5. The transparent substrate permitted to see the structures from the bottom.
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Figure 5.5: Optical pictures of an array of encapsulated temperature and R.H. sensing platforms: (a) top
view and (b) bottom view [154].

5.2.3 Characterization of RTD and R.H. IDE sensors

The printed thermoresistors were characterized within a climatic chamber (Bench-Top Tem-

perature and Humidity Chamber, Espec) able to reproduce controlled temperature and hu-

midity conditions with a precision of 0.5°C and 2% R.H. respectively. The sample resistance

was acquired using the four-wires technique, in order to eliminate any possible resistive

contribution due to contact and probes resistances. The measurement protocol used was

the following: First of all, the R.H. was fixed at 40 ± 2% while sweeping the temperature up

and down between -10 and 60°C corresponding to typical ambient conditions. Then, the

temperature was fixed at 40.0 ± 0.5°C while the R.H. was ranged between 20 and 80% (also

corresponding to typical ambient conditions). The printed IDE capacitors were characterized

within the same climatic chamber described above under similar typical ambient conditions.

The measurement protocol was as followed: the R.H. ranged from 40 to 80% at different

fixed selected temperatures (15, 35 and 45°C). The limitation in the minimum temperature

and R.H. were imposed by the operation of the chamber. Data points were taken after 7s.

The customized gas mixing system of Section 3.4.3, allowing quick humidity variations by

the automatic gas flow control of dry and wet air into a small chamber of ∼ 170 ml at room

temperatures was used to measure the transient response of the IDE R.H. sensors.

5.2.4 Results of the operation of the RTD and R.H. IDE sensor

Theoretical considerations As described in [91], the temperature, T , is known to affect the

resistance of a metal, R, through the temperature coefficient of resistance TC R as follows:

R(T ) = R0[1+TC R ∗ (T −T0)] (5.1)

, where R0 refers to the resistance at a reference temperature T0 (usually equal to 0°C). If

the resistor is also subjected to mechanical strain ε, then R depends as well on ε through the

122



5.2. Printed RTD for temperature detection and thermal compensation of relative
humidity (R.H.) capacitive sensors on foil

gauge factor GF :

R(T ) = R0[1+TC R ∗ (T −T0)+GF ∗ε] (5.2)

Calculation of the temperature coefficient of resistance (TCR) Figure 5.6 shows the ther-

mal response of the printed/plated RTD as the normalized resistance (to the resistance at

0°C, R0) versus temperature. The tests were performed at a fixed value of R.H. of 40 ± 2%.

The experimental data in the graph are represented by discrete markers and the linear inter-

polation fitting is represented by a continuous line. The TCR was extracted from the slope

of the best fitted line and was (6.52 ± 0.05)*10−4 °C−1 (or equivalent 652 ± 5 ppm/°C) for

non-plated devices and (1.82 ± 0.06)*10−3 °C−1 (or equivalent 1820 ± 60 ppm/°C) for Ni-plated

devices. This increase in sensitivity in 3 folds is one of the benefits that plating brings to the

system. The coefficient of determination to a linear fit R2 was higher than 0.999 in both cases.

The hysteresis of the devices (defined as the normalized maximum difference between the

upsweep and the downsweep curves) was smaller than 1% for both cases.

Figure 5.6: Normalized resistance versus temperature of printed/electroplated resistors at R.H. = 40 ± 2%
for two different upsweep and downsweep cycles. The points show experimental data and the lines the
mathematical fittings by linear interpolation [154].

Influence of R.H. in the RTD The results presented in Figure 5.6 demonstrate the proper

operation of the RTD at 40% R.H. However, in logistic the devices will be subjected to different

values of R.H. as well. Therefore, the influence of R.H. in the resistance of the RTD must be

analyzed. Figure 5.7 displays the results of the tests performed to asses this dependence in

the most performing RTD fabricated (those plated with nickel) at a fixed temperature of 40.0

± 0.5°C. Figure 5.7 (a) shows the results of subjecting the plated RTD to low (44 ± 2%) and
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high (84 ± 2%) values of R.H. for 20 hours. The resistance increased in both cases with time.

However, whereas little influence (< 0.5% variation) was found after 20 hours in the RTD at a

low R.H., a high influence of 2.5% variation was observed at high R.H., suggesting interaction

of humidity with the organic residual inside the silver lines and/or oxidation of the silver lines.

In spite of the silver lines being plated with Ni on their top side, the water molecules could

have reached their bottom after diffusing into the substrate.

Figure 5.7: (a) Evolution as a function of time for the normalized resistance of the thermometer for
two different values of R.H. at 40.0 ± 0.5°C. (b) Resistance versus R.H. for two different upsweep and
downsweep R.H. cycles at the same temperature [154].

In Figure 5.7 (b), I show the resistance variation against changes in R.H. varying from 20 to

80 ± 2% R.H. every 40 minutes in successive up and downsweep cycles at a fixed temperature

of 40.0 ± 0.5°C. The influence of R.H. could be separated in two contributions: one of them

induces a decrease in the resistance after every up and downsweep cycle (with a sweeping

range of 60± 4% R.H.). The drift in resistance becomes progressively smaller at every cycle. The

other contribution is associated to a resistance fluctuation that follows well the upsweep and

downsweep R.H cycles. The maximum variation of R.H. in one cycle introduced a resistance

shift of only 0.2% in the worse case (corresponding to the first cycle). Such error in resistance
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corresponds to only∼ 1°C of error in the temperature determination considering the measured

TCR of 1820 ± 60 ppm/°C. Hence, the devices could be still suitable for applications in which

the R.H. does not reach high levels or where the required working time is limited to few days.

Even though the origin of the R.H. dependence is not understood, we hypothesize that the

fact that the resistance follows the R.H. cycles both up and downsweep could be associated

to strain generated in the silver lines as a result of substrate swelling upon R.H. absorption,

according to Equation 5.2. The decreasing stress during the downsweep cycle would force

the resistance to decrease as well. Another possible explanation could be the penetration of

water molecules into the silver lines, interacting with (chemically or inducing swelling in) the

possible organic residual. The steady drift due to oxidation mentioned if Figure 5.7 (a) should

still be present in the situation shown in Figure 5.7 (b), but this effect is now superposed and

mostly masked by the other phenomena associated to R.H. cycling. The predominance of

the cycling contribution becomes specially obvious when considering the fact that the RTD

resistance actually dropped after every cycle, suggesting that somehow the process of sorption

and desorption of water into the lines could have assisted the removal of the organic residual

from the line. Therefore, the sintering process should be improved by using for instance

infrared or photonic sintering that can locally induce high temperature in the metal lines

to calcine the organic residual material into the silver lines without damaging the substrate.

Another possibility for the drop of resistance after every R.H. cycle could be the reorganization

of the nanostructure of the RTD when subjected to small mechanical strains due to substrate

swelling. In any case, more studies, including long term operation, need to be carried out

to define possible interactions between the silver/nickel lines and humidity, as well as the

influence of the substrate on the resistor value due to stress generated upon swelling during

humidity absorption.

Humidity sensor measurements at different temperatures I characterized the signal of

the printed capacitive R.H. sensors against changes in R.H. ranging from 40 to 80% at three

different temperature points, 15, 25 and 45°C. The results are included in Figure 5.8.

It can be observed that the moisture intake and the associated capacitance increased

for high temperatures for the same R.H. point. This result was expected considering the

Arrhenius expression of the partition coefficient given in Equation 2.7 in Section 2.2 and the

demonstrated independence of the partition coefficient with R.H. encountered in Section

4.2.3 of Chapter 4. The dynamic behaviour (evolution with time) of the sensor is presented

in Figure 5.8 (a). On the other hand, Figure 5.8 (b) depicts an almost linear behaviour of

capacitance versus R.H. for every temperature.

The performances of the sensor (coefficient of linear determination R2, sensitivity and

hysteresis) are shown in Table 5.1 with their standard deviation for all the cases except for the

sensitivity, where the maximum between the standard deviation and the error of the linear

fitting in Figure 5.8 (b) has been used as error. The response time of the sensor has been

calculated as the necessary time to rise from 10 to 90% of the maximum stable signal at room
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Table 5.1: Performances of the printed IDE R.H. capacitive sensor as function of temperature.

Temperature (°C) Linearity (R2) Sensitivity (pF/100% R.H.) Hysteresis

15 ± 0.5 0.997 ± 0.002 0.32 ± 0.01 -
25 ± 0.5 0.981 ± 0.017 0.40 ± 0.05 ∼ 2% R.H.
45 ± 0.5 0.985 ± 0.005 0.47 ± 0.04 ∼ 1% R.H.

temperature. The time response (from 10 to 30% R.H.) resulted 360 ± 60 s. Encapsulated

devices were measured too and no difference in the response time was observed between

encapsulated and non-encapsulated devices.

Figure 5.8: Response of the capacitive R.H. printed sensors to upsweep and downsweep R.H. stair case
levels at different temperatures: (a) dynamic response and (b) static response [154].
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5.3 Printed microhotplates on foil for chemiresistive sensors

5.3.1 Design of the microhotplate

Two different generations of microhotplates were designed and fabricated by inkjet printing

silver nanoparticles-based ink on polyethylene naphthalate (PEN) foil. PEN has been selected

as substrate material because it presents the best trade-off between price and heat stability

compared to others commonly used polymeric substrates in printed electronics, such as

polyimide (PI) or PET. Heat stability is important to keep the polymer properties unaltered

during fabrication and especially during the operation of the heater at up to 120°C. On one

hand, PI has higher glass transition temperature than PEN (400°C against 155°C), but its

price in the market is much higher. On the other hand, PET is cheaper than PEN, but its glass

transition temperature ranges from 80 to 120°C and its maximum process temperature is

only 150°C. Despite the glass transition temperature of PEN being only 155°C, its maximum

process temperature is higher so that we can anneal the silver ink at 180°C for some hours

before altering the substrate. Temperatures as high as 150°C are not expected anyway during

the normal operation of the heater. For the second generation, two versions corresponding

to different heater designs were also defined. Both microhotplate generations consisted of

similar structures composed of the following layers stacked from bottom to top (see Figure

5.9): PEN substrate, meander-shaped heater, dielectric layer, interdigitated electrodes and

sensing layer. Nevertheless, the second generation differed from the first one in that it was

24 times smaller (1 mm2 instead of 24 mm2), used thinner substrate (50 µm instead of 125

µm) and also thinner dielectric film between heater and combed electrodes (14 µm instead

of 50 µm). This reduction in device size and dielectric layer thickness led to smaller thermal

inertia and less heat dissipation. As a consequence, better performances were expected for

the second generation of microhotplates than for the first one in terms of thermal and sensing

behaviour. On top of that, the version II of the second generation has been developed by

modifying the heater shape from a single to a double meander shaped as a square spiral, as

depicted in Figure 5.10, while maintaining the same surface area of ∼ 1 mm2. The purpose of

redesigning the heater was to improve the thermal homogeneity. Electrodeposition of nickel

on the heater is a possibility to increase its thermal stability [156].

Figure 5.10 depicts sketches of the two generations of the heaters included in the microhot-

plates. The heater from the first generation and the version I of the second generation were

designed as simple meanders for the sake of simplicity whereas the version II of the second

generation presented a symmetrical double meander (square spiral) shape to improve thermal

homogeneity. The optimization of each design to easily achieve the targeted temperature of

∼ 100°C at low power consumption, as well as the thermal distribution of every design were

firstly obtained by our colleague at EPFL-SAMLAB Dr. Malick Camara using finite element

methods (FEM) [155]. The software used for FEM simulation was COMSOL (version 4.2).

During these simulations, the thermal conductivity of both polymeric films (PEN substrate

and dielectric layer covering the heater) was fixed at 0.78 W*m−1*K−1, according to a literature

survey and the data base of the COMSOL software. A coefficient accounting for the overall heat
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Figure 5.9: Sketch of the structure of the printed microhotplate including from bottom to top: polymeric
substrate, inkjet-printed heater, thin dielectric layer, inkjet-printed IDE and conducting polymeric
sensing layer [155].

losses was applied to the 2D FEM model to fit the thermal measurements. This coefficient

was at 2.6 107 W*m−3*K−1. The results are shown in Figure 5.11. The outcome of the FEM

simulation indicated that whereas the first generation of heaters required around 150 mW

of power to achieve the targeted temperature, the second needed less 35 mW at identical

conditions. Furthermore, the thermal homogeneity was very poor for the first generation

compared to the second. Regarding the improvements introduced by the double meander

version of the second generation of heaters, the simulation envisaged better heat distribution,

with less heat concentrated at the centre, and lower thermal gradient toward the edges than

its single meander-shaped counterpart.

Figure 5.10: Layout of the different designed heaters: The first generation (on the left) was designed as a
large meander for reasons of printing simplicity. The second generation (on the right) presented smaller
size than the first one and was designed either as a single meander (on the top right), or as a double
meander shape for improved thermal performances (on the bottom right).

The first generation of the heater was designed as a meander of a total length of ∼ 41 mm

placed on a 125 µm-thick substrate. The meander shape was chosen for proof of concept due

128



5.3. Printed microhotplates on foil for chemiresistive sensors

Figure 5.11: Thermographic simulation obtained by finite elements method (FEM) of the temperature
achievable by the first (left) and second (right) generations of heaters at identical conditions (courtesy of
Dr. M. Camara).

to its simplicity to be inkjet-printed. Adjacent tracks were widely spaced by a pitch of 600

µm to further facilitate the printing process, and they were also relatively large: 300 µm-wide

on the layout. The heater thickness was designed to be 1 µm, resulting on a expected heater

resistance of 25Ω. The total surface area of the device was ∼ 24 mm2.

The version I of the second generation of heaters was as a meander of a total length of ∼
7.5 mm placed on a 125 µm-thick substrate. Adjacent lines were designed to have a pitch of

160 µm. The expected net resistance of the heater, i.e. subtracting the residual resistance of

the contact pads, was 40Ω. In the version II of the second generation, the meander-shaped

heater was replaced by a heater in the form of a double meander, with a total length of ∼
7.75 mm. The substrate was in this case only 50 µm-thick. The double meander shape was

intended to increase the symmetry of the heater, hence homogenizing the temperature over

its surface. To further decrease the thermal gradient, adjacent lines were placed closer to each

other at the outermost part of the device than at the innermost part (160 µm against 240 µm),

compensating for the larger heat dissipation occurring at the edge of the heater, compared

to at its centre. The square shape of the meander was chosen because round shapes are

challenging to inkjet print. The total expected resistance of the second generation of heaters

was also 40Ω.

For both versions of the second generation of heaters, the line width was designed to be
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around 70 µm. The minimum space between patterns was of 90 µm and the line thickness 0.5

µm. The total surface area of the device was ∼ 1 mm2.

On top of the heater, a dielectric film was laminated. The film was targeted to be patternable

and as thin as possible to optimize the heat transfer from the heater to the sensing layer onto

the film. A dry photoresist was chosen as described in [155]. Combed electrodes were printed

then on the dielectric film to complete the structure of the transducer. The combed electrodes

were similar for the two generations of hotplates, and were used as resistive transducer for

the conductive polyaniline (PANI) sensing layer deposited on top of them. To ensure a good

thermal homogeneity along the whole sensing area, we tried to align the electrodes with the

heater and kept their surface area slightly smaller than the surface of the heater. The electrode

consists of two interdigitated combs. The pitch of the electrodes was designed to be 120 µm,

corresponding to 60 µm width and inter-fingers gap space. The total expected thickness of

the electrodes was 250 to 300 nm. Silver is known to oxidize, presenting some limitations in

terms of chemical compatibility with many sensing layers. Therefore the electrodeposition of

a thin film of gold of ∼ 500 nm on top of the printed electrodes was targeted to ameliorate the

long-term operation of the device while broadening the utilization of sensing materials. Gold

is a noble material which is more chemically stable than silver.

The devices from the first generation were directly measured on using standard probes.

Therefore, their contact pads were simply squares of 1.5 mm-long side. However the devices

from the second generation were designed to be measured using a zero insertion force (ZIF)

connector (see Section 3.4.3), suitable for devices on foil. The utilization of the ZIF connector

required the contact pads to be as long as 1.4 cm to facilitate their insertion. In order to

minimize the heat dissipation on such long contact pads due to Joule effect, they were designed

to be much wider and thicker than the heater lines. The designed pads width and thickness

of the second generation of devices was 700 µm and 1 µm respectively corresponding to an

expected resistance of < 5Ω, which is negligible compared to the heater resistance. Moreover,

the insertion in the ZIF connector required all the pads to be on the same plane (the substrate

in this case). Therefore, the contact pads of the IDE needed to cover the step formed by the

patterned dielectric film laminated underneath.

5.3.2 Fabrication of the microhotplate

Experimental

The fabrication of the heaters along with some optical images is represented in Figure 5.12

and consisted of inkjet printing (using a Dimatix DMP 2800™ printer) of silver nanoparticles-

based ink (SuntTronic Jet EMD506 from SunChemical) on 50 µm-thick (2nd Generation) or 125

µm-thick (1st Generation) PEN foil (Teonex®Q65FA from Dupont Teijim Films™). PEN was

selected as substrate material due to its good thermal properties, as explained above in Section

5.3.1. It was cleaned by immersion for 5 minutes in acetone, isopropanol and deionized water,

dried in a oven for 30 minutes at 150°C and subjected to (13.56 MHz) oxygen plasma surface
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treatment for 35 seconds at 50 W. To optimize the wettability of the substrate by the ink (as

described in Section 4.3.2), the substrate was heated up again in the oven for 5 minutes at

120 °C. Two layers were printed selecting a drop-to-drop of 25 µm for the first generation

of heaters, and three layers at a drop-to-drop space of 40 µm were printed to fabricate the

second generation. The difference in the drop-to-drop space between generations was due

to the different resolution targeted for each one; small resolution of around 70 µm was not

possible to achieve using 25 µm drop-to-drop space. An extra layer of silver was printed for the

second generation of heaters to compensate for the loss in line thickness associated to highly

spaced printed drops. When printing the version II of the second generation of heaters, it had

to be considered that the printing quality is better along the printing head movement than

perpendicularly to it. Therefore, to maintain the symmetry of the layout, all the lines were

printed along the printing head (which moved horizontally) as follows: the horizontal lines of

the spiral were printed and dried first, and then, the substrate was rotated 90° and aligned to

print the vertical lines also along the printer head movement. The patterns were then sintered

in a convection oven for 3 hours at 180°C. The sintering temperature was higher here than in

the case of the other printed silver patterns described in this thesis to ensure a good thermal

stability of the printed heaters. Thermal stability is a must in this application since the device

is meant to work at temperatures up to ∼ 100°C. Eventually, we demonstrated the possibility

of electrodeposition a thin layer of Ni or gold on the silver heater for improved robustness.

Afterwards, photo-patternable dry photoresist 50 µm (1st Generation) or 14 µm-thick (2nd

Generation) (PerMX™ 3050 from DuPont™) was used as the dielectric film for the first and

the second generations, respectively. It was laminated onto the heater at 85°C and 2 bars

by our EPFL-SAMLAB colleague A. Vásquez Quintero (Ph.D. student). This dry photoresist

was selected because of its thermal stability, its mechanical flexibility, the fact that it can

be laminated at foil level and subsequently patterned by photolithography, and the good

performance that it offered in terms of printability and chemical stability. The dry photoresist

was patterned via photolithography to open contact windows on the pads of the device (see

Figure 5.12 (b)). On top of the dielectric foil, the electrodes were fabricated by inkjet printing

the same silver ink used to print the heater, and they were thermally annealed for 2 hours at

180°C. Annealing the IDE at high temperature was shown be be beneficial for their adhesion

to the dielectric foil and chemical compatibility with the sensing layer. Figure 5.12 (c) shows

optical images of the second generation of microhotplates right after printing the IDE). Two

layers were printed to form the electrodes, using a drop-to-drop space of 40 µm. Special

care was taken during printing the pads of the IDE from the second generation to ensure a

good step coverage of the dry photoresist. Figure 5.13 shows optical images of microhotplates

examples from both generations, before deposition of the conductive polyaniline sensing layer.

A device with combed electrodes plated with gold is also depicted. The measured dimensions

of the device are indicated below in the part dedicated to the results of fabrication.

The vapour deposition polymerization method was developed to form a thin polymeric

acid-doped PANI sensing layer on the polymeric hotplates (see Figure 5.12 (d)). The PANI

sensing layer was developed and deposited by our FlexSmell colleague E. Danesh at the
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Figure 5.12: Sketch of the microhotplates fabrication process flow (example for the second generation):
(a) Inkjet printing of the heater on the PEN substrate. The insets show optical images of the two versions
of the printed heaters after thermal sintering of the silver ink. (b) Lamination of a thin dielectric film on
the heater for electrical isolation. (c) Inkjet printing of the IDE onto the thin dielectric and optical picture
of the device in the inset. (d) Deposition of the polyaniline sensing layer.

University of Manchester (UK). More information about the sensing layer and results can be

found somewhere else [155, 157].

Results of fabrication

The meandered line of the first generation heaters resulted 397 ± 6 µm-wide on the fabricated

devices. The uncertainty of the measurements corresponds to the standard deviation. The

printed lines were wider in the real device than on the layout (300 µm) due to the lateral

spreading of the ink. The heater thickness measured 1.2 ± 0.2 µm and it resistance 25 ± 3Ω,

corresponding to a resistivity of 22 ± 3 µΩ*cm.

The version I of the second generation of heaters measured 36 ± 3Ω of resistance, close to

the expected value. On the contrary, the total resistance of the version II was 95 ± 7Ω. The
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Figure 5.13: Optical images of the two generations of microhotplates depicting examples including
a flexible array of the second generation, single devices and close views for both generations and an
improved device with gold-plated combed electrode.

mismatch between the experimental and the expected resistance, 40 Ω, can be attributed

to cracks observed at the corners of the spiral, appearing during the thermal annealing. We

believe that the reason of the cracks formation was the fact that the horizontal lines were

printed and annealed first and then the vertical lines were printed on top of them. Since the

horizontal lines were already dry when the vertical lines were printed on top, both patterns

did not merge properly, resulting in cracks formation during the final thermal annealing. This

problem could be solved by skipping the pre-drying of the horizontal lines prior to the printing

of the vertical lines on top. Nonetheless, the cracks and the increase of resistance did not

affect the good performances of the heater and the devices could be used without further

improvements.

For both versions of the second generation of heaters, the experimental line width ended

up being 68 ± 8 µm and the thickness of the lines 530 ± 90 nm. Both parameters were averaged

over nine devices, and the standard deviation was used as uncertainty. The measured resistivity

was 18 ± 7 µΩ*cm.

The IDE printed on top of the dry photoresist had a pitch of 120 µm, corresponding to a

measured width of 68 ± 8 µm and a measured inter-finger spacing of 52 ± 8 µm. The electrodes
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total thickness was 260 ± 50 nm. To prevent silver from oxidation, the electrodeposition of 400

± 270 nm of gold on top of the printed electrodes was demonstrated.

Finally, the measured average resistance of every contact pad was 2.3 ± 0.3Ω as aimed in

the design to minimize heat losses.

5.3.3 Results of the operation of the microhotplate

Microheater

Comparison of power consumption between generations The heating elements of the mi-

crohotplates were characterized to assess their thermal efficiency in terms of power dissipation,

as well as the temperature distribution at the surface of the dielectric layer laminated on the

heater. The characterization was carried out by our partners at FEMTO-ST Laboratory in

Besançon (France). Type S micro-thermocouples of 1.3 µm of diameter were brought in

contact to different points of the device area for a reliable experimental mapping of the sur-

face temperature [159], while DC currents were supplied to the heater using a source Agilent

B2901A. The power consumption was measured with the same source whereas the parameters

of the thermocouples and the room temperature were measured with multimeters Keithley

2700 and Keithley 2000 respectively. The results were compared to the finite element meth-

ods simulations carried out by our colleague Dr. M. Camara. Figure 5.14 shows the curve

temperature versus power for the two generations of the fabricated heaters. The line for the

second generation includes both versions because their behaviour is practically identical.

The power ranges from 0 to 350 W for the first generation and up to 80 mW for the second

generation, enough in both cases to achieve operational temperatures up to 100°C for the

former generation and 200°C for the latter. The reported temperature corresponds to the one

measured at the centre of the device, on the surface of the dielectric laminated on top of the

heater.

The data set corresponding to the first generation of heaters fit a straight line with a co-

efficient of determination R2 = 0.9960 and the relation between temperature T in °C and

power P in mW was T = (0.248±0.008)P +(28.5±0.7). This data set corresponded to a thermal

efficiency of 0.248 ± 0.008 °C / mW. On the other hand, for the second generation of heaters,

the data fit a line with R2 = 0.9973 and the relation between temperature T and power P is

T = (1.93±0.02)P + (27.7±0.8). The thermal efficiency was then 1.93 ± 0.02 °C / mW. Compar-

ing the slopes of the two lines, we can conclude that the second generation of heaters is 7.8

better than the first one in terms of the power dissipation needed to increase the temperature

of the sensor. The intercept corresponded to the room temperature at which the devices were

measured, and was almost identical for both generations. The results in Figure 5.14 matched

very well the FEM simulation depicted in Figure 5.11 for the second generation of devices, but

the simulated power was slightly underestimated for the first generation.
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Figure 5.14: Comparison of the temperature achieved at the centre of the heaters as a function of the
dissipated power for the first and the second generations of devices. The curve is similar for the two
versions (I and II) of the second generation (raw data courtesy of FEMTO-ST, Besançon (France)).

Improvement of the thermal gradient by using double meander heater Once being estab-

lished the superiority in terms of thermal performances of the second generation of heaters

compared to the first generation, we studied the differences between its first (double meander-

shaped) and second (single meander-shaped) version in terms of thermal distribution over

the device surface. Although both versions displayed similar power consumption as stated

above, the second version showed better thermal distribution than the first generation. The

surface temperature of the microhotplates was registered following two perpendicular lines,

along the x and y axes, that crossed the device and passed by its centre. Figure 5.15 depicts

the outcome of the measurements, taken at 50 mW and 40 mW, for the first and the second

version respectively. The slightly higher power applied to the first version of heater explains

why it reached higher temperature than the second version.

Figure 5.15: Comparison of the thermal profile of the surface for the 1st and 2nd versions of the 2nd
generation of micro-hotplates along (a) axis x and (b) axis y (raw data courtesy of FEMTO-ST, Besançon
(France)).
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The range of temperatures reached by the first type of device corresponded to 100 to

123°C along the x axis and 98°C to 118°C along the y axis, whereas for the second type,

the temperature range along the x and the y axes was 85°C to 105°C and 83°C to 105°C

, respectively. The figure confirms the better thermal distribution of the double meander-

shaped heaters, compared to the single meander-shaped, especially along the y axis and

toward the middle of the device. As predicted in the FEM simulation presented in Figure 5.11,

the first design lead to much higher temperature generation at the centre of the device than at

the edges, resulting in a non-homogeneous thermal profile. As an example, the maximum

temperature difference within the space of 600 µm corresponding to the central zone of the

single meander-shaped device resulted in 10°C (between 112°C and 122°C ) in the x direction

and in 13°C (between 105°C and 118°C ) in the y direction. The thermal gradient is not so

high in the double meander design, which presents a close-to-flat profile in the middle of

the device along both x and y axes: maximum temperature interval of 2°C (between 103°C

and 105°C ) in the x direction and of 4°C (between 102°C and 106°C ) in the y direction. This

selected zone (600 µm at the middle of the device) is meaningful since it mostly corresponds

to the sensing area where the combed electrodes were placed.

Owing to its superior performance, we further characterized the thermal behaviour of the

version II of the second generation of microhotplates over its whole surface by adding two

profile lines more to the one presented in Figure 5.15, as it is detailed in Figure 5.16 (a). The

FEM simulation image of the version II of heater, presented in Figure 5.11, is re-used for the

sake of clarity. Figure 5.16 (b) and (c) contain the three profile lines along x and y directions

respectively. Both the measurements and the simulations were carried out at 40 mW. The

experimental results fitted very well the FEM simulation, which accurately predicted the

nominal value of generated temperature, as well as the thermal distribution over the whole

surface. We observe that in general the temperature reached a maximum in the middle of the

device and decayed nearly symmetrically as the points get further from the centre. Thus, the

lines crossing the device at its centre, i.e. A and D, corresponded to the highest temperatures.

A maximum temperature of ∼ 107°C was registered at the centre of the device. The lowest

temperatures corresponded to the corners of the device and ranged between 73°C and 97°C.

Clear differences were not found in the thermal distribution between the profiles along the

different axes.

Demonstration for ammonia sensing

The application of the microhotplate was demonstrated by our partner E. Danesh at the

University of Manchester (UK) by depositing a sensing layer of PSSA-doped PANI on the top

IDE electrodes using vapour deposition polymerization process. Figure 5.17 shows an example

of the results for the 1st generation of microhotplates where the resistance (normalized to

the baseline resistance Rb) is plotted upon exposure to different vapour concentration of

ammonia over the range of 250 ppb to 3.65 ppm in dry air at different temperatures (from 20°C

to 80°C) generated with the heater.

136



5.3. Printed microhotplates on foil for chemiresistive sensors

Figure 5.16: (a) Thermographic simulation, obtained using FEM, of the version II of second generation of
microhotplates powered at 40 mW. Thermal mapping of the heater surface along three different lines
(one centered on the device and two at the edges) in (b) the x direction and (c) the y direction. The
measurements were performed by micro-thermocouples while operating the devices at 40 mW (FEM and
data courtesy of Dr. M. Camara (EPFL-SAMLAB) and FEMTO-ST, Besançon (France)).

The largest response magnitude was found at room temperature and decreased as the

temperature increased. However, elevated temperatures promoted the recovery of the signal.

The maximum required power to achieve good performance, at 80°C, was rather high ∼ 220

mW.

The second generation of microhotplates have been proven to ameliorate the power con-

sumption by operating well at 35 mW, which corresponded to a sensing temperature of ∼
95°C. These devices were functional and performing also under 50% R.H. conditions. More

details about the ammonia sensing experiments can be found in [155] and are expected to be

published soon by our partners [157].
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Figure 5.17: Normalized resistance of the hotplate (generation I) versus different concentration of ammo-
nia vapour from 250 ppb to 3.65 ppm in dry air, at four temperatures: 20, 40, 60 and 80 °C (max. 220
mW) with exposure and recovery time of 10 min and 30 min, respectively [155].

5.4 Printed multisensing platform on foil for RFID applications

The printed IDE R.H. capacitive sensors with integrated thermodetector and the microhot-

plates presented along this chapter in Section 5.2 and 5.3 respectively were combined on

the same substrate to form a multisensing platform. In this way, the multisensing platform

combined capacitive detection for R.H., along with three resistive channels: one for temper-

ature sensing, one with heating capability for ammonia gas detection and the last one for

detection of other volatile organic compounds such as alcohols. The multisensing platform

was designed to be integrated in a flexible and printed RFID tag developed by our FlexSmell

partners at Holst Centre (The Netherlands).

5.4.1 Design of the platform

Design of the platforms

The sensing platform was fabricated on a 200 µm-thick foil for reasons related to their inte-

gration, described in Section 5.4.2 and consisted of: 2 large IDE capacitive devices for R.H.

detection, 2 small IDE resistive devices (one with heater for ammonia detection and one

without heater for other VOCs sensing), and a RTD (see Figures 5.18 and 5.20).

The large IDE capacitors were designed for R.H. detection; one of them was coated with

a specialized sensing layer and the other, uncoated, was used as reference for differential

measurements. The large IDE devices were composed of 36 fingers 5 mm-long, spaced with a

pitch of 120 µm and occupying a total effective surface area of 5.1 x 4.2 mm2. The microhotplate

was, as the one described in the previous section, composed of a double meander heater of
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7.5 mm length, dielectric layer 14 µm-thick and one of the small IDE formed by 8 fingers of 0.8

mm in length with a pitch of 120 µm. It occupied a total effective surface area of 1 mm2. The

other small IDE device consisted of 14 fingers (1 mm-long) with a total surface area of 1.2 x 1.6

mm2, to be used for resistive gas detection without heater underneath. Finally, the resistive

temperature detector (RTD) was designed with 6 meanders composed of 240 µm pitch lines

of 6.7 mm in length each, adding up to a total length of 83.3 mm and occupying an effective

surface area of 7.3 x 2.7 mm2. Figure 5.18 is a sketch describing the distribution and size of

every component on the platform as well as relevant cross sections of the platform indicating

the material and thickness of every layer. The fabricated platform (excepting the IDE to be

printed on top of the microheater) can be found in Figure 5.20. The figure depicts also a close

view of every element,including the IDE over the microheater. The contact pads of this IDE

can be seen on the left side of the microheater.

(a)

(b)

Figure 5.18: (a) Sketch of the multisensing platform functionalized with 3 different sensing layers. Every
component device is labeled. (b) Cross-section sketches of the platform at three representative parts,
indicating the different component layers, materials and thicknesses.

The large IDE for capacitive detection were designed to provide a capacitance of 3.5 pF

before coating, according to the model in Section 2.3.1. Such capacitance nominal value was

selected to optimize the sensor read out by the RFID tag microcontroller. The RTD should

be of 1 kΩ before plating and ∼ 500 Ω after plating it with 1 µm-thick layer of nickel. The
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microhotplate was designed, as before, to have a 40Ω heater. The capacitance value of the

small IDE to be used as chemiresitor should be 0.5 pF. This value was relevant only for testing

purposes since the devices were intended to be coated with a conductive polymeric film

developed by our partners. A final resistance in the range of 10 kΩ to 1 MΩwas expected for

the coated IDE.

As we can see in Figure 5.18, the pads of the platform are compatible with the zero insertion

force (ZIF) connector described in Section 3.4.3. Although the platform will be eventually

integrated on the RFID tag by means of foil-to-foil techniques, the use of a ZIF connector per-

mitted to clamp and unclamp the platform in the tag as many times as necessary, facilitating

the characterization tests.

The platform was covered with a 14 µm-thick dry photoresist film that covered the whole

surface except for the IDE active area, the electrical contact pads and a trench around the

heater, where the top IDE must be patterned. The trench was defined to reduce the conductive

heat losses through the film.

5.4.2 Fabrication of the platform

Experimental

The development of the platform benefited from the expertise acquired throughout the fab-

rication of the sensing devices described before; it utilized the same fabrication techniques,

namely inkjet printing, electrodeposition, lamination and photo-patterning. However, the ver-

satility of inkjet is brought forward by patterning all the transducers in one metallization step,

except for the microhotplate that required a second metallization on top of the laminated dry

photoresist. The resolution of inkjet printing was improved compared to some of the previous

reported devices by employing the substrate treatment and printing parameters described

in Section 5.3.2. Although inkjet was used due to its compatibility with quick prototyping,

the fabrication of the platform could be readily expanded to other printing methods. We also

found that the dry photoresist used between the heater and the IDE in the hotplate could act

at the same time as protection layer for the platform and support frame for the subsequent

device encapsulation as described in Section 5.2.2 and [154]. The microhotplates imposed the

most demanding conditions in terms of silver ink sintering (3 hours at 180°C) and thermal

stability during operation. Therefore, the utilized substrate was also PEN (Teonex®Q65FA

from Dupont Teijim Films™) as described in Section 5.3.1. The PEN substrate was this time

200 µm-thick instead of 125 µm-thick to fulfill the requirements of the novel self-assembled

method based on water capillarity developed at Holst Centre (The Netherlands), envisaged for

the integration of the platform on the RFID tag [160].

The fabrication process flow of the multisensing platform is depicted in Figure 5.19 and

consisted of: a) first metallization using inkjet printing of Ag nanoparticles to pattern the

following transducers: two large IDE for capacitive detection, RTD, heater, small IDE for
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resistive detection (without heater) and contact pads compatible with ZIF connector. b) After

annealing the silver ink for 3 hours at 180°C, the RTD was nickel-electroplated as described in

Section 5.2.2 to improve its sensitivity (see Figure 5.6). The Ni plating of the IDE was optional

and subjected to chemical compatibility issues between the IDE material and its sensing layer.

In the same way, the heater could be plated if the current density and operation time intended

for the heater were to be very high. c) Lamination, exposure to UV light through a Cr mask

and development of the dry photoresist as described in [154, 155, 157]. The photoresist acted

as a protection barrier for the platform against chemical and physical agents. We believe that

it would also contribute to improve the adhesion of the devices underneath and to ameliorate

the robustness of the platform upon bending, reasons why the dry photoresist was laminated

at first on the whole platform surface. Afterwards, the photoresist was patterned to open

windows only on top of the IDE for their subsequent functionalization, as well as to uncover

the electrical contact pads of the platform and to define a trench around the area onto the

heater where the top IDE must be patterned (see Section 5.3.1). The RTD remained covered

with the intention of minimizing its interaction with moisture, avoiding the chemical and

mechanical instabilities reported in 5.2.3. d) Inkjet printing and sintering of Ag IDE on top of

the photoresist above the heater as in Section 5.3.2. e) Optional Au electrodeposition of the

microhotplate Ag IDE to improve its chemical stability. f) Functionalization of the different

transducers by inkjet printing, drop coating or spray coating performed by our different

FlexSmell partners. One large IDE was not functionalized to be used as reference in differential

measurements. Finally the electrodeposition contact pads are cut to make the platform

contact pads ready for integration using the ZIF connector or the foil-to-foil integration based

on the self-assembly reported in [160].
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Figure 5.19: Sketch of the fabrication process flow for the multisensing platform: a) inkjet printing
the first metallization of transducers using Ag nanoparticles ink; b) Ni electrodeposition of the RTD
(small IDE and heater optional); c) lamination, exposure to UV light through a chromium mask and
development of the dry photoresist to open windows for the functionalization of the different transducers
and interconnection of the platform; d) inkjet printing of Ag IDE on top of the photoresist above the
heater; e) Au electrodeposition of the microhotplate IDE; f) functionalization of the different transducers
by inkjet printing, drop coating or spray coating, cutting the electrodeposition contact pads.
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Results of the fabrication

Figure 5.20 consists of optical pictures of the platform with close view of every component.

Compared to the IDE capacitive devices in Section 5.2.2, the width and the gap space of the

fingers in this platform varied, 49 ± 4 µm and 71 ± 4 µm respectively (instead of ∼ 100 µm and

20 µm), due to the different surface treatment applied to the substrate. However, the pitch

was maintained at 120 µm and the lines consisted in both cases of single drop rows. Higher

ratio width to gap results in higher value of capacitance (see Figure 2.8 of Chapter 2). However,

we were not constrained by surface area limitations in the platform and printing large gaps

facilitated the maximization of the fabrication yield. The IDE thickness was 260 ± 60 nm, the

RTD thickness was 330 ± 120 nm (before plating) and the microheater thickness was 530 ± 90

nm.

Figure 5.20: Optical pictures of the printed multisensing platforms on PEN foil with close view of every
transducing component.

Figure 5.21 shows optical pictures of an array of the flexible printed multisensing platform.

The measured nominal values at ambient conditions of the different components of the

platforms are summarized in Table 5.2. The two large IDE are uncoated and their capacitance

is represented by C I DE1,2; the RTD resistance, represented by RRT D , includes bare-printed and

Ni-plated devices; the small IDE for resistive sensing are represented by RI DE1,2; and the value

of the heater is represented by Rh .
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Figure 5.21: Optical pictures of an array of flexible printed multisensing platforms on PEN foil (a) flat
and (b) rolled.

Table 5.2: Nominal value of capacitance and resistance for the different components of the multisensing
platform.

CI DE1 CI DE2 RRT D (Bare Ag) RRT D (Plated) RI DE1 RI DE2 Rh

(pF) (pF) (kΩ) (kΩ) (pF) (pF) (Ω)

3.7 ± 0.2 3.66 ± 0.15 0.74 ± 0.09 0.56 ± 0.04 0.52 ± 0.07 0.61 ± 0.02 84 ± 12

5.4.3 Characterization of the multisensing platform and its integration in the RFID
tag

Figure 5.22 (a) is an optical image of a multisensing platform with two large IDE (CI DE1 and

CI DE2), two small IDE (RI DE1 and RI DE2 without heater), and a RTD. The transducers described

above has been functionalized by our FlexSmell partners to detect R.H. and ammonia in gas

phase. CI DE1 and CI DE2 were employed to detect R.H. in differential mode (see Section 3.5.5

in Chapter 3) by coating CI DE1 with an specific R.H. sensing layer and leaving CI DE2 as a

reference. The R.H. sensing layer material was either cellulose acetate butyrate (CAB) or

poly(ether urethane) (PEUT). These sensing layers were developed by Dr. A. Oprea and the

Ph.D. student S. Pandule at IPC-University of Tübingen (Germany), and deposited by spray

coating through a shadow mask. RI DE1 was coated with polyaniline (PANI) for ammonia

sensing by E. Danesh, Ph.D. student at the University of Manchester (UK), using vapour-phase

polymerization deposition as in [155, 157]. RI DE2 was coated also by our partners at the

University of Manchester (UK) with a third sensing layer of polypyrrole for future detection

of alcohol. Ammonia is typically released during the spoilage process of fish [161], whereas

alcohols such as ethanol are strongly related to the spoilage of poultry and other meats [162].

Other examples of analytes relevant for food spoilage and the kind of food with which they are

associated are the following:

• Aldehydes: fruits, spices, essential oils, fried foods [163].

• Alcohols: Poultry and other meat [162].
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• Ammonia: Fish [161, 164], eggs [165].

• Esters: Fruits, abundant in apples [166]

• Limonene: Citrus fruits [167].

• Pyrazines: Roasted nuts, chocolate, bread, cocoa, coffee and browned meats, eggs, dairy

product and fish [168].

• Sulfure containing compounds: Garlic, onion, beer, putrid odor of spoiled meat [167,

168].

One of the main challenges existing in the field of gas sensing is the ability of a sensor to

distinguish, at different temperatures, certain analyte when several of them (including water

vapour) are present at the same time. This is the reason why a platform with many sensors

integrated and operating together is necessary to increase the selectivity towards the targeted

analytes. Figure 5.22 (b) is an example of the success of the multsensing platform approach; it

depicts two graphics of the characterization of the functionalized platforms: the image on the

left presents the capacitive response of the PEUT-coated IDE (CI DE1) against R.H. for different

temperatures (to be measured with the RTD), whereas the image on the right is the variation

of resistance of the small IDE coated with PANI in presence of different concentrations of

ammonia at room temperature in dry (0% R.H.) and humid (50% R.H.) air. Both the picture

and the measurements in Figure 5.22 are courtesy of Dr. A. Oprea and the Ph.D. student S.

Pandule from IPC-University of Tübingen (Germany).

Figure 5.23: Optical picture of the flexible RFID label developed by Holst Centre (The Netherlands) and
EPFL-SAMLAB (Switzerland), with the multisensing platform integrated in it by clamping in a ZIF
connector. A commercial reader was used to read-out the sensor data wirelessly.
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Figure 5.22: (a) Optical image of a multisensing platform with two large IDE (C I DE1,2), two small IDE
(RI DE1,2) (no heater) and RTD. C I DE1 is functionalized with an specific R.H. sensing layer (CAB in this
case) whereas C I DE2 is kept uncoated for reference, RI DE1 is functionalized with PANI for ammonia
detection and RI DE2 is functionalized with polypyrrole. (b) Characterization of the multisensing platform
for R.H. (using PEUT as sensitive material) and temperature (left), and ammonia (right) (Picture and
measurements courtesy of Dr. A. Oprea and Ph.D. student S. Pandule from IPC-University of Tübingen
(Germany)).

Figure 5.23 is an optical picture of the RFID label developed by Holst Centre (The Nether-

land) which includes an screen-printed antenna and PCB; an analog-to-digital (ADC) Si chip

(AD7150 from Analog Devices) as a front-end chip for the capacitive sensors; an RFID Si chip

(M24LR64-R from ST Microelectronics) for wireless communication; a Si microcontroller

(MSP430F1611 from Texas Instruments) to read-out the resistive channels, store data in data

logging mode and manage the RFID and ADC chips. The label is designed to be folded in

its middle, accommodating a thin film battery inside. A commercial reader (MB1054A RF

transceiver Demonstration Board from ST Microelectronics) was used to read-out the data

from the sensors. The multisensing platform is clamped in the label using a ZIF connector

for quick prototyping. However foil-to-foil integration is to be performed afterwards using a

method developed in Holst Centre (The Netherlands) [160] to self-align the platform, followed

by mechanical and electrical interconnection strategies developed by our EPFL-SAMLAB

colleague A. Vásquez Quintero, which consists of through-foil vias definition in dry photoresist

filled with isotropic conductive adhesive [169].

The implication of the platform design and the RFID label architecture on the gas sensing

process need to be taken into account in the future by establishing a logic measurement
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protocol managed by the microcontroller of the RFID label. For instance:

• In order to have an accurate value of ambient temperature and due to the close proximity

of the RTD to the microheater, it would be preferable to measure the temperature before

activating the microheater for ammonia sensing.

• If the power available in the label is not enough to simultaneously activate several

sensing blocks, one block should be switched off before the next one is switched on. In

this case the capacitive read-out should be activated right after the RTD so the former

can profit from the the recent temperature measurements obtained by the latter.

• The sampling time should be adapted to the demands of the application while trying to

minimize the overall power consumption.

• Etc...

5.5 Conclusions

I presented in this Chapter the design, fabrication and characterization of different inkjet-

printed sensing elements on foil and I demonstrated the potential of combining them in the

same multisensing platform to detect temperature, R.H. and ammonia gas. Moreover, the

multisensing platform is readily integrable in a flexible RFID label with sensing capabilities.

The multisensing platform includes two IDE devices for capacitive gas detection, a third IDE

for resistive gas detection at room temperature, a microhotplate formed by a heater and

a fourth IDE on top for resistive gas detection, and a resistive temperature detector (RTD)

for environmental temperature control. In this chapter I described how every transducing

element was individually fabricated using inkjet printing and electrodeposition on plastic

foil, and subsequently characterized (with test sensing layers for validation). Then, I showed

how all the individual elements were eventually combined on the same sensing platform

compatible with integration on a RFID label for food freshness and quality traceability control.

The label was developed in collaboration with the FlexSmell partners at Holst Centre (The

Netherlands). My role in this work was the fabrication of the transducers by means of only

additive processes, namely inkjet-printing and electrodeposition, compatible with large-area

production. These transducers were functionalized for the detection of R.H. and ammonia

by deposition of customized sensing layers developed by different FlexSmell partners at the

University of Manchester (UK) (responsible for coating the IDE resistive sensors) and IPC-

University of Tübingen (Germany) (responsible for functionalization of the IDE capacitive

sensors).

Regarding the IDE capacitors and the RTD, I have presented their combined design, fab-

rication and characterization as R.H. sensors and thermometers respectively. It was also

mentioned that the devices were encapsulated at foil level and low temperatures. The meander-

shaped RTD served as on-foil thermal compensation for the IDE capacitive humidity sensors.
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The R.H. sensors were characterized for different R.H. and temperature values ranging from

10% to 80% and from 15°C to 45°C , evidencing the need of thermal compensation during the

R.H. sensing process. The response of the bare-printed capacitive R.H. sensors was stable and

reproducible after several weeks, close to linear and reversible (little hysteresis). Compact

devices have been achieved by improving the printability of the ink on the polymeric sub-

strates, which also presented good enough adhesion to permit the electrodeposition of Ni on

the silver seed. Electrodeposition was desirable because the printed RTD increased their TCR

in almost 3 folds after electrodeposition of nickel on them. They displayed linear variation

with temperature, but also interaction with R.H. which was not fully understood. However, the

devices were still suitable for the most part of practical applications dealing with environmen-

tal monitoring where high values of humidity and temperature are not kept for long time. For

future improvements, the time consuming thermal annealing utilized could be substituted by

flash photonic or near-infrared sintering to increase the reliability of the sintering process and

the throughput of the fabrication. Passivation of the RTD against moisture using chemical

barriers, along with photonic sintering could contribute to an enhancement of its stability.

In regards to the microhotplates, the devices consisted of fully inkjet-printed silver heater

patterned on a PEN substrate and IDE on top of the heater, both elements separated by a thin

patternable dry photoresist. The power consumption and thermal gradient of the heaters were

optimized through the development of two different generations. The second generation of

devices outperformed the first one owing to their smaller size (1 mm2 versus 24 mm2), thinner

substrate (50 µm instead of 125 µm) and thinner dielectric film (14 µm instead of 50 µm),

demonstrating the crucial importance of good printing resolution and structure design. The

second generation of heaters was further improved in terms of thermal distribution through

the development of a second version, which involved the redesign of the heater geometry

from a single meander to a double meander shaped as a square spiral, while keeping the

same device footprint. Finally, the operation of the microhotplates as sub-ppm ammonia

chemiresistors was demonstrated through coating the IDE with PSSA-doped polyaniline

by means vapour-phase deposition polymerization. Both generations of microhotplates

displayed better performance at elevated temperatures generated by the heater than at room

temperature. Although not shown in this report, the second generation outperformed the

fist one and permitted fast and selective detection of ammonia in both dry and wet air when

operated at ∼ 95 °C, which required ∼ 35 mW [157]. The electrodeposition of gold on the

microhotplate IDE was demonstrated for better chemical stability and compatibility of the

IDE with the sensing layer.

The capability of the multisensing platform to detect relative humidity at different tempera-

tures and ammonia vapour at different values of humidity have been demonstrated. Inkjet

printing has been proven to be very convenient for the fabrication of this kind of systems that

include several devices with different line thickness and coatings, but that share a common

substrate. Inkjet printing also makes possible a quick redesign of the platform to add or

remove funcionalities.
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6 Discussion

This chapter aims to discuss the outcome of the different chapters of this thesis as a whole.

The results of each chapter are related and the implications of the utilized technology on every

developed device and its inclusion in the final multisensor platform is analyzed.

6.1 Theoretical considerations

Some theoretical models were developed by adapting the existing theory to our specific case

of materials and geometries in order to define the working principle of every fabricated sensor

and to optimize their design. The sensing principle of capacitive gas sensors is known to

be based on the diffusion of the analyte into the polymeric sensing layer. As a result, the

analyte modified both the sensing layer permittivity and its thickness. For an optimum design

of both IDE and PP capacitive sensors, the next points were highlighted as important: The

higher the difference between the analyte permittivity and the sensing layer permittivity, the

greater the sensitivity is (for a fix absorbed volume of analyte) due to larger changes in the total

effective permittivity. In the same way, the higher the volume of absorbed analyte is (either

due to the presence of a higher concentration or to larger analyte molecules) the higher the

change in permittivity and the swelling of the sensing layer is. Thick sensing layers enhance

sensitivity in IDE structure (until reaching a thickness equal to the fingers pitch, after which

the value of capacitance and the sensitivity saturates) but decreases sensitivity in PP structures

owing to larger separation between the parallel plates. In any case, for the case of humidity

detection, the permittivity of water is so high (εa = 76.6) that the swelling component can

be usually neglected. On the other hand, as in every diffusion-based process, time response

increases quadratically with the thickness of the absorbing layer so a compromise between

sensitivity and time response needs to be found in IDE capacitive sensors, unless IDE can be

fabricated with very small pitch, which is challenging using standard printing technologies.

For PP gas senors, thin sensing layer are advantageous for both high sensitivity and fast

response. Regarding PP-MEMS sensors using the substrate as swelling-driven sensing layer,

the sensitivity only depends on the absorbed volume of analyte, but it is independent of the

permittivity of the analyte. This marks a fundamental difference with the rest of the sensors
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presented, opening the door to the investigation of new sensing strategies leading to increased

selectivity. If a large volume of analyte is absorbed into the substrate of a PP-MMES sensors,

it would experience a large swelling that induces high stress in the MEMS bridge, making it

buckle up as a result. In terms of time response, the same considerations applying to standard

PP and IDE sensors apply to the PP-MEMS sensor as well, i.e., thick sensing layer (substrate in

this case) yields slow response.

In terms of the implications of making IDE gas sensors on foil, it has been described that

IDE generates electric field below and above the plane where they are contained, interacting

with the substrate and the sensing layer. Contrary to Si-based IDE gas sensors where the Si

substrate is insensitive to gas and thus does not affect the sensing process, the polymeric

substrate of our devices absorbs gas. If the substrate is considered as a sensing layer, this

effect is in principle beneficial for sensitivity. Nevertheless, the role of the substrate is usually

to provide mechanical support; hence it is not optimized for sensing and its contribution

considered as a inconvenience most of the times. Mainly, commercial substrates are usually

too thick to allow a fast sensor response time and they lack selectivity. The undesired influence

of the substrate has been circumvented by performing differential measurements where the

response of one IDE coated with a specialized sensing layer is compared to the response of

another uncoated IDE for reference. Differential measurements allowed fast response time

but did not result in high sensitivities. Moreover, the use of two devices and post measurement

signal treatment became necessary. Larger sensitivities could be achievable by adjusting

the ratio of sensing layer thickness to IDE pitch, by either increasing the sensing layer at

expenses of increasing the time response, or ideally by reducing the electrodes pitch as much

as possible, which is very challenging with printing techniques. As an alternative to differential

measurements, we have demonstrated passivation of the the substrate against absorption of

the analyte using a barrier layer. In PP structures, the electric field is exclusively contained in

the sensing layer "sandwiched" between electrodes so it does not reach the substrate. As a

result gas sensors based on PP present higher sensitivity and smaller response time than their

IDE counterparts without the need of differential measurements or substrate passivation.

Concerning IDE capacitive transducers, an analytical model has been developed to calculate

their capacitance and the influence of bending. The outcome of such models could be

summarized in the next two main points: 1) The capacitance value of IDE capacitors increases

with the permittivity and thickness of the substrate and sensing layer (up to a thickness equal

to the fingers pitch), number of electrodes, electrodes thickness, electrodes length and the ratio

width to inter-finger space; 2) Bending circularly the electrodes around the axis perpendicular

to them has a small influence in the capacitance value for typical structures (0.5 to few % for a

radius down to 2.5 mm). The presence of a sensing layer on top of the electrodes in the case

of gas sensors would decrease this influence. Although it has not been studied, it is expected

that bending the electrodes around their axis does not have a big influence in the capacitance

neither.
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6.2 Fabrication of the sensors

All the devices were fabricated on commercially available polymeric foils, mainly polyethylene

terephthalate (PET) and polyethylene naphthalate (PEN) for those devices requiring high

process temperatures (up to 180°C). Despite its high thermal resistance, polyimide (PI) sub-

strate was discarded due to its higher price, an specially after showing poor results in terms of

printability and adhesion of the printed metal. Commercially available silver nanoparticles-

based inks were used as base material to pattern the sensors by inkjet printing. For every

ink/substrate pair, the optimum printing parameters were defined. Since the silver ink needed

thermal sintering at only around 150°C to become conductive, its use was compatible with

the use of PET and PEN. Bare-printed silver nanoparticles lines resulted typically very thin

and chemically instable. Therefore, a process of electroplating Ni on bare-printed lines (to

a maximum thickness of 15 µm) was explored to thicken and passivate them. Problem of

delamination between lines and substrate were observed for thicker layers. Contrary to bare-

printed lines, the Nickel-plated lines did not show appreciable signs of oxidation with time.

The sensing layer used for the most part of the devices was R.H. sensitive cellulose acetate

butyrate (CAB). The preparation of a CAB solution with the right values of viscosity and surface

tension for inkjet printing was successfully achieved.

As commented above, small electrodes pitch is desirable in IDE capacitive sensors since

it increases the capacitance per surface area and the sensitivity of the sensor. A reduction

of the IDE pitch was achieved by depositing a thin film of parylene-C between both printed

combs. In that way, the pitch of the fingers could be reduced as much as their width allowed

it without risking electrode shortcircuits. Parylene-C is a very chemically stable and tight

chemical compound that served at the same time as passivation layer for the PET substrate,

making unnecessary the use of differential measurements.

In the case of standard PP-devices, we demonstrated fair chemical compatibility between

the solvent of the ink used to print the top electrode and the CAB sensing layer. The high

roughness of the printed top electrode and its porosity allowed moisture to reach the sensing

layer without the need of complex patterning of gas intake windows on the top electrode.

However, the unevenness of the CAB sensing layer limited the thinness of the sensing layer to

few micrometers.

In order to develop PP-MEMS, I succeeded to find an inkjet-printable sacrificial layer com-

patible with the solvent of the silver ink, permitting me to fabricate suspended microbridges.

The dissolution of the sacrificial layer was critical to avoid stiction problems. Hence freeze-

drying process was used to avoid capillarity forces responsible of the microbridges collapse

and stiction during the releasing step.

Inkjet-printed microhotplates were fabricated using PEN foil as substrate due to its higher

thermal resistance than PET. A laminated thin film of dry photoresist was laminated onto

a microheater inkjet-printed on the substrate and then, IDE was inkjet-printed and gold

electroplated on top of the pre-patterned photoresist. High temperature sintering (180°C)
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improved the thermal stability of the heaters and the IDE stability during the subsequent step

of PANI deposition.

Finally, all the previous devices (except the PP-MEMS) were inkjet-patterned on the same

substrate in one metallization step (except for the microhotplate that required two metalliza-

tion steps). The utilized substrate was PEN, compatible with the microhotplates fabrication

and operation temperature. The multisensing platform is to be functionalized by our FlexSmell

partners for different analyte detection.

6.3 Performances of the different developed sensors

Table 6.1 summarizes the performances at room temperature (25 ± 5°C) of all the capacitive

R.H. sensors developed along this thesis, i. e., the standard IDE devices with 5 µm-thick layer of

plated Nickel and the IDE devices with reduced size described in Chapter 3, the standard and

MEMS-based PP structures detailed in Chapter 4 and the IDE sensors (with RTD integrated)

developed for the multisensing platform reported in Chaper 5.

Table 6.1: Comparative summary of the performances at room temperature of all the capacitive R.H.
sensors developed along this thesis: capacitance per surface area C /A, sensitivity defined as change of
capacitance normalized to the nominal value per 1% R.H. variation (∆C/C0 / 1% R.H.), time response
defined as the necessary time to rise from 10 to 90% of the stable signal, and linearity of the curve
capacitance versus R.H. defined by the coefficient of linear determination R2.

C/A Sensitivity Linearity Response time
(pF/mm2) (/ 1% R.H.) (%) (R2) (-) (sec)

Standard IDE 0.12 0.040 0.997 270 ± 60
(plated) (diff. mode)

Reduced size IDE 0.44 0.073 0.992 270 ± 60
(single mode)

Standard PP 3.8 0.330 0.970 50 ± 20
(up to 60% R.H.)

PP-MEMS 1.5 0.128 0.976 > 30 min.1

IDE in the tag 0.17 to 0.121 0.981 360 ± 60
0.23 (single mode)

Every sensor was fabricated with CAB sensing layers of similar thickness ∼ 7 µm, facilitating

their comparison in terms of geometry. The table includes capacitance per surface area C /A

of every device, their sensitivity defined as change of capacitance normalized to the nominal

1Measured in a static mode in a climatic chamber.
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value per 1% R.H. variation (∆C/C0 / 1% R.H.), time response defined as the necessary time to

rise from 10 to 90% of the stable sensor signal for the step 10 to 30 ± 5 % R.H., and linearity

of the curve capacitance versus R.H. (up to 70 ± 5 % R.H.) defined by the coefficient of linear

determination R2.

According to the data in Table 6.1, the best performances for a standalone device correspond

to the standard PP sensor. Although its fabrication imposes some restrictions in terms of used

materials, they provide the highest capacitance per surface area and sensitivity. The PP sensor

also presents the lowest response time among the fabricated sensors, although compared to a

commercial humidity sensor Sensirion SHT15, its time constant (from 0 to 63% of the total

signal shift) is still relatively high, τ = 17 s against 8 s. However, the combination of several

devices with different sensing layers would be facilitated by IDE, which are easier to coat and

offer wider choice for sensing materials than PP devices. PP-MEMS devices exploit a new

sensing principle, and even though their sensitivity towards R.H. is already comparable to that

of IDE sensors, there is a lot of room for improvement specially for detection of other gases.

Their novel sensing principle suggest them as the perfect complement for IDE and standard

PP gas sensors. The linearity of the sensors is very high in every case.

Regarding the resistive thermodetectors (RTD), their temperature coefficient of resistance

(TCR) increased from 652 ± 5 ppm/°C for non-plated devices to 1820 ± 60 ppm/°C after

plating the devices with a thin layer (1 ± 0.5 µm) of Ni.
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7 Conclussions

In this thesis, I worked on printed microsensors on plastic flexible foil for gas detection. The

work was performed within the frame of the FP7 Marie Curie ITN European project, FlexSmell,

which targeted the development of a printed chemical sensing systems on flexible plastic sub-

strates for wireless applications, such as perishable goods monitoring during transportation.

Therefore, low-power consumption, low-cost, light-weight and mechanical flexibility are key

points of the system. Bearing in mind these requirements, different inkjet-printed devices

were developed on foil and their functionality was demonstrated by functionalizing them with

sensing layers for proof of concept. Interdigitated electrode (IDE) capacitors were developed

for relative humidity (R.H.) detection utilizing a customized sensing layer of cellulose acetate

butyrate (CAB). In addition to the optimization of the printing process to minimize the foot

print of the devices, achieving a minimum patterned line width of ∼ 40 µm, a fabrication

strategy was developed to further reduce the IDE dimensions while increasing the fabrication

yield and improving simultaneously the sensing performance through passivation of the sub-

strate. Using the same technology, resistive thermodetectors for temperature measurement

and calibration of the temperature influence in R.H. sensing were developed. Besides IDE,

performing parallel plates (PP) R.H. capacitive sensors in which the CAB sensing layer was

sandwiched between the two plates were successfully fabricated. Their fabrication led to the

development of a novel kind of MEMS-based PP sensors consisting of arrays of microbridges

utilizing the substrate as swelling sensing layer. Compared to their PP counterparts, IDE

sensors presented the advantage of requiring only one metalization step to be patterned,

and of having the sensing layer in the topmost part of the sensor, maximizing its exposure

with the environment. On the other hand, the employed polymeric substrate introduced a

parasitic contribution to the sensor signal which required either passivation of the substrate

or differential measurements with a second device used as reference. PP devices on their side,

encountered many constraints regarding material choice due to chemical incompatibility

issues arising between different printed stack material layers. However, they are inherently

more sensitive and were easier to miniaturized than IDE sensors. Indeed, as displayed in Table

6.1 in Chapter 6, the standard PP humidity sensor was the most performing one developed in

this thesis in terms of capacitance per surface area (3.8 pF/mm2), sensitivity (33% full range)
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and response time (50 seconds). The short term operation performances of the the developed

sensors are comparable to those of commercial humidity sensors fabricated on rigid substrate

with standard clean room techniques. However, the long term operation, cross sensitivity

behaviour and mechanical robustness of this novel kind of printed sensors on foil has not

been evaluated yet.

Finally microhotplates formed of a stack of foil substrate, meander-shaped heater, thin

dielectric, IDE and conductive sensing layer of polyaniline (PANI) were developed on only

1 mm2 of surface area. Their functionality has been demonstrated for resistive sensing of

ammonia at high temperature of 90°C, which demanded 35 mW. The aforementioned devices

were successfully demonstrated independently and the added value of their integration on a

common multisensing platform was highlighted by simultaneous detection for the first time

of temperature, R.H. and ammonia. The inkjet-printed sensing platform was readily integrable

on a printed flexible radio frequency identification (RFID) label developed in collaboration

with our FlexSmell partners at Holst Centre (The Netherlands). The multisensing platform

is being currently customized for different analyte detection by our FlexSmell partners at

University of Manchester and IPC-University of Tübingen (Germany).

As future improvements for the devices presented in this thesis, alternative printing meth-

ods such as microcontact printing or electrohydrodynamic jet printing can be used to drasti-

cally increase the IDE patterning resolution to few microns or even sub-micrometer resolution.

High printing resolution would favor gas sensitivity and response time of IDE sensors, but also

minimize the power consumption of the microhotplate. The mentioned printing methods

involves very low amounts of solvent compared to more standard printing technologies, elimi-

nating the chemical incompatibility problem of printed stack layers that we faced during the

fabrication of PP sensors. Reducing the amount of solvent involved in the printed process,

thus smoothing the PP sensing layer, or cross linking it would allow us to reduce the thickness

of the sensing layer of PP sensors, increasing as a result their sensitivity and decreasing their

time response. Very fast and small (hundreds micrometer size) PP sensors fabricated by single

drop inkjet and microcontact printing with very thin (∼ 1µm) CAB sensing layer with improved

homogeneity are currently being investigated in our laboratory. In order to measure sensors

with sensing response time below 20 seconds, a new gas measurement set-up using a smaller

measuring chamber is required.

Another improvement which could be taken into account consists of the possibility to

explore more advanced moisture barriers for the substrate consisting of stacked layers com-

bining organic (such as parylene-C) and inorganic materials (such atomic layer deposited

aluminum oxide), which could be used to improve the stability of both R.H. and temperature

sensors, and totally eliminate the influence of the substrate. The stability of the devices could

be also improved by substituting the printed silver lines with gold lines. Silver tends to oxidize

and is less chemically stable than gold. There currently exists a commercial inkjet printable

gold nanoparticles ink. We ran preliminary gold printing tests in our laboratory but so far

we have not been able to achieve better resolution than ∼ 150 µm. Special coatings could be
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applied to the substrate to increase the contact angle between gold and substrate, increasing

the resolution of the patterns. Another drawback of printable gold ink is that the standard

thermal annealing process recommended by the manufacturer involves temperatures as high

as 250°C, difficult to make compatible with the PET and PEN polymers used in this thesis.

Nonetheless, photonic sintering methods could be applied to sinter the gold, or improve the

sintering of the printed silver. They would increase at the same time the fabrication through-

put by significantly reducing the sintering time. Two photonic sintering methods are available

at EPFL-SAMLAB, exposure to near-infrared light and flash sintering using the equipment

PulseForge® from Novacentrix®.

As for sensing layers, more specific sensing materials could be also developed and adapted

to the different sensors, benefiting from their sensing particularities to obtain high selectivity.

For instance, the PP-MEMS have been demonstrated only for R.H. detection for the time being,

but for more specific applications, the microbridges could be functionalized with specific

sensing layers for diverse analytes such as volatile organic compounds by using non contact

printing methods such as inkjet printing or LIFT (Laser Induced Forward Transfer). In this

case, the microbridge would deflect by itself rather than by the swelling of the substrate,

although the combination of both effects could occur. Else the substrate could be passivated

against the analyte using a barrier like the one described above. Compared to a membrane-like

gas sensor providing an equivalent capacitance value, the array developed here should be

relatively insensitive to acceleration due to the small mass of every independent microbridge;

however gas sensing tests while the array is subjected to acceleration should be carried out to

experimentally evaluate this affirmation.

The combination of an array of PP-MEMS with sensing layers customized to maximize

their sensitivity, along with standard PP sensors, IDE sensors and chemiresistors could set the

ground for simultaneous sensitive and selective detection of different analytes. In any case, a

theoretical model to predict the sensor response to gases is currently missing and should be

elaborated for future improvements. The model developed in [153] to predict the bending of

flexible substrates coated with a metallic layer due to thermal mismatch could be adapted to

this scenario by treating the sensing layer swelling due to gas absorption in a similar way to

thermal expansion.

The geometry of the PP-MEMS (length, width, height and thickness) could be tuned to

attain a feasible pull-in voltage value, with the aim to achieve an array of MEMS microswitches

that could work in combination with arrays of printed sensors in a fully-printed sensing system.

The MEMS devices could also find application as electrostatic resonant sensors or actuators.

Finally, there exists nowadays commercially available inkjet-printable piezoelectric materials

such as polyvinylidene fluoride(PVDF) that combined with the PP-MEMS structures described

in this thesis could lead to the development of inkjet-printed piezoelectrically-driven actuators

or resonators. In any case, the mechanical robustness of the structures should be reviewed

and improved.
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Regarding the microhotplates, the minimization of their surface area by using the alternative

printing methods mentioned above would yield to a minimization of their power consumption.

Also, the substrate should be as thin as possible. In the cases where the substrate cannot be

chosen to be very thin, as in the multisensing platform presented in Chapter 5, the substrate

and dielectric on top of the heating element should be patterned around the heater (by laser

milling for instance) to decrease lateral heat loss by conduction and subsequent convection.

The long-term stability of the heaters should be evaluated and enhanced if necessary by

electrodeposition of nickel or gold.

The multisensing platform is at an early stage of development. Different combinations of

sensing layer should be tried and the platform should be tested for different gas analytes, R.H.

and temperature "in operando" conditions using the RFID label for long-term (few weeks or

months) data logging or direct wireless communication.

Last but not least, the polymeric foil utilized as substrate for all the presented devices

renders the sensors potentially flexible. Thus static and cycling bending tests should be

performed for each of the presented device to evaluate their bending reliability. In that regard

the presented theoretical models should be expanded to bending along different axis for all

the different utilized geometries.

In terms of general field of application, the work performed in this thesis contributes to the

concept of the "Internet of Things" where multiple very low-cost and flexible sensing systems

can interact with their environment an wirelessly communicate to each other, opening the

door to a number of new applications in the fields of security, health or logistics. In that

sense, the quest of fully printed smart systems becomes of high interest for the large-scale

production by means of roll-to-roll process of ultra low-cost systems including not only

printed sensors, actuators, interconnections and antennas, but also batteries and printed

logics. Fully printed electronic circuitry, able to replace rigid cumbersome Si chips which are

difficult to assemble on foil, is nowadays far from being a reality even for relatively simple

circuits. However, recent improvements in stability and mobility of solution-based organic

and inorganic semiconductors and the development of novel printing methods allowing sub-

micrometer resolution such as hydroelectrodynamic jet printing, suggest the potential of

medium- or large-scale integration of printed transistors in a mid-term future. In this scenario,

printed copper could replace silver for interconnection due to its lower price.

Since inkjet makes possible drop-on-demand deposition of material without contact, it

could be applied in scenarios requiring high customization and quick adaptation, such as

customized sensors directly patterned on the surface of products or personalized sensors

directly printed on the skin. The flexible and large area characteristics of polymer foils could

be further exploited to create sensing foils for artificial robotic skin or even artificial skin if the

materials employed are biocompatible. Biocompatibility and adaptation to curved surfaces

are two of the most promising features of flexible and printed electronics that are likely to

take a good deal of the research effort in the future for health care applications. On one side,
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there is a number of biocompatible polymers that could be employed in electronic systems

placed in close contact with the human body (or even implanted inside), adapting to its shapes

and even stretching with it. Such flexible biocompatible devices could occupy large areas

wrapping around organs and tissues to perform space-time mapping of medical parameter of

interest and communicate them wirelessly to the exterior. The implanted systems could be

"chemically programmed" to be bioresorbed in the body once their function is accomplished.

On the other hand, inkjet printing could be employed to deposit a wide range of biocompatible

materials on a large area and on curved surfaces.
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