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Summary 

Piezoelectric effect provides a direct transduction between electrical and 

mechanical domains. Such transduction is bidirectional, which means a piezoelectric 

device can work as both sensor and actuator. Varieties of piezoelectric micro 

electromechanical systems (MEMS) devices are presented in this thesis. Leveraging 

on the piezoelectric effect, acoustic wave based micro resonators are developed as the 

sensing elements. A series of surface acoustic wave (SAW) pressure sensors for harsh 

environment applications are designed, fabricated and characterized. The effect of 

diaphragm shape on the performance of SAW pressure sensors is studied as well. The 

longitudinal and lateral strains along the SAW propagation direction (<100> direction) 

have opposite effects on the frequency change, i.e. longitudinal strain increases the 

resonant frequency while lateral strain decreases the resonant frequency. It is found 

that the ratio of longitudinal/lateral strain is determined by the diaphragm shape. The 

rectangular diaphragm (large aspect ratio) with only lateral strain shows negative 

pressure coefficient of frequency (PCF), while those sensors where longitudinal strain 

dominates show positive PCF. In addition to the SAW sensor, a Lamb wave based 

viscosity and density sensor is also developed, with two unique modes employed. 

Unlike the conventional sensors, this sensor can measure the viscosity and density 

separately, providing a more accurate way of chemical detection.  

In addition to the acoustic wave sensors, several aluminum nitride (AlN) or lead 

zirconate titanate (PZT) based piezoelectric micromachined ultrasonic transducers 

(pMUTs) are developed and investigated. Conventional piezoelectric ceramic based 

ultrasonic transducer suffers several inherent limitations, e.g. acoustic impedance 
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mismatch, poor bandwidth and poor sensitivity. Aiming at overcoming these 

limitations, the MEMS based pMUTs have several unique features. By using 

integrated vacuum cavity and frame-like top electrode configuration, a pMUT of 

perfectly flat membrane is achieved. Such pMUT has over 450% higher transmitting 

sensitivity than a conventional design. To further enhance the ultrasound transmitting 

efficiency, a pMUT with piston-like membrane motion is realized. The piston 

membrane motion can push more acoustic medium back and forth, generating a 

higher ultrasound pressure. With the high performance PZT thin film and optimized 

structure design, an airborne pMUT is developed as well. Besides, the mode-merging 

concept is proposed to extend the pMUT frequency bandwidth. Several higher modes 

are simultaneously excited and overlapped with fundamental mode, forming a much 

wider bandwidth. An ultra-wide bandwidth of 94.7% is eventually achieved. For the 

future plan, an innovative frequency switchable pMUT is still under investigation. 

Preliminary data show that its operating frequency can be electrically switched, 

without physically changing the ultrasonic transducers.  
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Chapter 1 Introduction 

 The phenomenon of piezoelectricity was discovered by brothers Pierre and 

Paul-Jacques Curie in 1880. Piezoelectricity is coined in 1881 by Wilhelm Hankel, 

and remained a curiosity until 1921, when Walter Cady discovered the quartz 

resonator for stabilizing electronic oscillators. Piezoelectricity refers to the production 

of electrical charges by the applied mechanical stress (see Figure 1.1 (a)), and this is 

known as the direct effect of piezoelectricity. This phenomenon is reciprocal. 

Alternately, the same materials are able to produce a mechanical deformation when an 

electric field is applied to them, and this is called the inverse effect of piezoelectricity. 

Piezoelectric effect provides a direct transduction between electric and mechanical 

domains. Acoustic wave, or ultrasonic wave, thus can be generated and detected using 

the piezoelectric devices. 

1.1 Piezoelectric Materials 

Piezoelectric materials are crystals. The microscopic origin of piezoelectricity is 

the displacement of ionic charges within a crystal, leading to the polarization and 

electric field. A stress applied to a piezoelectric crystal alters the spacing between 

centers of positive and negative charge sites; this leads to a net polarization 

manifested as open circuit voltages measurable at the crystal surface. Inversely, an 

external electric field exerts a force between the centers of positive and negative 

charges, leading to an elastic strain and changes of dimensions. The inverse 

piezoelectric effect is shown in Figure 1.1 (b) and (c), using lead zirconate titanate 

(PZT) material as an example. 
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Figure 1.1 (a) a piezoelectric disk generates a voltage when it is stressed (direct 

piezoelectric effect); (b) crystal structure of PZT material; (c) distortion of unit cell 

from the original shape under external electric fields (inverse piezoelectric effect) and; 

(d) orientation of domains before and after poling. 

 

Piezoelectric crystals are usually poly-crystalline, which can be considered to be 

a mass of domains. The macroscopic behavior of the crystal may differ from that of 

individual domains, due to the orientation of such domains. Owing to the random 

distribution of domains throughout the material, no overall polarization or 

piezoelectric effect is exhibited. A crystal can be made piezoelectric in any chosen 

direction by electric poling, which involves exposing it to a strong electric field at an 

elevated temperature. Under the action of this field, domains that are aligned with the 

field grow at the expenses of others. When the field is removed, the dipoles remain 

locked in an approximate alignment, giving the crystal a remnant polarization, shown 

in Figure 1.1 (d).  
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Piezoelectric materials hence enable electromechanical transduction. Transducers 

using piezoelectric materials can be configured either as actuators, when the design of 

the device is optimized for generating mechanical strain using the inverse 

piezoelectric effect, or as sensors when the design of the device is optimized for the 

generation of an electric signal using the direct piezoelectric effect. 

Several most commonly used piezoelectric materials are listed below: 

• Single crystals: Aluminum Nitride (AlN), Zinc Oxide (ZnO), Quarts, etc. 

• Piezo-ceramics: Lead Zirconate Titanate (PZT) - Pb(ZrxTi1-x)O3  

• Piezo-polymers: Polyvinylidene Fluoride (PVDF) and its copolymers, Nylon 

• Composites: PVDF+PZT 

Each of the piezoelectric material has specific advantages and disadvantages, 

which include performance, cost, temperature dependence, fabrication process, 

attenuation and loss, acoustic wave propagation velocity, bio-compatibility, 

compatibility with complementary metal-oxide-semiconductor (CMOS) process etc.  

1.1.1 Aluminum Nitride (AlN) 

AlN is a III-V semiconducting compound. When they are pure, AlN crystals are 

hard, colorless and transparent [1]. AlN has a wurtzite crystal structure and is a 

covalent bonded material. This material is stable to very high temperatures in inert 

atmospheres. In air, surface oxidation occurs above 700°C. The formed layer of 

aluminum oxide protects the material up to 1370°C, and bulk oxidation occurs above 

this temperature. The most important advantage of AlN is that its deposition is 

compatible with CMOS microelectronic process. AlN based piezoelectric devices may 

be able to integrate with integrated circuits (ICs) in monolithic chip. AlN thus has 

gained much interest in new prospects such as bulk acoustic wave (BAW) and film 
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bulk acoustic resonator (FBAR) technology [2-4]. Besides all the above mentioned 

advantages, the chemical stability of AlN is good as well [5, 6]. Therefore, AlN is an 

attractive candidate for liquid sensing and is adopted as the piezoelectric material in 

this research. Some key properties of AlN are given as follows: 

• Dielectric constant: ε = 8.5; 

• Piezoelectric coefficient: d31 = 1.55; 

• Thermal expansion coefficient: a = 5.27 (close to that of silicon); 

• Non-reactive with normal chemicals and gases during microelectronic process; 

• Compatible with CMOS process. 

1.1.2 Lead Zirconate Titanate (PZT) 

PZT is another popular piezoelectric material. The considerably high 

electromechanical coupling efficiency makes it a very attractive material for micro 

sensors and micro actuators. According to the composition (ratio of zirconate and 

titanate), two types of PZT thin film are most widely used: the morphotropic phase 

boundary composition PZT (Zr/Ti=52/48, MPB-PZT) and the tetragonal PZT 

(Zr/Ti=30/70, Tetra-PZT). Among all the compositions, the MPB-PZT has the largest 

piezoelectric constant [7]. Micro actuators, such as micro mirrors [8-13] and variable 

optical attenuators (VOAs) [14-16], usually employ the MPB-PZT to realize large 

displacement. The Tetra-PZT has lower piezoelectric constant. However, since the 

Tetra-PZT has much lower dielectric constant, this type of PZT is mainly used for 

self-driving sensors [17] and energy harvesters (EHs) [18-24]. The output voltage 

would be higher because of the lower dielectric constant.  

Unfortunately, the deposition of PZT thin film requires very high temperature for 

sintering and annealing processes. Even with the help of nanocrystalline composite 
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technique, the sintering temperature could still be as high as 600 – 700 °C [25]. Hence, 

the PZT material is not compatible with CMOS process. Some key properties of PZT are 

given as follows: 

• Dielectric constant: ε = 500 (Tetra-PZT) and 1500 (MPB-PZT); 

• Piezoelectric coefficient: d31 = 40-50 (Tetra-PZT) and 70 – 110 (MPB-PZT); 

• High electromechanical coupling factor: k2 = 7 – 15%; 

• High temperature process; 

• Not compatible with CMOS process. 

1.1.3 Other materials 

Similar to AlN, ZnO is also with a wurtzite crystal structure. This piezoelectric 

material have been used for BAW devices [26, 27] and integrated into micro sensor in 

early times [28]. Due to its small bandgap (~3eV) and the inherent risk of increased 

conductivity, ZnO is gradually replaced by AlN (~6eV) now. As ZnO can be deposited 

at room temperature, for some low temperature applications such as flexible devices 

on polymer substrate, ZnO is still used [29-34].  

PVDF as a polymer is a flexible piezoelectric material. The PVDF has relatively 

high piezoelectric constant (d31=5) and is easy to deform. Leveraging on its flexibility 

and piezoelectric effect, a wind based EH is developed [35]. This PVDF EH can start 

working at a very low wind pressure. 

1.2 Basic Physics of Ultrasound 

Leveraging on the piezoelectric effect and MEMS technology, a number of 

piezoelectric MEMS ultrasonic devices are presented in this thesis. Understanding the 

fundamental of ultrasound is helpful to design appropriate devices. A brief physics of 
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ultrasound will be introduced in this section. 

1.2.1 Background 

Ultrasound is a mechanical vibration at a frequency above audible range 

(>20kHz). The frequency range of ultrasound could be from kHz to GHz. Since 

ultrasound wave is a mechanical wave, a medium is compulsory for ultrasound to 

propagate through. The medium can be gas, liquid or solid. Based on the particle 

oscillation direction, the ultrasound waves can be divided into two categories: the 

longitudinal wave (along the propagation direction) and the shear wave (transverse to 

the propagation direction). Only solids can support both longitudinal and shear waves. 

In the case of liquid, most liquids cannot easily support the shear wave and the 

supporting capability of shear wave increases with their viscosity. For air, only 

longitudinal wave can propagate through it.  

1.2.2 Acoustic impedance 

Acoustic impedance is defined as the ratio of acoustic pressure and the particle 

motion speed at a certain point in the medium. For a plane wave, the acoustic 

impedance Z can be described as: 

 

cZ ⋅= ρ         (1.1) 

 

where ρ is the medium density and c is the sound speed in this medium. Usually the 

gas has extremely small acoustic impedance, while the solid has very large acoustic 

impedance. The acoustic impedance of liquid should be somewhere in between. The 

acoustic impedance is very important in characterizing the propagation of ultrasound 
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waves. The densities, sound speeds and acoustic impedances of several common 

ultrasound media are summarized in Table 1.1 [36]. The parameters are also shown in 

Figure 1.2 for easier visualization. 

 

Table 1.1 Summary of densities, sound speeds and acoustic impedances of ultrasound 

media 

Medium 
ρ 

(kg/m3) 

c 

(m/s) 

Z 

(MRayl) 

Air 1.2 333 0.0004 

Water 1000 1480 1.48 

Soft tissue 1070 1542 1.65 

PZT 7600 2800 21.28 

Silicon 2329 8433 19.64 

  

1.2.3 Reflection and transmission 

A propagating ultrasound wave will be partially reflected at the interface of two 

media. The reflection coefficient is determined by the acoustic impedance difference 

of the two media.  
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where p is the acoustic pressure, Z is the acoustic impedance, and θ is the angle. The i 

refers to the incident wave, r refers to the reflected wave, and t refers to the 

transmitted wave. Similarly, the transmission coefficient is obtained as: 
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The ultrasound transmission obeys the Snell’s Law: 
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where the c is the sound speed in medium. 

An acoustic impedance mismatch may result in a large reflection. Therefore for 

some applications a matching layer or other methods are applied, in order to minimize 

the impedance mismatch and increase the transmission [37-39].  

1.2.4 Ultrasound intensity 

The ultrasound intensity is defined as the time average flow of ultrasound energy 

through a unit area: 
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where p is the ultrasound pressure, u is the particle speed and T is the time period. 

Since the acoustic impedance Z is the ratio of ultrasound pressure to particle speed, 

the ultrasound intensity can be calculated as: 
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1.2.5 Attenuation 

A propagating ultrasound wave will be attenuated in medium due to absorption 

and scattering. For most materials, the ultrasound attenuation A in dB is linearly 

proportional to the ultrasound frequency f, as described in Eq. 1.7.  

 

A (dB) = α·f·l        (1.7) 

 

where l is the propagating distance of the ultrasonic wave. Table 1.2 summarizes the 

attenuation coefficients of several ultrasonic media. 

 

Table 1.2 Summary of attenuation coefficients α 

Medium Attenuation coefficients (dB/MHz∙cm) 

Air 1.64 

Water 0.0022 

Soft tissue 0.8 

 

It is clearly shown that air has very large attenuation coefficient, and hence the 

ultrasound devices working in air usually have a very low frequency (<1MHz), to 

reduce the ultrasound attenuation.  

1.2.6 Bandwidth 

The -6dB fractional bandwidth is commonly adopted by researchers to describe 

the bandwidth of an ultrasonic transducer. This bandwidth is defined as: 

𝐵𝐵 =
𝑓2 − 𝑓1
𝑓0

 × 100% 

where f2 and f1 are the frequences where the amplitude drops to half of maximum, 
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and f0 is the central frequency. 

1.2.7 Ultrasound safety 

In general, ultrasound is safe to human and widely used for biomedical 

applications. However, as is mentioned above ultrasound wave is a mechanical wave, 

too high ultrasound may still be harmful to human bodies. High intensity ultrasound 

wave may damage the tissue by local heating and cavitation effect. Therefore the 

Food and Drug Administration (FDA) of U.S. recommends that the ultrasound 

intensity in human body should not exceed 720 mW/cm2. 

1.3   Piezoelectric Ultrasonic MEMS Devices 

Typically there are two types of ultrasonic devices: the acoustic wave device with 

ultrasonic wave propagating within the device, and the ultrasonic transducer with 

ultrasound wave radiating into outer medium. Since the outer medium is liquid or air 

for most cases, the ultrasonic transducer is designed to generate and receive 

longitudinal ultrasonic wave. Meanwhile, acoustic wave device usually employs both 

longitudinal and shear waves, because the shear wave can be supported by solids.  

1.3.1 Acoustic wave sensors (ultrasound within device) 

Acoustic wave sensor is so called because it employs the inner propagating 

ultrasound wave as the sensing mechanism. With the ultrasonic wave propagating 

through or on the surface of the sensor, any perturbation on the propagation path 

affects the velocity and / or amplitude of the wave. Changes in velocity can be 

monitored by measuring the frequency of the sensor and can then be correlated to the 

corresponding physical or chemical quantity being measured. 
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Based on different propagating modes within the device, acoustic wave sensors 

can be generally divided into four categories: 

• The Thickness Shear Mode (TSM) device; 

• The Surface Acoustic Wave (SAW) device, 

• The Acoustic Plate Mode (APM) device, 

• The Flexural Plate Wave (FPW) or Lamb wave device. 

Figure 1.2 shows schematic sketches of each type of acoustic sensors, while the side 

views and cross sections of four devices are shown in Figure 1.3.  

 

Figure 1.2 Schematic sketches of the four typical types of acoustic wave sensors: (a) 

the Thickness Shear Mode (TSM) device, (b) the Surface Acoustic Wave (SAW) 

device, (c) the Acoustic Plate Mode (APM) device and; (d) the Flexural Plate Wave 

(FPW) or Lamb wave device. 
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Figure 1.3 Comparison between the four types of acoustic wave devices. 

   

SAW, or Rayleigh wave, is a unique acoustic mode where the ultrasound wave 

propagation is confined to the surface. In 1887, Lord Rayleigh discovered this wave 

mode of propagation and predicted the properties of SAWs in his classic paper [40]. 

The SAW contains a longitudinal and a shear motion component. Both components 

can couple with the medium which contacts the SAW device surface, shown in Figure 

1.4. Such coupling strongly affects the amplitude and velocity of the SAW. This 

feature enables SAW devices to sense mass and mechanical properties directly, and 

SAW has the highest sensitivity among all acoustic wave sensors because all energy is 

confined within the surface. However, due to the vertical motion of the surface wave, 

an excessive attenuation of the surface wave is caused by leaking energy into liquid. 

Thus the SAW sensor may not be suitable for liquid sensing.  

 



CHAPTER 1 

13 

 

Figure 1.4 Surface acoustic wave (SAW) moves vertically in a direction normal to the 

surface plane. The energy is confined to the surface, and SAW sensor is very sensitive to 

device surface changes. 

 

Another acoustic wave sensor, i.e. the Lamb wave sensor, is also noteworthy. 

Lamb wave sensor is firstly presented by R. M. White et al. in 1988 [41], in which an 

acoustic wave is excited in a thinned membrane with a thickness smaller than the 

propagating wavelength, shown in Figure 1.5. A unique feature of Lamb wave is that 

its phase velocity is lower than that of most liquids. When a Lamb wave sensor 

contacts or is immersed in a liquid, a slow mode of propagation exists, in which there 

is no radiation from the plate. Energy dissipation into liquid is minimized for Lamb 

wave, and thus it functions well in a liquid environment. Lamb wave sensor therefore 

is an ideal candidate for sensing in liquid [40, 42-46].  
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Figure 1.5 Illustration of a typical Lamb wave sensor with the two Lamb wave modes. 

 

The acoustic wave sensors, including SAW and Lamb wave sensors, use a 

piezoelectric interdigital transducer (IDT) to generate and detect acoustic waves [47], 

as is shown in Figure 1.6. An oscillating electric field is applied to the IDT to deform 

the piezoelectric substrate (thick substrate for SAW and thin plate for Lamb wave), 

creating a mechanical wave. Excited acoustic wave then propagates through the 

substrate. When the acoustic wave arrives at another IDT, it deforms the piezoelectric 

substrate and is then converted back to an electric signal for measurement. It is worth 

noting that the wavelength λ of induced acoustic wave is directly determined by the 

IDT. For the lowest mode, its wavelength equals to the periodicity of IDT electrodes, 

shown in Figure 1.6 as well. Thus the expected wavelength of the acoustic wave 

sensor can be designed by changing the distance between two IDT electrodes. 
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Figure 1.6 Illustration of the interdigital transducer (IDT) for acoustic wave 

generation and detection. 

 

 In this thesis, development of two acoustic wave sensors, i.e. SAW based pressure 

sensors and Lamb wave based viscosity and density sensors, will be presented and 

discussed in detail in Chapter 3 and 4, respectively. 

1.3.2 Ultrasonic transducer (ultrasound outside device) 

In addition to the previously discussed acoustic wave sensor, ultrasonic 

transducer (UT) is another type of ultrasonic device. Unlike the acoustic wave device, 

ultrasonic wave generated by the UT is transmitted into outer medium, e.g. air, water 

or human body. Transmitted ultrasonic wave is received by another UT after reflection, 

refraction and scattering in the medium. Interesting information or parameters about 

the medium can then be extracted from the time, frequency, phase and amplitude of 

received ultrasonic wave.  
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Figure 1.7 Typical applications using ultrasonic transducers (UTs): (a) B-mode 

diagnostic ultrasonic imaging; (b) non-destructive flaw testing; (c) reserve parking 

sensor and; (d) liquid flow rate sensing. 

 

Various applications are realized with the ultrasonic transducers, such as B-mode 

ultrasonic imaging, nondestructive testing (NDT), reserve parking sensor, and liquid 

flow rate sensing, shown in Figure 1.7. Combined the ultrasonic imaging with flow 

velocity sensing, information about the blood flow rate in the heart can be extracted 

and provided to doctors [48]. Basically there are three types of UT: bulk piezoelectric 

UT (conventional UT), capacitive micromachined ultrasonic transducer (cMUT) and 

piezoelectric micromachined ultrasonic transducer (pMUT). 

1.3.2.1 Bulk piezoelectric ultrasonic transducer 
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Figure 1.8 Commercially available conventional UTs for various applications: (a) 

diagnostic ultrasonic imaging, (b) NDT and (c) range finding. 

 

The conventional UT has dominated the markets for decades. The currently 

available ultrasonic applications such as diagnostic imaging and NDT are all 

implemented using conventional UTs, shown in Figure 1.8. The conventional UT is 

usually made of rigid bulk piezoelectric ceramic. Compared to the ultrasound medium 

such as soft tissue, water or air, the rigid ceramic has much higher acoustic impedance. 

The commonly used PZT ceramic has an acoustic impedance of 21.28MRayl, while 

the acoustic impedance of soft tissue is only 1.65MRal. The acoustic impedance of air 

is even much smaller. As the consequence of such huge impedance mismatch, more 

than 90% of ultrasonic energy reflects back at the interface and cause large loss [49]. 

The bandwidth and sensitivity of the UT therefore is drastically reduced. Although a 

λ/4 impedance matching layer can improve the ultrasound transmission efficiency, the 

matching layer becomes too thin to be mechanically handled as frequency increases, 

and sometimes it is not even practical [50]. Another limitation comes from the 

fabrication of the conventional UT. The emerging 3-D diagnostic ultrasound imaging 

is of great interests, which requires a 2-D UT array with very small pixels and pitches. 

Unfortunately the conventional UT can hardly fulfil such requirements. Conventional 

UT is fabricated by mechanical dicing and assembly. Thus only 1-D array is available 
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because the complicated electrical connections for 2-D array are extremely 

challenging. The size of UT pixel and pitch already approach their limitation as well 

and can hardly be further reduced. 

Researches on the micromachined ultrasonic transducers (MUTs) are growing 

rapidly in recent years. Leveraging on the advanced MEMS technology, the MUT can 

be of miniaturized dimension, lower cost and lower power consumption. In addition, 

MUT provides more design flexibility [50] and better acoustic impedance matching 

[51]. Unlike the conventional UT, the MUT employs a flexural membrane for 

generating and receiving ultrasound waves. Since the flexural membrane is much 

softer than rigid ceramic, its acoustic impedance is closer to the operation medium. 

Better impedance matching thus can be achieved without the matching layer, and its 

transmission efficiency is much higher than the conventional UTs [52]. The 2-D MUT 

array is also possible, as the photolithography process can easily realize very 

complicated electrical connections (multiple metal layers if necessary) for the 2-D 

array [53]. 

1.3.2.2 Capacitive micromachined ultrasonic transducer (cMUT) 

The cMUTs have been well developed since 1994 [54, 55]. Figure 1.9 shows the 

typical structure of a cMUT element [56]. The cMUT element is a micro capacitor 

which contains a flexural metalized membrane and a ridged metalized substrate, with 

an extremely small gap in between. The flexural vibration is induced by the 

electrostatic attraction. When a DC voltage is applied to the electrodes, the membrane 

is attracted by the substrate and is deformed by the electrostatic force [57]. Ultrasonic 

wave is generated by the membrane oscillation with an AC voltage input. Reversely, 

if an ultrasonic wave hits the membrane and forces it to oscillate, the change in 
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distance results in the change of capacitance. The capacitance change can be readout 

by external circuits. Benefited from the flexural membrane, a much superior 

impedance matching is achieved and demonstrated by experimental results [52]. 

 

 

Figure 1.9 Typical cross-sectional structure of a cMUT [56]. 

 

 

Figure 1.10 The SEM images of a cMUT array. cMUT employs an extremely small 

gap to maintain the performance [58].  

 

Despite all the advantages of cMUT, several inherent drawbacks limit its future 

applications. The cMUT requires an extremely small gap under the flexural 

membrane to achieve acceptable sensitivity, as is shown in Figure 1.10. Fabrication of 

such small gap is complicated, expensive, and suffers from very low yield. In addition, 

the operation of the cMUT requires very high voltage bias, usually over 100V. Such 
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high voltage may bring safety issues for human body, especially for the implanted 

applications. The high voltage also limits its applications in portable devices. 

Moreover, the response of cMUT is highly non-linear, which requires sophisticated 

circuits for correction and signal processing.  

1.3.2.3 Piezoelectric micromachined ultrasonic transducer (pMUT) 

The pMUT, however, overcomes all the inherent drawbacks of cMUT [59-63]. 

Particularly, its operation voltage is lowered to only several volts [64, 65]. Hence, the 

pMUT seems like a promising candidate for practical applications, especially for 

portable electronics. 

 

 

Figure 1.11 Typical cross-sectional structure of a pMUT [56]. 

 

Figure 1.11 shows the typical structure of a pMUT, where an active piezoelectric 

layer and a passive supporting layer (usually Si or SiO2) are required. The pMUT 

works at d31 mode, whereas the lateral strain is induced by the piezoelectric effect, 

causing a stress mismatch between the piezoelectric layer and the supporting layer. 

The stress mismatch of the two layers thus forces the membrane to deflect around its 

neutral plane. It is important that the neutral plane must be outside the piezoelectric 
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layer by carefully choosing the materials and thicknesses. If the neutral plane falls 

into the piezoelectric layer, the piezoelectric strain will work against itself, and results 

in a very poor performance. 

Varieties of novel applications are implemented using pMUTs. 2-D pMUTs array 

with very small pixel size and pitches are reported. High definition (HD) ultrasonic 

images can be real-time captured without physical scanning, shown in Figure 1.12 

[53].  

 

 

Figure 1.12 A recently reported 72*9 pMUT array and the HD ultrasonic images [53]. 

 

Besides the outside body imaging, a miniaturized high dense pMUT array is 

developed for forward-looking ultrasonic imaging inside the blood vessels. This 

pMUT array contains 1261 elements in a diameter of 1.23mm, which is 10 to 20 times 

higher than previously reported array, shown in Figure 1.13 (a) [66]. An ultrasound 

probe made of pMUT array (Figure 1.13 (b)) for intracardiac imaging is reported as 

well [67]. This probe shows the capability of acquiring real-time and in-vivo 
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ultrasonic images in the heart.  

 

Figure 1.13 (a) A miniaturized high dense pMUT array with 1261 elements [66] and; 

(b) an intravascular imaging probe with pMUT array [67].  

 

In addition to the imaging related applications, researchers have also 

demonstrated airborne gesture recognition using pMUT [68-71]. Photo swiping 

without touching the screen has been realized, as shown in Figure 1.14 (a). Since this 

pMUT can be integrated to portable devices such as mobile phone, the airborne 

gesture recognition may possibly be the next-generation interacting approach for 

electronic devices. Beyond that, pMUT array based 3-D range finder is also realized, 

which can simultaneously detect the hands and the head of a human.  

 

 

Figure 1.14 (a) Demonstration of airborne gesture recognition for photo swiping and; 

(b) 3-D range finding for targets detection [72]. 

 

Recently, another research group reports an ultrasonic fingerprint sensor also 

using pMUT array [73, 74]. The acquired fingerprint image is shown in Figure 1.15. 

Compared to current optical fingerprint sensors, pMUT sensor consumes significantly 
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lower power, which is of great value for extending the battery lifetime of portable 

electronics. 

 

 

Figure 1.15 A recently reported ultrasonic fingerprint sensor using pMUT array [73]. 

 

 pMUT shows its suitability for implantation to human body. In-vivo implantation 

of a tiny pMUT inside the middle ear is shown in Figure 1.16, which functions as 

audio prosthesis [75]. This pMUT is implanted near the oval window. Some 

researches are also done to further extend its suitability for implantation. A pMUT is 

successfully fabricated on a flexible substrate, and this flexible pMUT is definitely 

more friendly to human body [76].  

 

 

Figure 1.16 A tiny pMUT which functions as audio prosthesis is in-vivo implanted 

inside middle-ear [75]. 

  



CHAPTER 1 

24 

Although pMUT shows all abovementioned advantages and potentials, it has 

several inherent limitations. Aiming to overcome these limitations, various pMUTs 

with different unique features are designed, fabricated and characterized, which will 

be presented and discussed in Chapter 4 to 7 in detail. 

1.4 Thesis Organization 

This thesis summarizes the various works on piezoelectric MEMS devices that 

were undertaken during my Ph.D. candidature. The content of each chapter in the 

thesis is as follows: 

Chapter 2 summarizes the micro fabrication processes of all the presented 

piezoelectric MEMS devices. As the critical processes, deposition and etching of two 

piezoelectric thin films, i.e. AlN and PZT, are described in detail. The integrated 

fabrication process flow for each MEMS device is also described respectively. 

Chapter 3 investigates a series of SAW based pressure sensors. Though there are 

many reported SAW based pressure sensors, the sensitivity mechanism of such 

sensors is still not very clear. The pressure sensors under investigation have different 

diaphragm shapes, and they exhibit largely different sensitivities. Using the finite 

element models, the diaphragm shape is found to influence the ratio of pressure 

induced longitudinal / lateral strains. Since the longitudinal and later strains have 

opposite contributions to overall SAW frequency shift (sensitivity), the diaphragm 

shapes thus largely changes the sensitivity by affecting the strain ratio. This study 

reveals the sensitivity mechanism of SAW based pressure sensor, and several possible 

approaches for enhancing the sensitivity are proposed as well. 

Chapter 4 presents a Lamb wave based decoupled viscosity and density liquid 

sensor. Previously reported Lamb wave based viscosity and density sensor can only 



CHAPTER 1 

25 

measure the product of these two parameters, i.e. both viscosity change and density 

change equally contribute to the frequency shift of the sensor. To overcome this main 

limitation, the proposed decoupled Lamb wave sensor is designed to work at two 

unique modes: viscosity mode and density mode. Experimental results show that each 

mode is solely sensitive to viscosity or density change.  

Chapter 5 provides two highly efficient pMUTs with enhanced transmitting 

sensitivity. Currently the reported pMUTs suffer from severe stress issue, which 

significantly suppresses the membrane displacement. The transmitting sensitivity thus 

is not satisfactory, and this is the main limitation of the pMUT. The first presented 

pMUT has a unique structure which helps to alleviate the stress issue. Its transmitting 

sensitivity is characterized as 450% higher than reference pMUT. The second design 

employs a perforated membrane, which enables a piston-like membrane motion. More 

medium can be pushed back and forth, and the transmitting efficiency is enhanced. 

Chapter 6 presents a high performance pMUT using PZT thin film. Migrating 

from AlN thin film to PZT thin film, the pMUT sensitivity is significantly enhanced. 

In addition, the design parameters are optimized using finite element model. The 

fabricated pMUT shows superior sensitivity to previously reported PZT pMUTs. 

Chapter 7 further develops an ultra-wide bandwidth pMUT based on the PZT thin 

film. Poor bandwidth is another main limitation of pMUT. Large bandwidth helps to 

achieve a high resolution ultrasonic image. By engineering the length / width ratio of 

the membrane, several resonance modes are simultaneously excited within a certain 

frequency range. The peaks are overlapped together to form an ultra-wide bandwidth 

of 94.7%, which is much wider than previously reported pMUTs.  

Finally, the main contributions of this thesis and suggestions for future work are 

summarized in Chapter 8. 
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Chapter 2 Fabrication of Piezoelectric 

Ultrasonic MEMS Devices 

The fabrication process is very critical for realizing a high performance 

piezoelectric ultrasonic MEMS device. As the functional layer, piezoelectric material 

directly determines the device performance. Therefore it is important to deposit 

piezoelectric thin films with high piezoelectric constant. Meanwhile, the fabrication 

process would largely affect the final piezoelectric constant of the piezoelectric 

material. Annealing and electric field poling can significantly enhance the 

piezoelectric constant, while some microfabrication process, e.g. deep reactive ion 

etching (DRIE), may degrade the constant. Hence, the process conditions and the 

sequence must be carefully chosen to ensure a high performance. Moreover, the 

residual stress of the piezoelectric material must be minimized. Large residual stress 

may induce the deflection or buckling of released structures, worsen the device 

performance, and even break the device. In the following sections, fabrication details 

of piezoelectric ultrasonic MEMS devices will be discussed. Various process 

considerations and optimization process will be introduced.  

2.1 Piezoelectric Material Deposition 

In this section, deposition of two piezoelectric materials, i.e. AlN and PZT thin 

film will be introduced and discussed. 

2.1.1 Deposition of AlN thin film 
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2.1.1.1 Physical vapor deposition 

The AlN thin film is deposited by DC pulsed sputtering. The deposition 

conditions used in this work are shown in Table 2.1. 

  

Table 2.1 Sputtering conditions for AlN thin film deposition 

Sputtering gas Argon and Nitrogen (N2), ratio 1:5 

DC power 2kW to 8kW 

Deposition temperature 350°C 

Pressure 4mTorr 

 

One critical parameter for AlN thin film growth is the supply of energy to the 

substrate [6]. This parameter can be adjusted by controlling the total pressure and the 

substrate bias voltage [77, 78]. To ensure the piezoelectric effect of AlN thin film, the 

energy to the substrate must be high enough so that the highly (002) oriented AlN thin 

film can be grown and the c-axis is perpendicular to the substrate surface. However, 

this energy should not be too high because too high energy may damage the deposited 

thin film, resulting in a poor crystal quality.  

It is worth noting that a high (002) orientation does not guarantee a good 

piezoelectric effect. In some cases, the AlN film with a very good crystal quality 

exhibits a very poor piezoelectric response [79]. This could be attributed to the grains 

with opposite piezoelectric polarization in the deposited thin film [80]. If the energy 

to the substrate is slightly lower than the value for growing pure (002) oriented AlN 

thin film, such grains with opposite piezoelectric polarization is likely to appear even 

the crystal quality is very good. Therefore, the energy should be carefully adjusted. 

The deposited AlN thin film is shown in Figure 2.1. It is clearly shown that the 

AlN thin film is highly (002) oriented, and the full width at half maximum (FWHM) 
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of the x-ray diffraction (XRD) rocking curve is measured as less than 1.5°. 

 

 

Figure 2.1 Cross-sectional SEM image of deposited AlN thin film using sputtering. 

 

2.1.1.2 Stress control 

Large residual stress may result in performance degradation of the ultrasonic 

MEMS devices. For the acoustic wave sensors, the stress significantly influences the 

sound speed and hence changes the device frequency unexpectedly. In addition, the 

stress can also drastically suppress the sensitivity of pMUT [81]. Therefore, 

minimized residual stress of the AlN thin film is desirable. 

 The residual stress of AlN thin film after deposition has been well studied [82]. 

Besides the deposition conditions, the residual stress of AlN thin film is largely 

dependent on its thickness [83]. The in-plane residual stress increases with the 

thickness, and the sign is changed from negative (compressive stress) to positive 

(tensile stress) at certain film thickness. As is shown in Figure 2.2, the AlN thin film 
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deposited on metal exhibits different stresses. The residual stress changes its sign at 

about 1µm thickness, where the residual stress becomes zero. A nearly stress-free AlN 

thin film thus may be possible via controlling the thickness. In this work, the AlN thin 

film deposition is controlled to 1.2µm. By adjusting other deposition conditions, a 

nearly stress-free AlN thin film is finally achieved with cross-wafer residual stress of 

+/-50MPa. 

 

 

Figure 2.2 Measured residual stress of deposited AlN thin film as a function of 

thickness [83]. 

 

2.1.2 Deposition of PZT thin film 

2.1.2.1 Sol-gel method 

 The sol-gel method is often used for PZT thin film (> 1µm) deposition, due to its 

simplicity and excellent reproducibility [84-87]. In this work, a commercially 

available PZT solution (PZT-20; Kojundo Chemical Co, Japan) is used as a precursor 

solution. Since the MPB-PZT has the largest piezoelectric coefficient [88], the PZT 
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solution with Zr/Ti=52/48 is adopted to maximize the device performance. This PZT 

solution is firstly spin-coated onto the substrate at 500rpm for 3s, 3200rpm for 20s 

and 6000rpm for 2s. The deposited film is dried by heating at 120°C for 2 minutes, 

and then pyrolyzed at 250°C for 5 minutes. After the pyrolysis, the PZT thin film is 

crystallized using rapid thermal annealing (RTA) at 650 °C for 2 minutes, with the 

ramping rate of 100°C/s. To achieve a relatively thick PZT thin film, multi-coating 

process is necessary. Previous studies indicates that the film quality through 

layer-by-layer crystallization is much better than that through single-crystallization 

[89]. Therefore, the spin-coating, drying, pyrolysis and RTA step are repeated for 16 

times. A 2µm MPB-PZT thin film is finally achieved. 

 

 

Figure 2.3 Cross-sectional SEM image of deposited PZT thin film 

 

2.1.2.2 Electric poling  

For the PZT thin film deposited by sol-gel method, its final piezoelectric 

constant d31 is mainly determined by the electric poling process because the initial d31 

is very limited. Usually a DC electric field of 10–100 kV/cm is applied to the PZT 

thin film for about 5 minutes as the electric polling. According to previous study, this 
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step is suitable after completion of all fabrication processes [90], since the d31 after 

polling could be drastically lowered by the following processes [91].  

Recently, a unipolar pulse poling process for PZT thin film is developed [92]. The 

pulse poling process is found to be much more effective than the conventional DC 

poling, resulting in a much higher d31 coefficient. Figure 2.4 (a) shows the employed 

waveform of the unipolar pulse poling signals (1 kHz triangle voltage pulse with 

interval of 0.1s for 10 times). To evaluate the behaviors of PZT thin films after poling, 

the piezoelectric coefficients d31 are derived as described in [92]. Figure 2.4 (b) 

compares the d31 of the 2µm MPB-PZT thin films after DC poling and pulse poling. 

The DC poling voltage is limited to 20V to avoid the breakdown of PZT thin film. For 

the pulse poling, however, the extremely short duration can hardly induce the PZT 

breakdown. Thus, the poling voltage can be much higher than the DC poling. The 

measured d31 of MPB-PZT reaches its maximum of 105pm/V with pulse poling at 

100V, which is significantly higher than the DC poling (78 pm/V). In addition to the 

piezoelectric coefficient, the dielectric loss is also important as lower dielectric loss is 

always desirable. Benefited from the short duration, the high voltage pulse poling 

does not increase the dielectric loss of MPB-PZT but further reduce it. The minimum 

dielectric loss of 0.06 is achieved with pulse poling at 100V.  

The Tetra-PZT thin film is also shown as the reference. The Tetra-PZT thin films 

show lower d31 for both DC and pulse poling, and its performance starts to degrade at 

60V. At such higher voltage, cracks form in the Tetra-PZT thin film, resulting in the 

d31 dropping and the significantly increased dielectric loss. The MPB-PZT does not 

suffer from such performance degradation, and shows highest d31 and lowest 

dielectric loss at 100V. Hence, the MPB-PZT thin film with 100V pulse poling is 

adopted to realize the high performance ultrasonic MEMS devices. 
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Figure 2.4 The waveform of unipolar pulse poling signals. This waveform is 1 kHz 

triangle voltage pulse with interval of 0.1s for 10 times; (b) The measured 

piezoelectric constant d31 of the PZT thin films after DC poling and pulse poling and; 

(c) The measured dielectric loss of the PZT thin films after DC poling and pulse 

poling. 
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2.2 Piezoelectric Material Etching 

2.2.1 AlN thin film etching 

 

Figure 2.5 (a) The SEM image of the etched AlN thin film using SiO2 as hard mask 

and; (b) cross-sectional view. 

 

Wet etching is available for AlN thin film, by using hot phosphoric acid (60°C to 

90°C) [93, 94]. However, due to its high chemical stability, the etching rate of AlN 

thin film could be very slow. For sputter-deposited high quality AlN thin films, the 

etching rate can be as low as 14nm/min. Therefore, reactive ion etching (RIE) 

technique is employed to etch the AlN thin film in this work, via physically ion 

bombardment with chemical to assist this process. The chlorine is used as the etchant, 

because aluminum fluoride is a non-volatile compound and extremely stable. The 

etching rate of AlN thin film is achieved at 0.23μm/min in BCl3 plasma with a small 

percentage addition of Ar/N2. In order to achieve a good profile, a plasma enhanced 

chemical vapor deposition (PECVD) SiO2 layer is employed as the hard mask. Figure 

2.5 shows the etched AlN thin film with SiO2 hard mask. 
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2.2.2 PZT thin film etching 

 

Figure 2.6 The SEM image of PZT thin film after wet-etching. The edge is zigzagged 

because the HCl tends to rapidly attack PZT along the grain boundaries. 

 

Unlike the stable AlN, PZT thin film can be easily wet-etched by strong acids. 

The HCl based etchant is observed to dissolve PZT thin film very fast while it is safe 

to the photoresist. It is worth noting that HCl tends to rapidly attack PZT thin film 

along the grain boundaries and consequently the film edges after etching is zigzagged. 

To alleviate this unfavorable phenomenon, HF is added to the etchant solution. In this 

work, the PZT thin film is etched by a mixture of HF(0.9%)/HCl(8.2%)/H2O(90.9%) 

at room temperature. However, a water in-soluble white residue (PbClF) is left due to 

the presence of HF. Such residue is removed by short exposure to 

HNO3(50%)/H2O(50%) solution. Figure 2.6 shows the PZT thin film after 

wet-etching. It is clearly shown that the edge is zigzagged because of the HCl in the 

etchant. 
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2.3 Integrated Fabrication Process Flow 

The deposition and etching of piezoelectric materials have been discussed in 

previous sections. In this section, the integrated fabrication process flow will be 

described. The integrated process flows are divided into two categories based on the 

diaphragm releasing methods.  

2.3.1 Backside deep-reactive ion etching (DRIE) 

Backside deep-reactive ion etching (DRIE) is commonly used for the MEMS 

device releasing process. Except for releasing the functional diaphragm, the backside 

DRIE also create the channel for the sensors to be exposed to the environment. 

Usually the buried oxide (BOX) layer of silicon-on-insulator (SOI) wafer serves as 

the etching stop layer, because of the high etching selectivity of SiO2. After the 

frontside process is completed, the hard masks are patterned using backside RIE. 1μm 

SiO2 and 2μm photoresist (PR) serve as the hard mask. With the support of another 

dummy wafer attached on the frontside e, the backside DRIE process is then 

completed by using high power etching tool. Two gases are used for the Bosch DRIE 

process: SF6 and C4F8. SF6 is used as the etchant for isotropic etching of silicon 

during one cycle, and C4F8 is used to form a Teflon-like passivation layer to protect 

the side wall during the other cycle. In this work, the acoustic wave sensors and PZT 

based pMUT are fabricated with backside DRIE releasing. 

2.3.1.1 Acoustic wave sensors  

The fabrication process sequence of the acoustic wave sensors are illustrated in 

Figure 2.7. Fabrication starts from an 8’’ SOI (100) wafer. This wafer is with 50μm 

(for SAW sensor) or 30μm (for Lamb wave sensor) silicon device layer, 1.4μm buried 
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oxide (BOX) layer and 600μm thickness handle silicon layer. Initially sputtering is 

used to grow an AlN piezoelectric layer (1.2μm for SAW sensor and 2μm for Lamb 

wave sensor) on the SOI wafer with a deposition rate of 50nm/min. Then a metal 

layer (Mo or Al) is deposited by e-beam evaporation and patterned to form IDT 

electrodes by RIE. After the front side process, the wafer is thinned down to a 

thickness of 400 μm by mechanical grinding. Next, a 1μm PECVD SiO2 layer is 

deposited on the backside of the wafer as hard mask for release process, which is 

patterned by RIE. The Si substrate was etched by deep DRIE down to the BOX layer 

to release the membrane structure. Finally, the SiO2 hard mask was removed using wet 

etching. 

 

 

Figure 2.7 Fabrication process flow of the acoustic wave sensor: (a) SOI substrate 

with 30µm or 50µm device silicon layer; (b) deposition of AlN layer using sputtering; 
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(c) metal layer (Al or Mo) deposition and pattering to form IDT electrodes; (d) wafer 

thinning to 400µm, followed by 1µm SiO2 hard mask deposition and pattering on 

backside; (e) backside Si DRIE release; (f) SiO2 hard mask removal by wet etching. 

 

2.3.1.2 PZT based pMUT 

 

Figure 2.8 Fabrication process flow of the device: (a) SOI substrate with 5µm or 

10µm device silicon layer and 400 µm handle silicon layer; (b) deposition of 1µm 

SiO2/10nm Ti/200nm Pt/2µm MPB-PZT/10nm Ti/200nm Pt stack. The PZT thin film 

is deposited by sol-gel method, followed by RTA at 650°C for crystallization; (c) 

patterning of the stack. Ar ion milling, wet etching and RIE are for metal, PZT and 

SiO2, respectively; (d) Au (100nm) wire bonding pads formation; (e) backside Si 
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DRIE to release the flexural membrane and; (f) pulse poling of PZT thin film at 100V. 

 

The micro-fabrication starts from an SOI wafer, which has 5µm or 10µm device 

silicon layer, 1µm BOX layer and 400µm handle silicon layer, shown in Figure 2.8 (a). 

A 1µm SiO2 thin film is firstly grown on the wafer for isolation. Prior to bottom 

electrode deposition, a 10nm Ti adhesion layer is applied. The Pt (200nm) bottom 

electrode is then deposited by DC magnetron sputtering. After that, the MPB-PZT thin 

film is deposited using sol-gel method [89]. A commercially available PZT solution is 

used as a precursor solution, where the Pb/Ti/Zr composition is 120/52/48. This PZT 

solution is spin-coated onto the wafer, followed by heating at 120°C and 250°C for 

drying and pyrolyzing. RTA at 650 °C is then applied for 2 minutes to crystallize the 

PZT thin film. The deposition, pyrolysis, crystallization processes are repeated by 16 

times to form 2µm PZT thin film. Top electrode is formed by sputtering Pt 

(200nm)/Ti (10nm) on the PZT surface. Figure 2.8 (b) shows the deposited multilayer 

stack. The stack is patterned as shown in Figure 2.8 (c), using Ar ion milling, wet 

etching and RIE for etching the Pt/Ti, PZT and SiO2, respectively. To form the wire 

bonding pads, a 100nm Au is deposited by DC magnetron sputtering and patterned by 

wet etching (Figure 2.8 (d)). Finally the flexural membrane is released by removing Si 

substrate and BOX from backside surface using DRIE as shown in Figure 2.8 (e). The 

poling process is after all the microfabrication steps are finished, in order to maintain 

the best piezoelectric performance. The 100V unipolar pulse poling voltage is applied 

to each device via the bonding pads for 1s, shown in Figure 2.8 (f). 

2.3.2 Cavity SOI wafer 

Cavity SOI wafer is a special SOI wafer with customized cavities predefined 
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under the BOX layer using photolithography. The released diaphragm by predefined 

cavities has a much better accuracy than that of backside DRIE. Moreover, the pitch 

of diaphragms can be very small for cavity SOI wafer, and therefore a pMUT array 

with high pixel density is possible. The vacuum cavity also serves as a functional 

structure to enhance the pMUT performance, which will be discussed in Section 5.1 

in detail. All AlN based pMUTs are fabricated using cavity SOI wafer. 

 

Figure 2.9 Fabrication process flow of the AlN based pMUT: (a) Formation of the 

cavity SOI wafer; (b) Deposition of Mo / AlN / Mo stack; (c) Patterning of top Mo 

layer; (d) Deposition of PECVD SiO2 for isolation, and SiO2 and AlN are etched to 

open contact via (bottom). The contact via (top) is then opened by etching SiO2; (e) 

Deposition and patterning of Al metal layer for electrical connections and to form 
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bonding pads and; (f) Blank etching of oxide by RIE. 

 

The fabrication of the AlN based pMUT starts from a commercially purchasable 

cavity SOI wafer. Square-shaped cavities are firstly defined in the handle wafer using 

photolithography. The depth of the cavities is 5µm. Then the cavity SOI wafer is 

formed by bonding the handle wafer with a 5 µm device Si wafer in vacuum, shown 

in Figure 2.9 (a). Prior to the deposition of Mo/AlN/Mo stack, a 20 nm AlN seeding 

layer is deposited by atomic layer deposition (ALD). This seeding layer helps to 

reduce the surface roughness of AlN layer, and consequently helps to improve the 

film quality of top Mo layer. Next the PVD is used to deposit the 0.2µm Mo / 1.2µm 

AlN / 0.2µm Mo stack on the AlN seeding layer, shown in Figure 2.9 (b). The top Mo 

layer is patterned using a 0.2µm PECVD SiO2 layer as the hard mask. This hard mask 

is removed after Mo patterning using HF wet etching (Figure 2.9 (c)). A layer of 0.7 

µm PECVD SiO2 layer is then deposited for isolation. This SiO2 is firstly etched by 

RIE, followed by AlN anisotropic dry etching to open the bottom-to-top contact via. 

Then the SiO2 layer is etched to open the top-to-top via, shown in Figure 2.9 (d). 

Subsequently, a 0.7 µm Al is deposited and patterned to form the electrical 

connections and bonding pads (Figure 2.9 (e)). Finally the oxide is blank etched by 

RIE dry etching to thin the membrane, shown in Figure 2.9 (f). As the selectivity of 

SiO2 and Al is very high, no obvious attack to Al layer is observed after the process.  

It is noted that additional etching holes are applied to the membrane for the 

pMUT introduced in Section 5.2. For this type of pMUT, additional SiO2 hard mask is 

deposited and patterned after the process shown in Figure 2.9 (e), and then the 

membrane is etched through. The hard mask is removed by blank etching using RIE, 

similar to Figure 2.9 (f).  
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Chapter 3 SAW Based MEMS Pressure 

Sensor 

Pressure sensor is the most widely used MEMS device in the market [95]. Several 

harsh environment application areas, like automotive, aeronautic and oil-drilling 

industry, desire to have miniaturized pressure sensors with low power consumption, 

improved sensitivity and stability at high temperature and high pressure environment 

[96-102]. However, MEMS based sensing technology for such applications is not 

readily available; hence pressure sensor for harsh environment is gaining increasing 

research interest recently. Traditional silicon based piezoresistive pressure sensor can 

barely be employed in high temperature environment due to severe degradation in its 

accuracy and sensitivity [103]. Though SiC based pressure sensor for high 

temperature (> 300°C) application has been demonstrated, the accuracy is not 

satisfactory at high temperature and the cost is considerably high [104, 105]. Another 

approach for high temperature operation falls on quartz based resonators, which have 

been popularly used as high pressure sensors in harsh environment for a long time 

[106, 107]. However, quartz based resonator still suffers from considerable 

performance degradation due to the piezoelectric coefficient loss for temperature 

higher than 250°C [108]. Alternatively, AlN based acoustic wave pressure sensor has 

been reported to provide high stable performance at high temperature [109], and the 

piezoelectric coefficient of AlN remains relatively unaffected with increasing 

temperature. In addition, AlN is a CMOS compatible material and so enables high 

volume batch fabrication with potentially low cost as it can be monolithically 
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integrated with sensors and IC [110]. However, the temperature induced frequency 

drift is still significant in these devices, which may largely affect the sensor accuracy. 

In order to eliminate the adverse effect of temperature on the sensor performance, a 

dual mode acoustic wave pressure sensor has also been reported [111]. By 

temperature cancellation from the two modes, very accurate and solo pressure readout 

is achieved. Hence, AlN based acoustic pressure sensor is proven to be stable, 

accurate, and a low-cost solution, especially for high temperature applications. 

Besides the high temperature, high pressure is another concern for harsh 

environment applications. To fulfill the high pressure requirement, previously 

reported AlN based acoustic pressure sensors employ relatively thick diaphragm. For 

the pressure sensing range of 300 PSI or even higher, thick diaphragms of 30µm or 

50µm are used and this adversely affects the sensitivity of these devices. [111]. 

Therefore, to enhance the sensitivity of such pressure sensors is in great demand. 

Unfortunately, the study of the sensitivity mechanism of AlN based acoustic wave 

pressure sensor for harsh environment applications has not been reported to date.  

In this chapter, AlN based SAW pressure sensors with different diaphragm shapes 

are developed, packaged and characterized. The sensors with circular and rectangular 

(small aspect ratio) diaphragms are found to provide positive pressure coefficient of 

frequency (PCF), while the sensor with rectangular diaphragm (large aspect ratio) 

shows negative PCF. Acoustoelastic effect plays a critical role in this pressure 

sensitivity difference. Longitudinal and lateral strains along SAW propagating 

direction have opposite contributions to the frequency change, and hence the sensor 

with rectangular diaphragm (large aspect ratio), which is laterally strained, shows the 

negative PCF. Approaches to further improve the sensitivity of AlN based SAW 

pressure sensors for harsh environment are also included in this chapter. 
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3.1 Design of SAW Based Pressure Sensor 

3-D illustrations of the AlN based SAW pressure sensor is shown in Figure 3.1 (a). 

AlN thin film is adopted as the piezoelectric layer and the bottom Mo electrode helps 

to increase the electromechanical coupling efficiency. A set of IDT electrodes (50 

pairs) made of Mo with 10.4µm periodicity is used for inducing SAWs. Propagating 

SAWs are reflected by the two Bragg reflectors placed on either side of the IDT 

electrodes and this gives rise to resonant modes. The 50µm thick supporting silicon 

layer aims to fulfill the high pressure requirement. To study the influence of 

diaphragm shape on sensitivity, three different pressure sensors are designed: circular 

diaphragm with diameter of 800µm (PS_A), rectangular diaphragm with size of 

1000µm × 800µm (PS_B) and rectangular diaphragm with size of 2700µm × 800µm 

(PS_C). The three sensors share the same resonator design but different diaphragm 

shapes. Corners of rectangular diaphragm are rounded to avoid the high localized 

stress, making the sensors more reliable.  

 

Figure 3.1 (a) The 3-D schematic illustration of the AlN based SAW pressure sensor; 

(b) Cross-sectional view of the illustration. All the devices are fabricated on (100) 

wafer and the SAW propagating direction is along <100>. 
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3.2 Device Characterization and Results 

3.2.1 Device characterization 

 

 

Figure 3.2 (a) Optical microscope (OM) image of fabricated pressure sensor; 

Secondary electron microscope (SEM) images, showing the 50µm thick silicon layer; 

(c) Backside view of the three pressure sensors showing the different diaphragm 

shapes and; (d) Packaged and assembled pressure sensor with printed-circuit-board 

(PCB) for testing. The pressure is applied using hydraulic controller through the tube 

and the SMA connectors are for signal readout. 

 

The as-fabricated pressure sensors are shown in Figure 3.2 (a) – (b). Figure 3.2 (c) 

shows the backside cavities and the differently shaped diaphragms. The fabricated 
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pressure sensors are then packaged and assembled with printed-circuit-board (PCB) 

for testing as shown in Figure 3.2 (d). Since the pre-defined wavelength by IDT is 

10.4µm, which is 1/5 less than the thickness of diaphragm (~56µm), SAW is expected 

to be induced.  

 

 

Figure 3.3 (a) Measured and simulated frequency responses of the pressure sensor. 

The mode shape indicates the induced acoustic wave is a SAW and; (b) – (d) The 

frequency change with respect to applied pressure for PS_A, PS_B and PS_C, 

respectively. 

 

Agilent E5071B network analyzer is employed to measure the S parameters. 

Short-Open-Load-Through (SOLT) method is performed before testing to calibrate 

out the parasitic parameters introduced by PCB and bonding wires. The S21 

parameter of the pressure sensor is extracted first and shown in Figure 3.3 (a). 
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Because the pressure sensors share the same resonator design, their behaviors without 

applying pressure are the same. This pressure sensor resonates at 432.29 MHz. 

Considering the pre-defined wavelength of 10.4µm, the phase velocity of the acoustic 

wave is derived as 4495.8 m/s. Such low velocity implies that the induced acoustic 

wave is a SAW, i.e. Rayleigh wave, which is expected [111]. A 2-D finite element 

analysis (FEA) model is also built by COMSOL Multiphysics software, using the 

Piezoelectric Devices model with Frequency Domain study. The simulated imaginary 

admittance of the resonator is shown in Figure 3.3 (a) as well, where the resonant 

frequency is 438.97 MHz and slightly higher than the measured result. The mode 

shape clearly shows that the induced acoustic wave is a SAW, and most of the 

displacement is confined within the depth of one wavelength near the surface.  

3.2.2 Pressure testing 

Pressure is applied to the sensors from backside using hydraulic pressure 

controller from 0 to 250 PSI. Even though the sensors function well at pressure over 

700 PSI, a relatively lower pressure is applied to minimize the sensitivity change due 

to non-linear effects. Frequency changes with respect to the applied pressure are 

recorded and plotted in Figure 3.3 (b) to (d). The PCFs are derived as 0.071 ppm/PSI 

(30.02 Hz/PSI), 0.038 ppm/PSI (16.36 Hz/PSI) and -0.171 ppm/PSI (-74.13 Hz/PSI) 

for PS_A, PS_B and PS_C, respectively. The sensitivity behaviors of the three sensors 

seem quite different. PS_A and PS_B have positive PCFs while PS_C has negative 

PCF, and PS_A is more sensitive than PS_B. 
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3.3 Study of the Diaphragm Shape Effect on Sensitivity 

 

Figure 3.4 (a) Simulated Von Mises stress distributions of the three pressure sensors 

and; (b) The associated strain directions of the three pressure sensors. The dash lines 

indicate where the IDTs are located. 

 

To investigate the mechanism behind such different sensitivity behaviors, another 

FEA model (Structural Mechanical Model) is built, and all the diaphragms are applied 

with 250 PSI pressure. The Von Mises stress distributions are shown in Figure 3.4 (a), 

and the associated strain directions are shown in Figure 3.4 (b). Since only the portion 

of diaphragm near the top surface displaces when SAW is propagating, the stresses 

and strains on the top surface are considered because they primarily affect the SAW 

phase velocity. Red and blue arrows represent for the tensile and compressive strains, 

respectively, and the dash lines indicate where the IDTs are located. It is clearly 
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shown that the IDTs in all three devices are bearing the same type of strain, i.e. the 

tensile strain. Thus, the negative PCF for PS_C should not be due to the type of strain. 

Furthermore, PS_A shows less strain than PS_B, and hence the higher PCF of PS_A 

should not be due to larger strain. Thus, the measured PCF variation for different 

diaphragm should be attributed to other non-obvious effects. 

The frequency of a SAW resonator can be described as: 

 

λ
ph

SAW

v
f =         (3.1) 

 

where, vph is the phase velocity and λ is the wavelength of the SAW. For the 

wavelength, which is determined by IDT periodicity, it may slightly change because 

of the strain. As all three pressure sensors are bearing tensile strain, the elongation in 

IDT will only result in a lower resonant frequency. However, both of PS_A and PS_B 

show a positive PCF, implying that the wavelength change may not be the major 

effect, but the phase velocity effect dominates the frequency change. In order to take 

the initial strain into account and obtain the phase velocity of SAW, a form of 

equations of motion is used as [112]: 
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Considering a piezoelectric medium, this equation becomes [113]: 
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𝑒𝑖𝑖𝑖𝑢𝑖,𝑖𝑖 + 𝜖𝑖𝑖𝜑,𝑖𝑖 = 0       (3.4) 

 

where T is the stress, σ is the initial stress, u the mechanical displacement, ρ the 

density , c the elastic moduli, e the piezoelectric moduli, ϵ the permittivity tensors 

and φ the electric potential. The subscripts i,j,k,l take on the values 1,2,3. Since 

acoustoelastic effect plays an important role in the phase velocity change, strain 

induced elastic moduli change must be considered. Thus the higher-order elasticity is 

introduced, and the stress-strain relation becomes non-Hookean as [114]: 

 

 2'

2
1 εεσ cc +=           (3.5) 

 

where σ is the stress, ε the strain, c the linear elastic moduli and c’ the third-order 

elastic moduli. The effective elastic moduli thus are strain-dependent and vary with 

increasing strain, changing the phase velocity. It is worth noting that the third-order 

elastic moduli of AlN can be ignored, because the bonds between crystallites in a thin 

polycrystalline film are very weak [115]. The third-order elastic moduli of Si, 

however, are very important and must be taken into consideration. Although the 

density of medium changes with strain as well (due to volume change), such effect 

only has minimum effect on the phase velocity based on previous study [113]. Hence, 

it is reasonable to neglect the density effect for our work. 

Koleshko et al. have done a comprehensive study of strain effect of AlN based 

SAW device on silicon substrate [116]. Abovementioned set of equations are solved 

with boundary conditions using numerical method. Because silicon is a highly 
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anisotropic material and its third-order elastic moduli are anisotropic as well [117], 

the strain effect on phase velocity depends on the crystallographic plane of silicon 

wafer, direction of SAW propagation and direction of applied strain etc. The phase 

velocity after strain vph is defined as: 

 

)1(0 γε+= vvph          (3.6) 

 

where v0 is the phase velocity with zero strain, and a coefficient γ is introduced to 

describe the velocity sensitivity to strain. Since all the pressure sensors in this work 

are fabricated on a (100) Si wafer, the computation results for (100) Si plane is 

summarized in Table 3.1. The longitudinal strain means a homogenous uniaxial 

tensile strain applied along with the direction of SAW propagation, while the lateral 

means a tensile strain perpendicular to the direction of SAW propagation. As is shown 

in Figure 3.1, the SAW propagates along <100> direction for all the pressure sensors. 

For such case the longitudinal and lateral strains have opposite effects on the SAW 

phase velocity, i.e. longitudinal strain increases the velocity (γ = 0.8) while lateral 

strain decreases the velocity (γ = -0.3) as shown in Table 3.1. This could be the reason 

for different sensitivity behaviors of these sensors. 

 

Table 3.1 Phase velocity sensitivity to strain γ for (100) Si plane [116] 

SAW Propagation 
Direction 

Longitudinal Strain Lateral Strain 

<100> 0.8 -0.3 

<110> 1.9 0.3 

 



CHAPTER 3 

51 

The strain directions of the three pressure sensors are shown in Figure 3.4 (b). 

For the axially symmetric circular diaphragm (PS_A), it is equally strained in 

longitudinal and lateral directions. Due to the larger γ for longitudinal strain, the 

combined strain effect for PS_A is to increase the phase velocity, showing a positive 

PCF. Lateral strain effect cancels part of longitudinal strain effect, and results in 

lowering of the positive PCF compared to the one that only has longitudinal strain 

effect. The square diaphragm has the similar situation as the circular one, which also 

bears longitudinal and lateral strains of equal value. However, if the diaphragm is 

changed to rectangular shape, the strain starts becoming more lateral (PS_B). More 

lateral strain means the more significance of the cancellation effect. Though the 

combined strain effect still contributes to the increase of the velocity and frequency, 

PS_B shows a lower PCF than that of PS_A. As the aspect ratio of rectangular 

diaphragm increases, more region of diaphragm experiences the lateral strain (PS_C). 

It is clearly shown that the IDT of PS_C is entirely laterally strained, and thus only 

lateral strain effect attributes to its velocity change. Without the longitudinal strain 

effect, PS_C therefore shows a negative PCF. It is worth noting that the absolute PCF 

of PS_A is lower than that of PS_C. This could probably be due to the following 

reasons: 1. PS_C has larger diaphragm and larger strain for same applied pressure; 2. 

longitudinal strain induced elongation of IDT periodicity decreases the frequency of 

PS_A, which partially cancels the strain effect on velocity (increasing frequency), 

while on the other hand the lateral strain does not affect the IDT periodicity of PS_C 

and; 3. almost all strain for PS_C contributes to frequency decrease, while only half 

the induced strain in PS_A is longitudinal and contributes to the increase of the 

frequency. 



CHAPTER 3 

52 

3.4 Methods of Sensitivity Enhancement 

As is discussed above, the frequency change of pressure sensor is attributed to 

different effects. These effects may work against each other and result in a relatively 

low sensitivity. Enhancing the primary effect and minimizing the reverse effect may 

result in further increase in the sensitivity without sacrificing the diaphragm thickness, 

i.e. the high pressure sensing range. For axially symmetric diaphragm design (PS_A), 

in-plane tilting the position of the IDT and reflectors by 45° and generating SAW 

propagating along <110> direction can help to increase the PCF. In this case, the 

velocity sensitivities to longitudinal strain and lateral strain become 1.9 and 0.3, 

respectively. The lateral strain does not cancel the effect of longitudinal strain but 

slightly enhances it, giving rise to a larger frequency change. Another possible 

approach is rotating the diaphragm of PS_C by 90°. The pressure induced strain 

becomes entirely longitudinal, resulting in a large positive PCF without cancellation 

from lateral strain effect. Finally, Table 3.2 summarizes the γ for (110) silicon plane. 

As the lateral strain does not change the IDT periodicity and affect the frequency for 

PS_C, if the silicon wafer is changed to (110), the maximum negative PCF may be 

achieved.  

 

Table 3.2 Phase velocity sensitivity to strain γ for (110) Si plane [116] 

SAW Propagation 
Direction 

Longitudinal Strain Lateral Strain 

<110> 1.8 -1.1 

<100> 0.9 -0.05 
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3.5 Summary 

In conclusion, the influence of diaphragm shape on sensitivity of AlN based 

SAW pressure sensor is experimentally studied. Three pressure sensors with same 

SAW resonator design but different diaphragm shapes are fabricated, packaged and 

characterized. The sensors with circular diaphragm, rectangular diaphragm with small 

aspect ratio and rectangular diaphragm with large aspect ratio have PCFs of 0.071 

ppm/PSI, 0.038 ppm/PSI, and -0.171 ppm/PSI, respectively. Diaphragm shape 

influences the longitudinal / lateral strain ratio. Longitudinal and lateral strains have 

opposite effects on phase velocity and frequency change for (100) silicon plane along 

<100> propagation direction, and so results in different sensitivity behaviors. By 

changing the silicon wafer plane, SAW propagation direction and longitudinal/lateral 

strain ratio, the reverse strain effect can be engineered. Hence, the sensitivity of the 

pressure sensor may be increased, without sacrificing its high pressure sensing range 

for harsh environment applications.  
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Chapter 4 Decoupled Viscosity and Density 

MEMS Sensor 

Viscosity η and density ρ are two important physical parameters of a liquid, 

which are widely utilized for liquid identification. By determining these two 

parameters, components and corresponding concentrations of a liquid can be 

estimated as well. Viscosity and density sensors therefore attract many researchers’ 

interests and have been developing since 1980s. Benefiting from advantages of high 

sensitivity, small size, real-time readout capability, robustness and low cost, acoustic 

wave sensor has been widely adopted for liquid viscosity and density sensing 

[118-126]. Various applications are successfully realized using viscosity and density 

sensors.  

Nomura et al. reported a liquid flow sensing system in 2000, where the resonance 

frequency change to viscosity and density is used as a liquid sensor time response 

[127]. As is shown in Figure 4.1, the transient responses show a unique shape and the 

difference of transient responses depends on the type of dissolving molecules and 

concentration of aqueous solutions. Discrimination of liquids and estimation of their 

concentrations by determining viscosity and density are proven to be feasible.  

In 2004 a smart tongue device based on the viscosity and density detection was 

proposed by Cole et al. for measurement of beverage properties [118]. With a very 

small amount of liquid, this smart tongue can clearly discriminate between the 

different samples (e.g. water, milk and orange juice). Further tests on commercial 

milk samples with different fat contents (whole milk with 4% fat, semi-skimmed with 
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2% fat, and skimmed milk with no fat) show the linear discrimination of 

skimmed-level. Even the freshness of whole milk samples can be determined using 

such smart tongue device, and five distinct clusters are shown in Figure 4. 2 (e). 

 

 

Figure 4.1 Liquid flow sensing system [127]: (a) geometry of viscosity & density 

sensor with liquid flow channel; (b) block diagram of the flowing system for the 

sensor measurements in liquid phase; (c) transient frequency responses of the sensor 

to various aqueous solutions (with constant concentration) and; (d) transient 

frequency responses of the sensor as a function of concentration for KCl aqueous 

solutions. 

 

In 2012, Vivancos et al. developed an analytical system for determining 

surfactants and detergents in water [128]. Such system correctly classified three 

detergents without selective chemical or biology coating, while the detection limit 

was found to be as small as ca. 10 ppm, shown in Figure 4.3. Equipped with this 
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system, a household washing machine can automatically choose appropriate number 

of rinsing cycles, according to the concentration of residual detergents. With less 

detergent, less water and less energy consumption, the new generation washing 

machines will become smarter and greener.  

 

 

Figure 4.2 Viscosity and density detection based smart tongue device [118]: (a) 

photograph of fabricated device; (b) Photograph of the assembled device with the 

liquid reservoir used for experimental setup; (c) testing of different liquids showing 

excellent discrimination; (d) testing of milk samples with different skimmed-level and; 

(e) Testing of milk samples showing the effect of aging. 

 

Nowadays, the biomedical applications based on viscosity and density sensor 

appear to be emerging. Xu et al. presented a viscosity sensor, monitoring in-vitro 

blood coagulation process in real time [129]. This sensor provides the coagulation 

time and the start/end of the fibrin generation, and accesses the clot strength, using the 

viscosity change of the blood sample (Figure 4.4). Monitoring the coagulation of 

whole blood is of great value for both the medical diagnosis of hemostasis disorders 

and clinical treatment / surgical procedure for cardiovascular diseases.  
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Figure 4.3 Analytical system for residual liquid detergent detection [128]: (a) 

photograph of the assembled system; (b) OM of fabricated sensor; (c) principal 

components analysis of different detergents and; (d) frequency response vs. different 

concentrations of detergent solutions. 

 

 

Figure 4.4 Real-Time monitoring of whole blood coagulation [129]: (a) Schematic 

illustration; (b) an SEM image of the fabricated device; (c) Viscosity characterization 

and; (d) Real-time monitoring the coagulation process of a citrated blood. 
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4.1 Motivation 

Many successful applications using viscosity and density sensors have been 

achieved; however, the sensors themselves have limitations. The major limitation of 

conventional sensors is that they are not able to separately measure liquid’s viscosity 

and density [130, 131]. The frequency response of such sensors is proportional to the 

square root of viscosity density product [127, 132, 133]. Although many devices are 

claimed as viscosity sensors, they actually assume that density is a constant and 

overlook its influence. This assumption may not always be true for real cases [134, 

135]. To address such issue, Herrmann et al. proposes an approach using dual SAW 

sensors to decouple these two parameters η and ρ [136]. As shown in Figure 4.5 (a), 

one reference device with smooth surface is used to sense (η·ρ)1/2. The other device is 

corrugated by microfabricated sagittal trenches. Frequency response of the corrugated 

sensor is proportional to ρ and nearly non-sensitive to η. η then can be calculated from 

known (η·ρ)1/2 and ρ. The main drawback of this approach is the employment of 

dual-device, which significantly increases the cost and complexity. Challenges also 

come from the indirect differentiation method, making the signal processing difficult. 

Another trial to decouple the two parameters is proposed by Martin et al. using a 

Lamb wave sensor [137]. Because frequency related phase velocity of Lamb wave is 

mainly influenced by liquid density, frequency response of this sensor is found to be 

proportional to ρ in a relatively wide range of viscosity. On the other hand, attenuation 

response of this sensor still depends on (η·ρ)1/2. With measured ρ and (η·ρ)1/2, η hence 

can be derived. Although this approach realizes the separation of η and ρ with a single 

device, it is still an indirect method and the accuracy of attenuation measurement has 

no guarantee. In addition, phase velocity of Lamb wave is not solely determined by 
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liquid density. This device can only function when liquid viscosity is small and 

influence of liquid sound velocity is neglected. When the viscosity is large, measured 

data cannot be trusted, illustrated in Figure 4.5 (b). Zhou et al. makes an improvement 

on Lamb wave sensor, which successfully decouples the liquid sound velocity using 

multi-mode Lamb waves. Other problems of Lamb wave sensor are not addressed 

[138]. 

 

Figure 4.5 (a) Dual SAW sensors from [136]. (η·ρ)1/2 is measured using sensor with 

smooth surface while ρ is obtained by sensor with corrugated surface. η can be 

derived from the two values and; (b) frequency response of the Lamb wave sensor 

from [137]. Frequency response is assumed to be independent with liquid viscosity, 

but this is only valid when viscosity is small enough. 

 

Another limitation is from the widely adopted delay line configuration [138-140]. 

Although Lamb wave sensor is a powerful device for liquid sensing [42-46], the delay 

line configuration has the issues of low quality factor, low stability and low 

reproducibility. Resonator configuration, on the contrary, provides a compact and 

rugged solution with high quality factor, which significantly reduces the complexity 

of signals readout [127]. Unfortunately, studies on Lamb wave resonator for liquid 

sensing are quite limited [141, 142]. Meanwhile, most of researchers mainly focus on 

the lowest mode of Lamb wave and pay no attentions to higher-order modes effects 

on liquids properties sensing by far. 

In this chapter, a novel AlN based MEMS Lamb wave sensor is proposed, which 
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is able to directly measure liquid’s η and ρ by using higher-order modes of Lamb 

wave. This unique feature realizes the easy separation of η and ρ by a single device at 

the first time. Resonator configuration is utilized to guarantee stable and easy-readout 

signals. Experimental results prove the sensor’s capability of differentiating liquids 

such as DI water and ethanol, which are likely to be mixed up by conventional 

sensors. 

4.2 Working Principles and Sensor Design 

When a Lamb wave sensor is loaded with liquid, the phase velocity of its lowest 

asymmetric mode A0, which is commonly employed for liquid sensing by 

conventional sensors, is given by [140]: 

 

𝑉𝑝ℎ = 2𝜋
𝜆 �

𝐵
𝑀𝑒𝑒𝑒

                (4.1) 

 

where λ is the wavelength of the acoustic wave, B the bending stiffness of the plate: 

B=d3E/[12(1-υ2)], d is the plate thickness, E is the Young’s modulus, υ is the Poisson 

ratio. Meff is the effective mass: 

 

𝑀𝑒𝑒𝑒 = 𝑀𝑝𝑖𝑝𝑝𝑒 + 𝑀𝑑𝑒𝑑 + 𝑀𝑣𝑖𝑣        (4.2) 

 

Mplate is the unit plate mass, Mden is the mass loading due to liquid density, and Mvis is 

the viscous loading of the liquid. The corresponding frequency is expressed as: 

 

𝑓 = 𝑣𝑝ℎ
𝜆

          (4.3) 



CHAPTER 4 

61 

 

The A0 wave is a combination of longitudinal and transverse waves, where the 

motions of particles on the plate are in elliptical paths, having the components both 

perpendicular and parallel to the plate plane. The normal component along y-direction 

generates an evanescent pressure wave which displaces the liquid in the skin depth, 

and the liquid mass loading Mden lowers the phase velocity. Meanwhile the in-plane 

component along x-direction generates shear waves in liquid. The viscous loading 

contributes to the Mvis and lowers the phase velocity as well [137].  

 According to [40], the relative magnitude of the two components is a function of 

frequency-thickness product. At certain product value, one of the components 

becomes zero and the motion of particles is either entirely perpendicular or parallel to 

the plate plane. Especially for the higher-order modes of Lamb wave, at nascent 

frequencies of some particular modes, the motion of particles at the backside surface 

is either entirely perpendicular or parallel to the plate plane. The mode with 

perpendicular motion thus should be only sensitive to ρ, while the mode with parallel 

motion should respond to η. η and ρ therefore can be separately determined by using 

the two unique modes. 

 However, frequency of higher-order modes may be extremely high. In [143] 

authors reported first four modes with frequencies up to 4 GHz. Such high frequency 

will bring extra issues on signals readout and processing. In addition, high frequency 

is not preferred for viscosity sensing, as liquid are more likely to become viscoelastic 

in high frequency range. The viscoelastic effect will be discussed later. According to 

velocity dispersion curves, phase velocity of Lamb wave decreases with increasing 

plate thickness, which leads to a lower frequency. Therefore, a relatively thick plate is 

usually adopted to decrease the frequency of higher-order modes. 
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Figure 4.6 Schematic drawing of the directly decoupled viscosity and density sensor: 

(a) bird’s view and; (b) cross-sectional view. The IDT electrodes induce the Lamb 

wave within the plate. Relatively thick device silicon (30µm) is employed for the 

plate to lower the frequency of higher-order modes. 

 

Schematic drawing of the decoupled viscosity and density sensor is shown in 

Figure 4.6. A 2µm AlN layer is deposited as the piezoelectric material. This material 

has been well studied and widely utilized in acoustic wave resonator implementations, 

because of its efficient electromechanical transaction [144]. A set of IDT electrodes 

made of 0.6µm Al with 20µm periodicity (= λ) is used for Lamb waves’ generation. 

Since the plate is not infinite, propagating Lamb waves will be reflected back at the 

lateral extremities, giving rise to resonant modes [145]. It is significant that a 30µm Si 

layer and a 1.4µm SiO2 layer are attached below AlN layer. This AlN/Si/SiO2 

composite plate has a thickness of 33.4µm in total, which is about 1.5 times the Lamb 

wavelength 20µm. Eq. (4.1) is no longer valid for such situation because it is only 

valid when the plate thickness d << λ [140]. A 2-D finite element model therefore is 

employed for analysis in this research. 
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Figure 4.7 Simulation results of Mode 1: (a) mode shape; (b) velocity vectors on 

backside surface and; (c) zoom-in view of velocity vectors. Motion of particles on 

backside surface is entirely in-plane, generating shear waves in liquid. 
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Figure 4.8 Simulation results of Mode 2: (a) mode shape; (b) velocity vectors on 

backside surface and; (c) zoom-in view of velocity vectors. Motion of particles on 

backside surface is out-of-plane, generating longitudinal waves in liquid. 
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Admittance and resonance mode shapes of higher-order modes are simulated 

using COMSOL multi-physics software. Only those modes which can be electrically 

excited are considered. Two noteworthy modes are found in the simulation, denoted 

as Mode 1 and Mode 2. Shape of Mode 1 is shown in Figure 4.7 (a) and the velocity 

vectors of backside surface are shown in Figure 4.7 (b) and (c). The motion of the 

backside surface is in-plane and velocity vectors are entirely parallel to the plate plane 

without any normal components. For Mode 2, the motion of the backside surface is 

out-of-plane, shown in Figure 4.8 (a). As can be seen from Figure 4.8 (b) and (c), 

most of velocity vectors are perpendicular to the plate plane. Non-perpendicular 

vectors are rare and weak, of which the influences are quite limited. As 

aforementioned, Mode 1 with parallel motion can be used to sense viscosity, while 

Mode 2 with perpendicular motion can be used to sense density of a liquid. 

To further study the two modes, a layer of fluid is defined at the bottom of the 

device. The interface “Acoustic-Piezoelectric Interaction” with frequency domain 

study is employed to simulate the interaction between the device and fluid. It is worth 

noting that the fluid is modeled as “Viscous”, which takes fluid’s both density and 

viscosity into consideration. However, due to the software limitation, viscosity lowers 

the peak amplitude but does not influence the frequency at all. Only the density 

contributes to the frequency shift of the device. Simulated frequency responses to 

density change of Mode 1 and 2 are shown in Figure 4.9. Behaviors of these two 

modes are much different. Frequency of Mode 1 does not shift at all, while frequency 

of Mode 2 decreases with a sensitivity of -2478 ppm / g/cm3. Such simulation results 

prove that liquid density has no influence on frequency shift of Mode 1, thus any 

frequency shift of Mode 1 should be contributed by viscosity.  
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Figure 4.9 Simulated relative frequency shifts to the density of (a) Mode 1 and (b) 

Mode 2. Frequency of Mode 1 does not shift to density at all, which can be used for 

viscosity sensing. 

 

4.3 Experimental Results and Discussions 

 

Figure 4.10 The fabricated decoupled viscosity and density sensor: (a) optical 

microscope photograph; (b) scanning electron microscope (SEM) photograph; and (c) 

cross-sectional SEM photograph. 

 

The fabricated device is shown in Figure 4.10. Both optical microscope and SEM 

images indicate the well patterned electrodes. The bright regions between electrodes 
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in Figure 4.10 (b) are probably due to electrons charging on AlN dielectric layer. 

Cross-sectional SEM image of the device is given in Figure 4.10 (c).  

4.3.1 Testing setup 

The fabricated device is mounted on a PCB with a through hole (3 mm in 

diameter) in the center as shown in Figure 4.11 (a, c). This hole enables backside 

surface of the released membrane expose to the environment. Liquid under test is 

injected through the hole and contacts with the bottom surface. All the bonding wires 

are sealed and protected by silicone, illustrated in Figure 4.11 (b). Silicone sealing 

prevents bonding wires from the possible influences of splashed liquid or external 

stuffs. Even a small amount of liquid on bonding wires can result in significant signal 

fluctuation due to the perturbation on parasitic parameters such as capacitance. Hence 

silicone sealing is a key step to ensure the stable signals. Furthermore, to eliminate the 

parasitic effects brought by PCB package and cables, a PCB calibration kit with open, 

short, through and load (50 Ω) configurations is fabricated as well, shown in Figure 

4.11 (d). These configurations are of exactly the same layout with the testing PCB 

package.  

The testing is conducted by measuring the S11 parameter in the range of 400 

MHz to 550 MHz using an Agilent E5071B network analyzer under a fixed room 

temperature of 24°C. The maximum sweeping points of this instrument is 16001, 

which implies the frequency resolution is limited to about 10 kHz. Calibration is first 

performed with the kit mentioned above. The open circuits S11 after calibration is 

greater than -5 dB. This indicates that most of signals are reflected back and 

interferences from PCB and cables are minimized. 
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Figure 4.11 (a) Schematic drawing of packaged sensor with loaded liquid under test; 

sensor mounted on the holed PCB with sealed bonding wires by silicone (b) front side 

and (c) backside; (d) PCB calibration kit for eliminating the interferences from cables 

and PCB package. 

 

4.3.2 Device testing in air 

 

Figure 4.12 S11 parameter in the range of 400 MHz to 600 MHz, measured in air 

using Agilent E5071B network analyzer. The signal is quite stable while high Q-factor 

makes easy and accurate frequency determination possible 
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S11 parameter in air is firstly recorded as in Figure 4.12 for the reference, and all 

shifted frequencies will be compared with this. Benefited from the thick stack plate, 

five higher-order Lamb wave modes are generated within the 150 MHz bandwidth. In 

addition, high quality factors improve the accuracy of the frequency shift 

measurement and make an easy-readout possible.  

4.3.3 Liquids testing 

4.3.3.1 Liquids testing using DI water, acetone ethanol and IPA 

Four liquid samples are firstly adopted for the testing: deionized water (DI water), 

acetone, ethanol and isopropyl alcohol (IPA). Mechanical properties viscosity η, 

density ρ and square root viscosity-density product (η·ρ)1/2 of the four liquids are 

summarized in Table 4.1. Each liquid is dripped into the PCB hole (shown in Figure 

4.10 (c)) and directly contacts with backside surface of the sensor. When the signal is 

stable with no fluctuation, S11 parameter is recorded thereafter. Frequency responses 

of all five modes are studied, and four out of them are noteworthy, denoted as Mode A 

to D. 

 

Table 4.1 Summary of mechanical properties of air and chemicals 

Samples 
η 

(mPa∙s) 

ρ 

(×103 kg/m3) 

(η·ρ)1/2 

(kg∙m-2∙s-1/2) 

Air 0.019 0.001 0.005 

DI Water 0.894 1.000 0.946 

Acetone 0.306 0.791 0.492 

Ethanol 1.070 0.789 0.921 

IPA 1.960 0.786 1.241 
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Figure 4.13 Relative frequency shifts to the square root of viscosity-density product of 

Mode A in DI water, acetone, ethanol and IPA. DI water and ethanol share the same 

frequency response. 

 

Frequency response of Mode A and Mode B behaves similarly, and linear 

correlation between frequency and (η·ρ)1/2 is revealed. Such behavior is similar to 

conventional sensors. The frequency response of Mode A is plotted in Figure 4.13 as 

an example. These two modes are not able to differentiate the coupled influence of 

viscosity and density. Although DI water and ethanol have different viscosities and 

densities, their products are very close to each other (as shown in Figure 4.13). The 

two liquids therefore can hardly be differentiated using these conventional modes. 

Figure 4.14 shows the frequency response of Mode C, which behaves like the 

Mode 1 in simulation (see Figure 4.7). This mode reveals almost linear frequency 

shift relationship with η of liquids, without influence of density change. Thus DI 

water and ethanol are clearly distinguished due to the viscosity difference. On the 

contrary, frequency response of Mode D seems sensitive to ρ only, corresponding to 

Mode 2 in simulation (see Figure 4.8). Acetone, ethanol and IPA are three liquids 

which have almost the same ρ but largely different η. As is demonstrated in Figure 
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4.15, frequency responses of such three liquids are overlapped together and this 

indicates that Mode D is non-sensitive to η. As a result, viscosity and density of a 

liquid are separately detected by using Mode C and Mode D, while the corresponding 

viscosity and density sensitivity are calculated as -569 ppm / mPa∙s and -748 ppm / 

g/cm3, respectively. The sensitivity is derived as the frequency shift divided by the 

frequency for the particular mode.  

 

 

Figure 4.14 Relative frequency shifts to the viscosity of Mode C in DI water, acetone, 

ethanol and IPA. DI water and ethanol are discriminated due to their different 

viscosities. 

 

 

Figure 4.15 Relative frequency shifts to the density of Mode D in DI water, acetone, 

ethanol and IPA. Acetone, ethanol and IPA cannot be differentiated because of the 

almost same density, indicating frequency response of Mode D is not influenced by 

viscosity. 
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4.3.3.2 Liquids testing using glycerol-water mixtures 

 

Table 4.2 Summary of mechanical properties of glycerol-water mixtures 

Glycerol Volume 

Concentration 

(%) 

η 

(mPa∙s) 

ρ 

(×103 kg/m3) 

(η·ρ)1/2 

(kg∙m-2∙s-1/2) 

0 0.894 1.000 0.946 

10 1.221 1.029 1.121 

20 1.732 1.060 1.354 

30 2.575 1.089 1.673 

40 4.058 1.118 2.130 

50 6.879 1.144 2.806 

 

To further characterize the sensor performance in high-viscosity range, 

glycerol-water mixtures are utilized. Glycerol-water solutions as standard Newtonian 

liquids are widely used for viscosity sensor testing. By changing the glycerol/water 

ratio, viscosity of these solutions ranges from 1 to 1500 mPa∙s at room temperature, 

while the density only changes from 1 to 1.29 g∙cm-1 [146]. Mixtures with glycerol 

volume concentration from 0 to 50% are made for testing, using G5516 glycerol 

(≥99%) from Sigma-Aldrich®. Viscosity η, density ρ and square root viscosity-density 

product (η·ρ)1/2 of the glycerol-water mixtures are calculated and summarized in Table 

4.2.  

Highly viscous liquids like glycerol-water mixtures tend to deviate from 

Newtonian behaviors, becoming viscoelastic. Response of most viscosity sensors 

leaves the linear dependence, when liquid viscosity goes beyond a certain value due to 

viscoelastic effect [147]. For example, the response of the device reported in [148] 
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starts becoming nonlinear from about 3.6 mPa∙s. This turning point is related to the 

device operating frequency, which becomes higher for lower frequency. In terms of 

current work, fully linear correlation of Mode C is observed in Figure 4.16 (b), with 

liquid viscosity up to 7 mPa∙s. Such linear behavior may be partially due to the 

moderate operating frequency. It is also worth noting that although the liquid viscosity 

changes largely, frequency shift of Mode D is very small and proportional to the 

slightly changed density, shown in Figure 4.16 (c). There is no deviation from the 

linear dependence is observed and this implies that Modes D is highly independent of 

liquid viscosity. 

 

Figure 4.16 Relative frequency shifts in glycerol-water solutions with volumic 

concentration from 0% to 50%: (a) Mode A to the square root of viscosity-density 

product; (b) Mode C to the viscosity and; (c) Mode D to the density. 
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4.3.3.3 Liquids testing using NaCl solutions 

 

Table 4.3 Summary of mechanical properties of NaCl solutions 

NaCl Mass 

Concentration 

(%) 

η 

(mPa∙s) 

ρ 

(×103 kg/m3) 

(η·ρ)1/2 

(kg∙m-2∙s-1/2) 

0 0.894 1.000 0.946 

4.76 0.959 1.040 0.998 

9.09 1.042 1.068 1.055 

13.04 1.142 1.095 1.119 

16.67 1.260 1.132 1.195 

20.00 1.396 1.157 1.271 

 

NaCl solutions with different concentrations are also made for testing, by 

dissolving 0.5 – 2.5 g NaCl into 10ml DI water. Volume changes due to dissolved 

NaCl are considered for calculation as well. Both viscosity and density of NaCl 

solution slightly increase with NaCl concentration, summarized in Table 4.3 [149]. 

NaCl solutions are mainly used to study the minimum detection limit of this 

decoupled viscosity and density sensor. The frequency shifts due to NaCl solutions 

are extremely small. Such small shifted frequency already approaches to the 

frequency resolution of network analyzer, illustrated in Figure 4.17. Minimum 

detectable viscosity and density changes of this sensor are 0.065 mPa∙s and 0.025 

g/cm3, respectively.  
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Figure 4.17 Relative frequency shifts in NaCl-water solutions with mass 

concentration from 0% to 20%: (a) Mode A to the square root of viscosity-density 

product; (b) Mode C to the viscosity and; (c) Mode D to the density. 

 

4.3.3.4 Potential applications as a label-free liquid sensor 

As mentioned above, conventional acoustic wave sensors have many limitations 

when used as label-free liquid sensors. Frequency responses to liquids like DI water 

and ethanol are probably overlapped as shown in Figure 4.13. Such liquids may be 

determined as the same one by conventional sensors. Whereas, with the decoupled 

viscosity and density sensor, a novel 2-D method for label-free liquid detection is 

available by plotting frequency response of Mode C vs. that of Mode D, demonstrated 

in Figure 4.18. In this plot, DI water and ethanol can be easily differentiated because 
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of different viscosities and densities. Acetone, ethanol and IPA share almost the same 

density and form a horizontal line in the plot. This 2-D method may have wide 

applications in oil industry. Diesel fuels with different Cetane numbers have relatively 

constant density but varying viscosity [136]. The Cetane number can be determined 

by measuring the viscosity. Meanwhile, if the diesel fuel is unexpectedly mixed into 

water, it should be detected due to the density difference. By using this 2-D method, 

Cetane number and water percentage may be simultaneously obtained.  

 

Figure 4.18 A novel 2-D method for label-free liquid detiction. Frequency responses 

of Mode C and Mode D are plotted in X-axis and Y-axis, respectively. Liquids with 

same viscosity-density product or same density can be easily discriminated by this 

method. 

 

4.4 Summary 

In this chapter, a directly decoupled viscosity and density sensor using Lamb 

wave resonator is proposed. AlN MEMS resonator based sensor is capable of 

generating stable signals with high quality factor. Higher-order modes of Lamb wave 

are utilized for viscosity and density detection. Two unique modes (Mode C and 

Mode D) are found with backside surface particle motions either parallel (Mode C) or 



CHAPTER 4 

77 

perpendicular (Mode D) to the plate plane. Frequency response of Mode C is 

dominated by viscosity with a sensitivity of -569 ppm / mPa∙s, while that of Mode D 

is solely determined by density with a sensitivity of -748 ppm / g/cm3. Decoupled 

viscosity and density sensing is achieved by a single device. Without suffering from 

viscoelastic effects, viscosity dependence of this sensor remains linear with liquid 

viscosity up to 7 mPa∙s. The minimum detectable change for viscosity (0.065 mPa∙s) 

and density (0.025 g/cm3) are quite small. A novel 2-D liquid detecting method based 

on the sensor is proposed. DI water and ethanol are clearly differentiated by this 

method. Potential applications of such 2-D method in the oil industry are shown as 

well. 

.
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Chapter 5 Highly Efficient pMUT with 

Enhanced Performance 

As is discussed in Section 1.3.2, pMUT overcomes all the inherent drawbacks of 

cMUT, and particularly it operates at a much lower voltage [65]. The pMUT seems to 

be a promising solution for future ultrasonic applications. Unfortunately, 

performances of previously reported pMUTs are much poorer than the expectation. 

Their coupling efficiency between electrical and mechanical domain is significantly 

lower than the prediction from Finite Element Model (FEM) [50, 65, 150-152]. This 

problem is mainly attributed to the residual stress of the fabricated devices, because 

any residual stress may hamper the membrane vibration. Since fabrication of pMUT 

usually contains several high temperature processes, the residual stress in pMUT 

membrane can hardly be reduced. As a consequence, the performance of the pMUT, 

in particular the transmitting sensitivity, is far from satisfactory [50, 153]. A few 

attemps are made to address this stress issue. Mo et al. try to reduce the membrane 

buckling by removing the buried oxide layer. However, the improvement of device 

performance is quite limited [154]. Muralt et al. try to optimize the fabrication 

process and use compressively stressed oxide layer to balance the PZT layer with 

tensile stress [65]. Although a relatively flat membrane is achieved through the stress 

compensation, the transmitting sensitivity is still unsatisfactory. Because the 

membrane vibration is very sensitive to the residual stress, even a non-obvious 

membrane deflection may drastically lower the transmitting sensitivity. A large DC 
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bias is also introduced to balance the undesirable residual stress. Although the 

sensitivity is improved, this requires pMUT to be operated at high voltage similar to 

the cMUT [155, 156]. Therefore, researchers have to employ another bulk ceramic 

based ultrasonic transducer for ultrasound transmission, or even suggest the pMUT 

may only be used for ultrasound receiving for practical application [153]. Therefore, 

enhancement of pMUT transmitting sensitivity, i.e. increasing the transmitted acoustic 

pressure, is always desirable. 

In this chapter, we design, fabricate and characterize two AlN based novel 

pMUTs, aiming to achieve higher performance. The first pMUT realizes a zero- 

bending membrane, and its transmitting sensitivity is 450% higher than the reference 

pMUT. The second pMUT employs etching holes to realize a piston-like membrane 

motion during vibration, which helps to generate higher ultrasound pressure.  

5.1 Zero-Bending Membrane pMUT 

5.1.1 Design consideration 

5.1.1.1 Stress influence on transmitting sensitivity 

To predict the performance of pMUT, several analytical models are proposed 

[157-159]. The pMUT is modeled as a uniform circular thin plate with clamped 

boundary conditions. If the pMUT works at transmitting mode (i.e. the effects from 

external acoustic pressure can be neglected), the plate deflection w(r) at a radial 

position r can be described in the general form as: 

 

𝐷∇2∇2𝑤(𝑟) + 𝜌𝑣
𝜕2𝑤(𝑟)
𝜕𝑝2

= ∇2𝑀𝑝        (5.1) 
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𝐷 = ∫ 𝐸(𝑧)𝑧2

1−𝜐(𝑧)2
𝑑𝑑        (5.2) 

 

𝜌𝑣 = ∫𝜌(𝑑)𝑑𝑑        (5.3) 

 

where D is the modulus of flexural rigidity, ρs is the area plate density, E is the 

Young’s modulus, υ is the poison’s ratio, and Mp is the piezoelectric moment induced 

by input voltage [158]. E and υ vary with z-direction because of the different 

materials at each layer. However, this model does not take residual stress into 

consideration. Influence of residual stress on pMUT performance is still not clear. 

Sammoura et al. firstly modify such model and introduce the effect of residual stress 

as [81, 160]: 

 

𝐷∇2∇2𝑤(𝑟) − 𝑇𝑣∇2𝑤(𝑟) + 𝜌𝑣
𝜕2𝑤(𝑟)
𝜕𝑝2

= ∇2𝑀𝑝 + ∇2𝑀𝑣    (5.4) 

 

𝑇𝑣 = ∫𝜎(𝑑)𝑑𝑑        (5.5) 

 

where Ts is the overall plate tension caused by the residual stresses, σ is the residual 

stress at different layers and Ms is the residual moment about the neutral plane. 

Calculated results of the model indicate that the residual moment imbalance may 

cause buckling, and even lesser imbalance  could adversely affect the transmitting 

sensitivity. With an overall plate tension of only 1000 N/m (tensile), the deflection per 

voltage at the center of membrane reduces by 8.4% [160]. It is worth noting that the 

results do reveal that compressive stress can help to enhance the sensitivity. Some 

researchers also report that compressively stressed pMUTs with large upwards 
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buckling have significantly higher transmitting [161] and receiving [162] sensitivities. 

However, large compressive stress and large buckling make the membrane very 

fragile. Intentionally introducing compressive stress could lower the yield rate, which 

is not preferred for volume fabrication. Considering both the performance and 

reliability, minimizing the overall plate tension and enabling flat membrane may be an 

effective and reliable way to enhance the transmitting sensitivity of pMUT. 

5.1.1.2 Realizing zero-bending membrane 

 

Figure 5.1 Two typical conventional pMUT designs with: (a) Frame-like top electrode; 

(b) Central top electrode. The simulation results of residual stress induced buckling: 

(c) Design 1 and; (d) Design 2. 
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Only the stress-free AlN layer is not sufficient for a high performance pMUT, 

because the degradation of the transmitting sensitivity is attributed to the residual 

stress of every layer, according to Eq. (5.5). In addition, the stress distribution also 

changes because of the buckling, and the stress-free layers may become stressed after 

buckling. Finally, different designs and structures of pMUT affect the buckling as well. 

Analysis of the buckling and stress distribution should be considered case by case.  

Figure 5.1 (a) and (b) show the two typical designs of pMUT, where the Design 1 

has the frame-like electrode, while the Design 2 has the central electrode. According 

to previous studies, the curvature at the center of deflected membrane has the opposite 

sign from that at clamped borders. The sign changes at the position of about 65% of 

the radius [16]. Partially covered top electrode thus has the optimal performance, and 

both the frame-like electrode (outer) and the central electrode (inner) are identically 

the best [16, 49]. Therefore these two pMUT designs are adopted for the study.  

 

Table 5.1 Material properties applied in the FEM 

Material Young’s 
modulus 

Poisson’s 
ratio 

Residual stress Thickness 
(µm) 

Mo 312 GPa 0.3 470 MPa   (Tensile) 0.2 

AlN 340 GPa 0.24 ~0 MPa 1 

Si 170 GPa 0.28 0 MPa 5 

SiO2 60 GPa 0.17 -200 MPa 
(Compressive) 1 

 

An FEM with a membrane size of 200µm is built using COMSOL Multiphysics 

software, where the solid mechanics physics is employed. The parameters used for 

simulation are summarized in Table 5.1. Figure 5.1 (c) and (d) show the simulated 
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membrane deflections due to residual stresses for Design 1 and Design 2, respectively. 

With the stress-free AlN layer, the buckling is still not negligible. Such buckling may 

reversely affect the transmitting sensitivity. It is worth noting that the buckling 

directions of these two designs are opposite. Although the metal layer is very thin, it 

usually has very large tensile stress. So the buckling direction is mainly determined by 

the layout of top metal electrode. Simply removing the backside oxide layer [21], or 

adding additional oxide layer [16] can hardly alleviate the buckling, or may even 

worsen the situation. Therefore those trials to improve the pMUT performance are not 

very successful. 

 

Figure 5.2 3-D schematic drawings of: (a) & (c) the zero-bending pMUT, denoted as 

Device A; (b) Reference pMUT, denoted as Device B and; (d) & (e) Comparison of 

Device A and B. Vacuum pressure can compensate the initial bending of Device A, 

but aggravate the initial bending of Device B. 
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The 3-D schematic drawings of the zero-bending pMUT are shown in the Figure 

5.2 (a) and (c), denoted as Device A. The frame-like top electrode is adopted for the 

zero-bending pMUT. Compared to the conventional design, an integrated vacuum 

cavity is fabricated under the membrane. As aforementioned, the pMUT with 

frame-like top electrode tends to bend upwards due to the residual stress. Meanwhile, 

the integrated vacuum cavity induces downwards atmospheric pressure, which pushes 

the membrane back. The initial bending of such pMUT therefore is compensated as 

shown in the Figure 5.2 (d). Device B with the central top electrode (see Figure 5.2 

(b)) is taken as the reference. Since the pMUT with central top electrode tends to bend 

downwards and the vacuum induced atmospheric pressure is also the same direction, 

hence cannot balance the initial bending, but aggravates it, shown in Figure 5.2 (e). 

Although the transmitting sensitivities of Device A and Device B should have been 

the same, the Device A with flat membrane is expected to have significantly higher 

sensitivity than the buckled Device B.  

 

 

Figure 5.3 Simulation results of membrane deflection: (a) Device A; (b) Device B and; 

(c) Stress distribution in the AlN layer of Device A along A-A’ direction before and 

after vacuum pressure compensation. 
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The membrane deflection of Device A is studied by simulation as well. As can be 

seen from Figure 5.3 (a), the membrane of Device A becomes flat, and the deflection 

is minimized to less than 5nm. The stress distribution in the AlN layer of Device A 

along A-A’ direction is also extracted and shown in Figure 5.3 (c). The abrupt 

increasing of stress at 1µm is due to the extremely high initial stress in Mo layer. 

Despite that the residual stress of AlN layers is set to be zero (see Table 5.1); the 

simulated stress in the AlN layer is still considerably high, because the initial buckling 

forces the AlN layer to be re-stressed. If the vacuum pressure is applied to the 

membrane and it becomes flat after the compensation, the stress in AlN layer 

significantly reduces to only 6 MPa. With the help of nearly stress-free AlN thin film, 

frame-like top electrode layout and integrated vacuum cavity, a zero-bending pMUT 

with minimized stress is possibly available. Figure 5.3 (b) shows the reference pMUT 

(Device B) with applied vacuum pressure. As expected, it buckles with maximum 

central deflection of 94nm.  

5.1.2 Device characterization and discussion 

 

Figure 5.4 The fabricated pMUT devices: (a) OM images and; (b) SEM images. 
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The as-fabricated zero-bending pMUT (Device A), as well as the reference 

pMUT (Device B) are shown in Figure 5.4. The integrated vacuum cavity is clearly 

shown in Figure 5.5, under the pMUT membrane.  

 

 

Figure 5.5 The cross-sectional view of SEM image, showing the integrated vacuum 

cavity. 

 

Both pMUTs are firstly characterized using DHM-R2100 holographic MEMS 

analyzer by Lyncée Tec Ltd. This MEMS analyzer is able to capture both stationary 

and dynamic 3-D surface images of the device, with vertical resolution of sub nm 

level. The surface profile, deflection and dynamic motion of the MEMS device then 

can be extracted from such 3-D images. Figure 5.6 (a) shows the 3-D images of 

Device A and Device B. As is expected, the Device A has a flat membrane, while the 

membrane of Device B is bent downwards. The 200nm steps are the top electrodes. 

The surface profiles of both devices are also extracted and plotted in Figure 5.6 (b). It 

is clearly shown that the membrane of Device A is perfectly flat and the 200nm steps 

are the top electrode. The maximum deflection at the center of membrane is less than 

10nm, or less than 0.005% (deflection/membrane size). Benefited from the stress-free 

AlN thin film, frame-like top electrode and integrated vacuum cavity, the residual 
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stress induced initial bending is successfully compensated. This extremely small 

initial bending therefore can be treated as zero bending. On the contrary, the 

membrane of Device B has a maximum deflection of 96nm. These measured surface 

profiles match with the simulation results in Figure 5.3 very well.   

 

 

Figure 5.6 (a) The 3-D images captured by holographic MEMS analyzer and; (b) The 

extracted surface profiles. Maximum deflection of the Device A is less than 10nm, 

which is considered as zero-bending, and the deflection of Device B is 96nm. The 

measured profiles match the simulation results very well. 

 

 

Figure 5.7 Simulated and measured frequency responses of displacement amplitude 

with 1 V AC excitation for: (a) Device A and; (b) Device B. The inset shows the 

vibration mode shapes from both simulation and measurement. 

 

The zero-bending pMUT (Device A) then is excited by 1 V electrical AC signals 
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to evaluate its transmitting performance using the stroboscopic module. The 

displacement amplitude with frequency is plotted in Figure 5.7 (a). Since all the 

displacement amplitudes are measured with 1V excitation, the displacement 

amplitude per volt is also taken as transmitting sensitivity. The results of FEM 

simulation are shown as well for comparison. The piezoelectric devices physics is 

employed for this FEM, where the 1µm AlN layer is defined as the piezoelectric 

material with d31 of -1.72pC/N. The remaining parts of the model are defined as linear 

elastic material with properties shown in Table 5.1. To achieve reasonable results, loss 

and damping effects are also considered. The loss factor for electrical permittivity 

(dielectric loss) is set to be 0.01, while the loss factor for damping (linear elastic 

material) is set to be 0.002. The damping effect is mainly attributed to the anchor loss 

and air damping. It is worth noting that no initial stresses are considered in this FEM, 

and hence the simulated transmitting sensitivity is taken as the ideal value. The 

measured amplitude at the resonant frequency is 123nm, while the simulated 

amplitude is 129nm. It is clearly shown in Figure 5.7 (a) that the measured curve is 

very close to the simulation result, which means a nearly ideal transmitting sensitivity 

is achieved for the zero-bending pMUT. Such pMUT achieves 94.5% of the ideal 

transmitting sensitivity. 

 

In terms of the reference pMUT (Device B), however, the transmitting sensitivity 

is much poorer than the zero-bending pMUT, shown in Figure 5.7 (b). As 

aforementioned, theoretically these two devices should have the same transmitting 

sensitivity, and is also proven by simulation results. Unfortunately, the reference 

pMUT fails to achieve a comparable transmitting sensitivity with the zero-bending 

pMUT, which largely deviates from the ideal performance. The displacement 
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amplitude of the reference pMUT is measured as only 27nm, or 22% of the 

zero-bending pMUT. Such performance degradation is mainly because of the 

non-zero initial bending (Figure 5.6). The slightly higher resonant frequency of the 

reference pMUT also indicates its membrane stress is larger than the zero-bending 

pMUT, as the membrane stiffness is increased due to the stress. Therefore, the 

zero-bending pMUT is proven to perform much better than the reference pMUT, with 

enhanced transmitting sensitivity of more than 450 % with respect to the reference 

pMUT. 

 

Table 5.2 Comparison of the transmitting sensitivity 

Device Size 
(µm)  

Thickness 
(µm) 

Transmitting 
Sensitivity (nm/V)  

Sensitivity per Area 
(nm/V/mm2) 

This work 200 7.4 123 3075 

Ref. [163] 190 3.3 45 1587 

Ref. [151] 350 2.4 210 2182 

Ref. [164] 400 7.7 40 318 

Ref. [165] 400 2.3 60 477 

Ref. [69] 400 2.3 250 1989 

Ref. [62] 1456 3.2 450 270 

Ref. [66] 25 1.5 2.5 5092* 

* Extremely thin membrane 

 

Table 5.2 summarizes previously reported AlN based pMUT devices. In general, 

the zero-bending pMUT presented in this work performs much better than most of 

other pMUTs. Especially for the pMUTs reported in Ref. [163] and [164], those 

highly responsive pMUTs employ sophisticated 3-D membrane structure to further 
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enhance the sensitivity, the sensitivity of the zero-bending pMUT is still twice and 10 

times of the pMUTs in [163] and [164], respectively. It is worth noting that the pMUT 

in Ref. [66] has very high sensitivity. This may be due to the extremely thin 

membrane. Since its AlN and supporting SiO2 layers are only 0.75µm and 0.8µm, its 

ideal transmitting sensitivity should be much higher than the zero-bending pMUT 

(1µm AlN, 5µm Si and 1µm SiO2). A FEM simulation is performed to investigate its 

ideal sensitivity using the above parameters. Simulation results indicate that the 

pMUT in Ref. [66] can potentially achieve a sensitivity of 14nm/V, or 

28520nm/V/mm2. In fact, such pMUT only achieves 18% of its ideal sensitivity, 

which is significantly lower than the 94.5% of zero-bending pMUT.  

Figure 5.8 shows the impedance measurement results of the zero-bending pMUT, 

performed using Agilent 4294A precision impedance analyzer. The electromechanical 

coupling coefficient keff
2 can be derived from resonant frequency fr and anti-resonant 

frequency fa through following relation [166]:  

 

𝑘𝑒𝑒𝑒
2 = 𝑒𝑎2−𝑒𝑟2

𝑒𝑎2
                 (6)             

 

This parameter directly reflects the electrical-mechanical energy conversion 

efficiency of the device. The in-air keff
2

 is calculated as 0.406%. Such value is 

significantly better than a previously reported AlN based pMUT, where the measured 

coefficient is only 0.056% [151]. Considering the zero-bending pMUT is wire-bonded 

for testing, the coupling coefficient may be further improved by eliminating the 

parasitic capacitances from bonding pads and wires. As is shown in Figure 5.8 (b), the 

zero-bending pMUT also performs well in DI-water. The resonant frequency drops to 

1.04 MHz, which is still within the commonly used frequency range.  
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Figure 5.8 The impedance measurement results of the zero-bending pMUT (Device 

A): (a) measured in air and; (b) measured in DI water. 

 

 

Figure 5.9 Simulation and measurement results of the pMUTs (frame-like top 

electrode) with different sizes: (a) The resonant frequency and; (b) The displacement 

amplitude. The 300µm pMUTs with and without 0.7µm oxide layer: (c) Optical 

microscope images and; (d) measured surface profiles. 

 

The pMUTs (frame-like top electrode) with different sizes are fabricated and 
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studied as well. As can be seen from Figure 5.9 (a), the resonant frequency decreases 

with the size as expected, and agrees very well with the simulation results. However, 

for the displacement amplitude, the measurement results start deviating from the 

simulation results at 300µm, and such deviation increases with the membrane size 

(see Figure 5.9 (b)). The 300µm and 400µm pMUTs are not able to achieve the best 

transmitting sensitivity as the 200µm pMUT. To investigate the reason of the 

performance degradation, the 300µm pMUT is taken as an example. Its surface profile 

is extracted and shown in Figure 5.9 (d). As is shown, such device is no longer a 

zero-bending pMUT, but with a maximum membrane deflection of 88nm. Because 

the vacuum force is proportional to the membrane area, it increases with the 

membrane size. Meanwhile, the residual stress in membrane remains a constant. 

Therefore the significant initial buckling is observed for 300µm pMUT. The 

performance degradation is probably due to such initial buckling. As expected, the 

vacuum force of the 400µm pMUT is even larger, and hence the performance 

degradation becomes more severe for the 400µm pMUT.  

 

  To alleviate this performance degradation, another batch of devices is also 

fabricated. For these devices, the last step of process, i.e. blank etching of the top 

oxide layer, is skipped. Compared to previous discussed pMUT, additional 0.7µm 

PECVD oxide layer is left on the surface. As is shown in Figure 5.9 (c), the color of 

the Mo electrode changes from green to purple, because of the oxide thin film. Since 

the oxide layer usually contains compressive stress, it forces the membrane to bend 

upwards. Therefore, the additional oxide layer may help to reduce the downwards 

initial bending. Figure 5.9 (d) shows the surface profiles of 300µm pMUTs with and 

without oxide. With the help of the top oxide layer, the maximum membrane 
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deflection reduces to 42nm. Although this pMUT is not perfectly zero-bending, the 

performance degradation should be alleviated due to the relatively flat membrane. 

Figure 5.10 shows the transmitting sensitivity of the 300µm pMUTs, with and without 

top oxide layer. Benefited from the relatively flat membrane, the pMUT with oxide 

layer achieves 69.19% of ideal sensitivity, which is 13% better than the pMUT 

without oxide. Hence, if a larger membrane is required for lower operation frequency, 

additional top oxide layer may be applied to minimize the performance degradation.  

 

 

Figure 5.10 Transmitting sensitivity comparison of 300µm pMUTs: (a) without top 

oxide layer and; (b) with top oxide layer. The displacement amplitude is normalized to 

the simulation result, i.e. the ideal displacement amplitude. 

 

5.2 pMUT with Piston-Like Membrane Motion  

Another possible method for increasing the transmitted ultrasound pressure is to 

enable a piston-like membrane motion. Usually the classical pMUT has a 

Gaussian-like mode shape. For such mode shape, only the center of membrane is able 

to achieve the maximum displacement amplitude. If a piston-like mode shape can be 
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realized, the membrane remains flat during vibration, and larger portion of membrane 

can oscillate with the maximum amplitude. Hence more acoustic medium (e.g. air, 

water, or soft tissue) can be pushed back and forth, generating higher ultrasonic 

pressure. The piston-like vibration has been realized with a cMUT, which is proven to 

offer several advantages [167]. However, reported pMUT with piston-like membrane 

motion is very limited.  

5.2.1 Concept and design 

5.2.1.1 Perforated membrane 

 

Figure 5.11 Illustrations of the piston-like pMUT. The etching holes located inner top 

electrode, are through all layers. 

 

The structure of the proposed piston-like pMUT is illustrated in Figure 5.11. The 

frame-shaped top electrode partially covers the surface, with coverage of 35%. This 

top electrode design ensures the maximum electromechanical coupling for pMUT 

[65]. In order to realize piston-like mode shape, stiffness difference should be 

introduced to the membrane. One reported approach is to attach an additional silicon 
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mass on the center of membrane to stiffen the central portion of membrane [167]. But 

this may be only suitable for cMUT. Wafer bonding and handle wafer removal 

processes are employed to realize the silicon mass, which is not standard or necessary 

processes for pMUT. In addition, the composite membrane of pMUT is relatively 

thick, and hence the additional mass has to be even thicker to enable the piston-like 

mode shape. This may bring in undesirable effects on the frequency and performance.  

Therefore, in this work a new approach is proposed to introduce the stiffness 

difference. Compared to the classical pMUT, 5 µm etching holes are fabricated inner 

the top electrode, which are through the released membrane as shown in Figure 5.11. 

The perforated portion becomes more flexible and most of the deflection is confined 

within this softened region. Benefited from such softened region, the central ridged 

region hence suffers small deflection and remains flat. The central region moves up 

and down like a piston during vibration.  

 

Figure 5.12 Simulated mode shapes by FEA modeling: (a) classical pMUT and; (b) 

piston-like pMUT. With the help of etching holes, the mode shape has a relatively flat 

surface. 

 

Figure 5.12 shows the simulated mode shapes using FEA model by COMSOL. 

The mode shape of classical pMUT is shown in Figure 5.12 (a), which is 
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Gaussian-like. Meanwhile, with the help of etching holes, the membrane surface 

becomes relatively flat, shown in Figure 5.12 (b).  

5.2.1.2 Advantages of using etching holes 

To avoid the ventilation of two sides of the membrane, the etching holes need to 

be finally sealed. The 5µm etching holes ensure that they can be sealed by a thin 

polymer layer. According to previous studies, neither Parylene [66] nor PDMS [168] 

thin film on the surface affects the pMUT performance largely. For the piston-like 

pMUT reported in [165], the SiO2 layer is intentionally not fully etched and 0.02µm 

SiO2 is left to avoid ventilation. However, without pre-designed stop layer, such thin 

SiO2 layer can nearly be ensured using time control. Once the SiO2 is etched through, 

the large trenches may not be able to re-seal. In addition, as the membrane in [165] is 

supported by three beams, its resonant frequency is significantly lowered than 

classical pMUT. Higher frequency for diagnostic ultrasonic imaging (2 to 10 MHz) 

may be difficult to realize with such design. The etching holes, however, nearly 

influence the resonant frequency of pMUT. Hence, employment of etching holes to 

enable piston-like membrane motion is a more advantage approach. 

5.2.2 Device characterization and discussion 

The fabricated pMUTs are shown in Figure 5.13 (a) and (b). The pMUTs with 

two and three rows of etching holes are denoted as Device B and Device C, 

respectively. A classical pMUT without etching holes is also fabricated for reference, 

denoted as Device A. Figure 5.13 (c) shows the etching holes through the membrane, 

with diameter of 5µm. Such small diameter ensures the holes are able to be re-sealed. 

The cross-sectional view of the membrane is shown in Figure 5.13 (d), which contains 
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0.2µm Mo, 1µm AlN, 5µm Si and 1µm SiO2. All the pMUTs share the same 

dimension of 200µm. 

 

 

Figure 5.13 (a) The optical microscope images of fabricated pMUTs. The classical 

pMUT is denoted as Device A, and the piston-like pMUTs with two and three rows of 

etching holes are denoted as Device B and Device C, respectively; (b) the SEM image 

of Device C; (b) SEM images showing the etching holes and; (d) cross-sectional view 

of pMUT membrane. 

 

Digital holographic MEMS analyser (DHM-R2100 from Lyncée Tec) is 

employed for device characterization. Surface profiles of Device A to C at their 

resonance are extracted and plotted in Figure 5.14 (a). As is expected, the mode 

shapes of Device B and C become much flatter. For Device B, its profile at maximum 

deflection is still slightly curved; meanwhile the profile of Device C remains flat at 

the maximum deflection. Comparison of the surface profiles (Device C and A) is 
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shown as well. It is clearly shown that larger portion of membrane is able to achieve 

the maximum amplitude for Device C. Captured 3-D images of Device C are shown in 

Figure 5.14 (b) as well, and the central region of membrane moves like a piston. 

Frequency responses of displacement amplitude with 1 V excitation are shown in 

Figure 5.14 (c). Considering the 2.24 MHz resonant frequency of Device A, frequency 

of the piston-like pMUT does not decrease but slightly increases. This is mainly 

attributed to the etching holes and their location. When the membrane of a classical 

pMUT deflects, the portion covered by top electrode has the largest strain, while the 

portion inner the electrode has minimum strain [65]. Therefore, etching holes locating 

inner top electrode have minimum influence on the spring constant of the membrane. 

On the other hand, since part of the membrane is etched, its mass reduces accordingly. 

Resonant frequency hence slightly increases with the number of etching holes (2.29 

MHz and 2.31 MHz for Device B and C, respectively). For such piston-like pMUT 

using etching holes, the resonant frequency can be predicted by well-established 

analytical and FEA models prior to fabrication, and higher frequency for diagnostic 

ultrasonic imaging (2 – 8 MHz) is able to be realized by changing the dimension. In 

contrast, for the piston-like pMUT reported in [165], the grooves locate where the 

membrane has largest strain, which significantly lowers the spring constant and 

results in much lower frequency. Figure 5.14 (c) provides the comparison of the three 

devices. The relatively higher displacement amplitude of Device A could be caused by 

less air damping. The lower Q in Device B and C should be attributed to the larger 

effective vibration area, which results in larger damping. The two piston-like pMUTs 

do not show significant difference in Q factor, and therefore the higher displacement 

sensitivity of Device C is not caused by larger Q. In fact, Q factor of Device C is 

slightly lower than Device B, which may be resulted from more etching holes and 
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more air damping. Considering the flatter mode shape of Device C, piston-like pMUT 

with three rows of etching holes is a superior design. 

   

 

Figure 5.14(a) Surface profiles of the pMUTs at resonance; (b) 3-D images of Device 

C; (c) frequency responses of displacement amplitude for piston-like pMUT. Inset 

table shows the comparison of the three devices and; (d) simulated far field space 

pressure levels for Device A & C. 

 

Acoustic-piezoelectric interaction model is also built to evaluate the 

performances of Device C & A in water, and the simulation results are shown in 

Figure 5.14 (d). Benefited from the piston-like membrane motion, the directivity of 
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Device C is better than Device A, and the far field space pressure level (SPL) of 

Device C is 5.3 dB higher than Device A. The receiving sensitivity is studied by 

applying 1 kPa acoustic pressure to the water medium, where the dimension of water 

is over 10 λ to eliminate unwilling interferences. The receiving sensitivity of Device C 

at resonance is obtained as 95 mV/kPa, while Device A shows receiving sensitivity of 

48 mV/kPa based on the modeling data.  

5.3 Summary 

Residual stress and initial buckling could suppress the transmitting sensitivity of 

pMUT. Although pMUT with large compressive stress and large upwards buckling 

exhibit high sensitivity, it may not be preferred for volume fabrication due to the 

fragility and lower yield rate. Several trials to minimize the stress and buckling are 

made by different research groups during last decades; there is still a room for 

innovative design with significant improvement. This is the very reason that pMUT 

has not been commercialized today due to that performance of current approaches is 

not satisfactory, and hence the applications are very limited as well. In this chapter, a 

new pMUT device is proposed. Leveraging on the stress-free AlN thin film, 

frame-like top electrode layout and the integrated vacuum cavity, a pMUT with 

zero-bending membrane is finally achieved. The transmitting sensitivity is measured 

as 123nm/V, which is 450% better than that of reference pMUT with non-zero initial 

bending. Such pMUT achieves 94.5% of its ideal transmitting sensitivity. By thinning 

the supporting layer, i.e. the device Si layer, the transmitting performance may be 

further enhanced.  

Another approach of enhancing the performance is to realize a pMUT with 

piston-like membrane motion. Etching holes are applied to pMUT membrane. 
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Measurement results show that the mode shape of such pMUT has a flat surface. The 

resonant frequency does not decrease like prior reported piston-like pMUT, but 

slightly increases by 2 %. This implies that higher frequency for diagnostic ultrasonic 

imaging can be realized, and the frequency can be predicted using well-established 

analytical and FEA models. Piston-like pMUT with two- and three- rows of etching 

holes are studied as well. The pMUT with three rows of etching holes has flatter mode 

shape, and its transmitting sensitivity is 10nm/V higher, which is superior to the 

pMUT with two rows of etching holes. Compared to a classical pMUT, the piston-like 

pMUT with three rows of etching holes is of better directivity, which has almost 

doubled transmitting and receiving sensitivities.  

In conclusion, the two approaches are proven to be effective and reliable ways to 

enhance the pMUT performance, and the innovative pMUTs may be promising 

alternatives for future ultrasonic applications.
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Chapter 6 Towards PZT Based High 

Performance pMUT 

Piezoelectric material as the key component largely affects the performance of 

pMUT. Generally, AlN and PZT are the two most popular piezoelectric materials for 

pMUT. Because of its compatibility with CMOS process, AlN based piezoelectric 

MEMS devices become popular in recent years [110, 169-171]. Nevertheless, since 

PZT has the much higher piezoelectric constant d31 than AlN, it is still the best choice 

to realize high performance pMUT for practical use [172-177]. For the PZT thin film, 

electric poling is a critical process, where usually a DC electric field of 10–100 

kV/cm is applied to the PZT thin film. Especially for the most popular sol-gel method, 

the deposited PZT thin film has very limited initial d31. Thus the final d31 is mainly 

determined by the poling process. According to our previous study, the d31 after poling 

could be drastically lowered by following micro fabrication processes [91], so the 

suitable poling process step is after completion of MEMS microfabrication processes 

[90]. As is discussed in Section 2.1.2, the newly developed unipolar pulse poling 

process is found to be much more effective than conventional DC poling, resulting in 

a much higher d31 coefficient. Leveraging on this process, a high performance pMUT 

array aiming at volume production is proposed in this chapter. With the optimized 

design and fabrication process, the pMUT shows a displacement sensitivity of 

807nm/V at its resonant frequency (482 kHz). A single pMUT element is able to 

generate 63.7 dB SPL at 10 mm in air with only 2V input. Such pMUT could be 

potentially used for range finding or airborne gesture recognition in portable 
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electronics.  

6.1 pMUT Design and Optimization 

 

 

Figure 6.1 Schematic drawings of the proposed high performance pMUT: (a) 3-D 

illustration and; (b) cross-sectional view of illustration. 

 

The schematic drawings of the pMUT are illustrated in Figure 6.1. The released 

diaphragm has the dimension of 500µm×300µm. 2µm MPB-PZT thin film is 

employed because of its high piezoelectric constant, and 1µm SiO2 is used for 

isolation. According to previous studies, the position of neutral plane, which is related 

to the silicon thickness, largely affects the electromechanical coupling [65, 155]. If the 

neutral plane falls into PZT layer, the lower part of PZT works against the upper part, 

and this may drastically worsen the pMUT performance. The silicon thickness thus 

should be carefully chosen. A 3-D FEA piezoelectric device model is built to study the 

influence of silicon thickness. Driven by input voltage, the normalized membrane 
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displacement with respect to the silicon thickness is shown in Figure 6.2 (a). The 

maximum displacement can be achieved with 1.8µm silicon layer. As a compromise 

of performance and yielding rate, 5µm silicon layer is adopted for the proposed 

pMUT.  

 

 

Figure 6.2 The FEM results for pMUT design optimization: (a) normalized 

displacement with respect to silicon thickness and; (b) normalized displacement with 

respect to top electrode width. 

 

Since the edges of the membrane are clamped, its curvatures at the center and 

edge have the opposite signs when the membrane is deformed [65]. The best 

efficiency hence cannot be achieved with a fully covered top electrode. To optimize 

the top electrode, the normalized membrane displacement with respect to the top 

electrode width is plotted in Figure 6.2 (b). It is clearly shown that partially covered 

top electrode enables a much higher displacement than the fully covered electrode 

(300µm width). Largest displacement achieves at electrode width of 220µm, and this 

is the position where the curvature sign becomes zero. Although the length of top 

electrode should be smaller than membrane as well, the top electrode (y-direction) 

exceeds the membrane because the bonding pad cannot be on the released structure 

(see Figure 6.1 (b)). This configuration definitely sacrifices some pMUT performance.  
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Figure 6.3 Comparison of the pMUTs with etched PZT/Pt/SiO2 stack and without the 

etched stack. The FEA modeling results indicate that the pMUT with etched stack has 

about twice higher sensitivity. 

 

For most of the reported pMUTs, only the top electrode is patterned to simplify 

the microfabrication processes [69, 151, 166, 168], i.e. the PZT layer, bottom 

electrode and isolating SiO2 layer remain as shown in Figure 6.3. For the proposed 

pMUT in this work, however, all the layers are etched to further enhance its 

performance. Leveraging on the FEA modeling, the performances of the pMUTs with 

and without etching the PZT and SiO2 layers are evaluated. Both models use the 

optimized parameters with 1V excitation. As shown in Figure 6.3, the pMUT with the 

patterned PZT and SiO2 layers shows superior displacement sensitivity at its resonant 

frequency, which is about 2.2 times higher than the non-etched pMUT. Such 

performance enhancement may be attributed to the change of boundary condition at 

the edge. Since the PZT and SiO2 layers are etched, part of the membrane edges 

become free and only the Si layer is clamped. The etched pMUT also shows a lower 
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frequency, which implies a smaller elastic constant due to the partially free membrane 

edges. This helps the membrane to vibrate easily and therefore enlarges the 

displacement sensitivity. With all the design considerations, the proposed pMUT is 

optimized to achieve its best performance.  

6.2 Experimental Results and Discussions 

6.2.1 Device characterization 

 

Figure 6.4 The as-fabricated pMUT devices. The red dash lines in optical microscope 

image indicate the released membrane, which is slightly wider than top electrode to 

achieve the best performance. The inset shows the pMUT with dual in-line package 

(DIP) for testing. 

 

The as-fabricated pMUT devices are diced into 4.5mm×4.5mm and each die 

contains 11 pMUT elements, shown in Figure 6.4. The red dash line in the optical 
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microscope image indicates the released pMUT membrane. The cross-sectional view 

SEM images are shown as well in Figure 6.5. It is shown that the top electrode and 

the PZT stack partially cover the released membrane, which ensures the maximum 

performance. In addition, the BOX layer is removed completely. According to the 

simulation result in Figure 6.2 (a), any increased thickness may further lower the 

pMUT performance. The top view SEM images are shown in Figure 6.6. Zigzag 

edges can be found for the PZT thin film as it is patterned using wet etching. To avoid 

the possible short circuit between top and bottom electrodes though the PZT thin film, 

the PZT/Pt/SiO2 stack is intentionally larger than the top electrode. The top electrode 

maintains the optimized 220µm width, and hence the slightly larger PZT/Pt/SiO2 

stack has minimum reverse effects on the pMUT performance. This fabricated pMUT 

fulfills all the design requirements to achieve its optimized performance.  

 

 

Figure 6.5 The cross-sectional view of the SEM image. It is clearly shown the BOX is 

completely removed and the top electrode and PZT stack partially covers the released 

membrane. This fabricated pMUT fulfills all the design requirements to achieve its 

optimized performance. 
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Figure 6.6 The secondary electron microscope (SEM) images of the fabricated pMUT. 

As the edge of the wet-etched PZT is zigzagged, the PZT thin film and bottom 

electrode is intentionally larger than top electrode to avoid the short circuit. 

 

 

Figure 6.7 3-D image of the pMUT, captured by the digital holographic microscope. 

No obvious membrane buckling can be observed. 

 

The pMUT is then characterized using the DHM-R2100 digital holographic 
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microscope from Lyncée Tec Ltd. Figure 6.7 shows the captured 3-D image of one 

pMUT element. The membrane looks relatively flat, because the top Pt/Ti electrode is 

compressively stressed which compensates the tensile stress of the PZT thin film. 

Details of the stress control are described in our previous study [178]. With the help of 

the relatively flat membrane, the buckling induced performance degradation can be 

alleviated [64]. The pMUT is then packaged and wire bonded in a dual in-line 

package (DIP) for testing, shown in the inset of Figure 6.4. It is electrically excited by 

the stroboscopic module of the holographic microscope with 1V AC voltage, and the 

3-D images during motion are captured for analysis. The measured mode shapes are 

illustrated in Figure 6.8, and the displacement sensitivity with respect to frequency is 

plotted as well. This device reaches sensitivity of more than 807nm/V at its resonant 

frequency (482kHz), which is a considerably high performance. Table 6.1 summarizes 

several previously reported PZT based pMUTs. Benefited from the high d31 and low 

loss MPB-PZT thin film, as well as the design optimization, this proposed pMUT 

shows superior performance over the others. Even with much smaller membrane 

dimension, it shows significantly higher displacement sensitivity. Moreover, the 

driving voltage of previously reported pMUT has to be high enough (>10V) to 

achieve expected displacement. Such high voltage may result in the repolarization of 

PZT thin film, and hence those pMUTs employ large DC bias to avoid the 

repolarization and performance degradation. For the highly sensitive pMUT, however, 

the expected displacement can be achieved with rather small driving voltage. 

Considering the 7V coercive voltage of the MPB-PZT thin film, a 2-3V driving 

voltage can be quite safe for the device. Without the large DC and AC voltage, the 

pMUT consumes lower power and its lifetime is extended, which is suitable to be 

integrated to portable electronics. 
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Figure 6.8 The measured displacement sensitivity of the pMUT without DC offset. A 

807nm/V sensitivity is achieved at the resonant frequency (482kHz), which is 

considerbly high. The 3-D mode shape captured during vibration is shown as well. 

 

Table 6.1 Comparison of displacement sensitivities of reported PZT based pMUTs 

Device Dimension 
(µm) 

DC offset 
(V) 

Resonant 
frequency (kHz) 

Displacement 
sensitivity (nm/V) 

Zhu et al. [179] 1500×1500 30 58 200 

Wang et al. 
[174] 2000×2000 20 45 83 

Muralt et al. [65] 1100 (Circ.) 5 49 420 

This work 500×300 0 482 807 

 

However, the measured displacement sensitivity is still lower than the prediction 
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by FEA modeling. This over estimation may be mainly attributed to two reasons. First 

of all, the FEA modeling uses the fixed boundary condition for the membrane edges. 

Such boundary condition simplifies the model and accelerates the calculation, but 

does not consider the anchor loss. In fact, the edge is not ideally fixed but slightly 

moves. Part of the vibration energy of membrane thus propagates into the Si substrate, 

resulting in lowered displacement sensitivity. The measured lower resonant frequency 

and lower Q-factor are also due to the non-considered anchor loss. Secondly, the 

displacement is very sensitive to the membrane stress. Although the membrane is 

relatively flat, the non-obvious buckling may still largely hamper the membrane 

vibration [81, 160]. In addition, the polling process adds extra tensile stress to PZT 

thin film [65], which makes the situation even worse. Other non-ideal effects during 

microfabrication may contribute to the sensitivity degradation as well. 

 

 

Figure 6.9 The impedance measurement results of the pMUT. The PZT based devices 

shows relatively low impedance, and standard 50Ω can be achieved by connecting 7 

pMUTs in parallel for impedance match. The electromechanical coupling coefficient 

can be derived from the resonant and anti-resonant frequency as 1.62%. 
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Impedance characterization is then performed using the Agilent 4294A precision 

impedance analyzer, and the measurement results of single element are plotted in 

Figure 6.9. Compared to AlN based pMUT, where the impedance is usually several 

kΩ [168, 170], the PZT based pMUT shows a much lower impedance. If seven pMUT 

elements work together, standard 50Ω impedance can be achieved which well 

matches with circuits and coaxial cables. The electromechanical coupling coefficient 

keff
2 can be derived from resonant frequency fr and anti-resonant frequency fa through 

following relation [166]:  

 

𝑘𝑒𝑒𝑒
2 = 𝑒𝑎2−𝑒𝑟2

𝑒𝑎2
                  (6.1)      

        

This parameter directly reflects the electrical-mechanical energy conversion 

efficiency of the device. The in-air keff
2

 is calculated as 1.62% and this value is higher 

than recently reported PZT pMUTs: 1.56% [168], 1.42% [174], 1.29% [180] and 1.12% 

[166]. 

 

Figure 6.10 The uniformity testing results of the the pMUT array. This pMUT array 
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shows quite good uniformity, where the maximum frequency deviation is only 1.67%. 

 

 As pMUT array, several pMUT elements are simultaneously driven to enhance 

the transmitted ultrasound pressure. However, if the deviation of their resonant 

frequencies is too large, the driving frequency may fall into the resonances of only a 

few elements. As the consequence, the pMUT array cannot achieve its best 

performance. Thus, the uniformity of the elements is of interest as well. Six pMUT 

elements from the same die are tested using the digital holographic microscope. Their 

normalized frequency responses are illustrated in Figure 6.10. Because of the 

well-controlled fabrication processes, these elements show quite good uniformity. 

Their resonant frequencies are very close, with maximum deviation of only 0.84%.  

6.2.2 In-Air transmitter testing 

 

 

Figure 6.11 The setup for in-air transmitting testing: (a) A standard ultrasound source 

is used for calibration first, which is able to generate 79dB SPL at distance of 250mm 

and; (b) pMUT is driven by 2V sinusoidal signals, and the transmitted ultrasound is 

recorded by the ultrasound microphone. 

 

This proposed pMUT, which is of high performance and high uniformity, shows 

its promise for practical applications in portable electronics. One of the potential 
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applications is the in-air gesture recognition for remote interaction with electronic 

devices, where the pMUT is used to transmit ultrasound waves. In order to evaluate 

the transmitting performance of the pMUT, the in-air testing is performed with setups 

shown in Figure 6.11. An ultrasound microphone (CM16/CMPA externally polarized 

condenser ultrasound microphone from Avisoft-Bioacoustics, together with the 

UltrasoundGate 116H data acquisition system) is employed to record the transmitted 

ultrasonic wave. Before the testing, this microphone is calibrated first. As is shown in 

Figure 6.11 (a), a standard source is fixed 250mm away from the microphone. It 

continuously generates ultrasound once switched on, and the SPL at distance of 

250mm is 79dB (20µPa as reference sound pressure in air). The microphone records 

such ultrasound for 10s and takes it as the reference for the following testing. The 

standard source is then changed to the pMUT for measurement, as is shown in Figure 

6.11 (b). A single pMUT element is driven by 2V sinusoidal signal at 482kHz without 

DC offset. Such low voltage prevents the unwanted PZT thin film repolarization and 

performance degradation. A 31mPa ultrasound pressure is measured at distance of 

10mm, shown in Figure 6.12 (a). The SPL change with respect to distance is 

measured as well. As is shown in Figure 6.12 (b), the SPL decreases exponentially 

with distance, and 58.5dB SPL can still be detected at distance of 70mm. Since air is a 

highly damped medium, high frequency ultrasound may suffer significant attenuation. 

Although the 482kHz frequency of this pMUT may not be low enough in air, the 

lower frequency can be always achieved by increasing the membrane dimension. 

Development of such lower frequency pMUT will be our future works, and the 

sensitivity of the larger membrane will definitely be even higher. It is also worth 

noting that the SPL at 20mm and 30mm largely deviates. This is probably because of 

the standing wave between the pMUT and microphone, and the microphone located at 
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node or antinode experiences depressed or enhanced ultrasound pressure, respectively.  

 

 

Figure 6.12 (a) The recorded ultrasound transmitted by a single pMUT element at a 

distance of 10mm and; (b) The SPL chagne with respect to the distance. The SPL 

drops exponentially, and the deviations at distance of 20mm and 30mm are probably 

due to the standing wave between the pMUT and the microphone.   

 

6.3 Summary 

In this chapter, a high performance PZT pMUT is designed and fabricated. 

Leveraging on the newly developed pulse poling process, the piezoelectric constant 

d31 of the MPB-PZT thin film can be as high as 105pm/V. Benefited from the high 

performance PZT thin film and the optimized pMUT design, the fabricated pMUT 

achieves a displacement sensitivity of 807nm/V at its resonant frequency (482kHz) 

with dimension of 500×300µm. Such considerably high sensitivity is achieved with 

no DC offset. A single pMUT element is able to generate 63.7 dB sound pressure level 

(SPL) at 10 mm in air with only 2V input. The low input voltage not only provides 

low power consumption, but also prevents the unwanted PZT repolarization and 

extends the pMUT lifetime. The proposed pMUT shows its promise for practical 

applications in portable electronics.
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Chapter 7 pMUT with Ultra-wide Frequency 

Bandwidth  

Ultrasound based diagnostic imaging is widely used for visualizing internal body 

structures, because it is efficient, low-cost and real-time, without any harmful ionizing 

radiation. The ultrasonic pulses are transmitted and received by ultrasonic transducer. 

For diagnostic imaging, its axial imaging resolution equals to half of spatial pulse 

length, and shorter pulse length results in better resolution [181]. Shorter pulse length 

can be achieved by increasing the operating frequency; however higher frequency 

leads to higher attenuation and the detecting range becomes very small. To ensure a 

reasonable detecting range, the highest frequency is usually below 10 MHz [182]. 

Another way to achieve shorter pulse length is increasing the frequency bandwidth of 

ultrasonic transducer. When an ultrasonic transducer is excited by a short electric 

pulse, it rings at the resonant frequency for a few oscillations, and the generated 

acoustic pulse cannot be ideally short, which is shown as Pulse A in Figure 7.1 (a). If 

Fourier Transform is applied to the pulse, a dispersion of frequency can be observed. 

The pulse actually contains a series of frequencies. Considering a Pulse B, which is 

shown in Figure 7.1 (b), the frequency is same to Pulse A but length is shorter. Its 

corresponding frequency bandwidth is observed to be even broader than that of Pulse 

A, which means the spread frequencies help to reduce the pulse length. Hence an 

ultrasonic transducer which has a larger frequency bandwidth can generate a pulse 

more like the Pulse B, i.e. a shorter pulse. Researcher from other group also claimed 

that the shorter pulse has wider bandwidth, and the pulse length is inversely 
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proportional to the frequency bandwidth [183]. Therefore, a broadband ultrasonic 

transducer can generate an acoustic pulse with very short length, which means the 

axial resolution can be further enhanced, or the detecting range can be deeper inside 

the body without compromising the imaging resolution. In addition, if the frequency 

bandwidth is wide enough, advanced harmonic sensing technology, which 

significantly improves the imaging contrast, can be realized by single transducer 

device [182]. In consequence, ultrasonic transducer with large frequency bandwidth is 

always preferred. 

 

 

Figure 7.1 (a) Longer pulse (Pulse A) in time domain and frequency domain and; (b) 

Shorter pulse (Pulse B) in time domain and frequency domain. 

 

7.1 Motivation 

Conventional ultrasonic transducer made by bulk piezoelectric ceramics has been 

dominant for decades, but its limited bandwidth can hardly meet the requirement. The 

limited bandwidth is mainly due to the large acoustic impedance mismatch between 
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the transducer and soft tissue of human body. With the MEMS technology, the MUT 

is a promising alternative which aims to overcome the shortcomings of bulk 

piezoelectric ceramic based ultrasonic transducer. The flexural mode operation of 

MUT significantly reduces its mechanical impedance, minimizing the acoustic 

impedance mismatch between the transducer and working medium. This concept has 

been successfully realized using cMUT. A remarkably wide frequency bandwidth of 

over 100 % has been achieved without any matching layer [52]. However, the 

operating voltage of cMUT is extremely high, which is usually over 100V. Such high 

voltage creates safety concerns and limits cMUT’s application to patients. As the 

alternative, pMUT is actuated using piezoelectric material, which operates at a much 

lower voltage [69, 151]. Similar to cMUT, pMUT works in flexural plate mode, 

therefore the acoustic impedance of pMUT is expected to be lowered as well. 

Unfortunately, performances of most of realized pMUTs are much poorer than 

expectation. Especially for the bandwidth, despite that analytical modeling implies 

that a bandwidth of over 100% is possible for pMUT [50], experimental results show 

that the bandwidth of pMUT is much smaller than this ideal value, and even worse 

than conventional bulk piezoelectric ceramic based ultrasonic transducer [184, 

185]_ENREF_6. Such deviation is mainly attributed to the residual stress after high 

temperature processing. Although Muralt et al. successfully implements a pMUT with 

flat membrane by stresses compensation, the bandwidth is severely limited and 

authors strongly suggest pMUT should not be used for applications which require 

large bandwidth [65]. 

To overcome the bandwidth limitation of pMUT, Hajati et al. develop a pMUT 

array with elements of different sizes, and each of them has a distinct resonant peak 

[186]. When they work together in water, all the peaks are merged and form a wide  
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 bandwidth. Although the bandwidth issue is addressed, the broadband effect is 

achieved with whole array. Wide bandwidth for single pixel is still not available, and 

ultrasonic image cannot be obtained without mechanically scanning. In this chapter, 

we propose a mode-merging pMUT device. A -6dB bandwidth of over 94% in water 

is achieved by single pMUT without matching layer. The associate pulse duration is 

only 1 µs at central frequency of 1.24 MHz, which is considerably shorter than 

previously reported pMUT devices. 

7.2 Concept and Design 

Figure 7.2 (a) shows the schematic illustration of the mode-merging pMUT 

containing a released rectangular plate. This pMUT contains a rectangular plate with 

large aspect ratio, of which the first few resonant frequencies are close to each other. 

When the pMUT operates in largely damped medium like water or soft tissue, the 

resonant peaks of different modes are merged together, forming a much wider 

bandwidth. Choi et al. developed 1-D and 2-D analytical models to describe the 

behavior of pMUT with rectangular plate, but such models only consider the 

fundamental mode [157, 187]. Since the proposed pMUT employs several resonant 

modes merged together, such analytical models may not be suitable. To determine the 

modal frequencies, the pMUT is modeled as a rectangular membrane (dimensions: Lx 

and Ly) with fully clamped boundaries. Such membrane is assumed to be composed 

by uniform material for simplification. The modal frequencies of the membrane are 

given by [188]: 

𝑓𝑚,𝑑 = 1
2

× �𝑇
𝜎

× �𝑚2

𝐿𝑥2
+ 𝑑2

𝐿𝑦2
     m, n=1,2,3,….          (7.1) 

where T is the surface tension, and σ is the area density.  
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Considering k as the length / width aspect ratio (k = Lx / Ly and Ly = L), Eq. (7.1) 

then can be rewritten as: 

 

𝑓𝑚,𝑑 = 1
2𝐿

× �𝑇
𝜎

× �(𝑚
2

𝑖2
+ 𝑛2)     m, n = 1,2,3,….         (7.2) 

 

The fundamental frequency f0 (m=1, n=1) thus is: 

 

𝑓0 = 1
2𝐿

× �𝑇
𝜎

× �( 1
𝑖2

+ 1)                     (7.3) 

 

and the modal frequencies become: 

 

𝑓𝑚,𝑑 = 𝑓0 × �(𝑚
2+𝑖2𝑑2

𝑖2+1
)       m, n = 1,2,3,….         (7.4) 

 

If we consider the frequency of a-th vibration mode equals to f1,2, then frequencies of 

first a – 1 modes are: 

 

𝑓𝑚,1 = 𝑓0 × �(𝑚
2+𝑖2

𝑖2+1
)       m < a                 (7.5) 

 

The relation between a and k is shown in Figure 7.2 (b). Once the aspect ratio k is 

greater than 3, which is usually true for a rectangular membrane, Eq. (7.5) is valid for 

the first 5 modes. Hence, the 1st to 5th modes are investigated in this work. Figure 7.2 

(c) shows the modal frequency ratios with varying k, and the associated mode shapes 

are shown in Figure 7.2 (d). The frequency increasing speed is found to be dependent 
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on the parameter k. With higher k, the increasing speed becomes slower, i.e. higher 

mode frequencies are closer to fundamental frequency. The number of modes which 

fall into a certain frequency range is controlled by parameter k. Therefore, the length / 

width aspect ratio k is the key design parameter for the mode-merging pMUT.  

 

 

Figure 7.2 (a) The schematic drawing of proposed pMUT; (b) Relation between a and 

length / width aspect ratio k; (c) Derived modal frequency ratios with varying k and; 

(d) The associated mode shapes. 

 

The dimension of the pMUT membrane thus is determined as 1550µm * 250µm, 

with a large length / width aspect ratio k of 6.2. Such high k ensures that the frequency 

ratios of first 5 modes are less than 1.3.  



CHAPTER 7 

122 

7.3 Device Characterization and Discussion 

 The OM and SEM images of the fabricated pMUT are shown in Figure 7.3. 

Because of the wet etching process, the edges of PZT thin film are not smooth, 

illustrated in Figure 7.3 (d).  

 

 

Figure 7.3 (a) OM image of fabricated pMUT; SEM image of (b) cross-sectional view 

of released multi-layer membrane; (c) pMUT array and; (d) edge of pMUT element. 

 

7.3.1 Device characterization in air 
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Figure 7.4 (a) Simulated and measured frequency response under 1 Vpp electrical 

excitation; (b) The mode shape for each resonant peak. Left ones are measured 

(multimedia view) and right ones are obtained by simulation; (c) Impedance 

measurement results and; (d) Comparison of analytical model, FEM simulation and 

measurement results. 

 

A 3-D piezoelectric device FEM is created using COMSOL multi-physics 

software to study the behavior of this multilayer membrane. The frequency response 

of displacement amplitude under electrical excitation (1 Vpp) is shown in Figure 7.4 

(a). As is aforementioned, the low-frequency ultrasound suffers lower attenuation and 

enables a larger imaging depth. Therefore the proposed pMUT has a relatively low 

fundamental frequency (~1.12 MHz). It is worth noting that the even modes are 

missing in the response spectrum. For an example of 2nd mode, the membrane can be 

divided into two regions. These two regions are symmetrical with opposite motions. 

However, the mechanical force from converse piezoelectric effect is unidirectional. 
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The unidirectional force can hardly be coupled to such opposite motion and excite the 

2nd mode. Other even modes are also missing for the same reason; hence only odd 

modes are electrically excited. Figure 7.4 (b) shows the mode shape at each peak in 

response spectrum. Totally three modes are excited within a very narrow frequency 

range (~0.3 MHz), which is coherent with the analytical model. The 1st mode and 3rd 

mode have already merged without considering damping effects from environment. 

When this pMUT works in largely damped medium, all the three resonance modes, or 

even more modes, will be merged together, and hence the frequency bandwidth is 

significantly broadened. 

The as-fabricated pMUT is firstly characterized using DHM-R2100 holographic 

MEMS analyzer by Lyncée Tec Ltd. The device under test (DUT) is electrically 

excited by the stroboscopic module with 1 Vpp. Dynamic 3-D vibrations of DUT are 

captured and recorded for analysis. Measured frequency response and mode shapes at 

resonant peaks are shown in Figure 7.4 (a) and (b), respectively. Similar to the 

simulation results, totally three modes are excited within a narrow frequency range of 

0.3 MHz with 1st mode and 3rd mode overlapped. It is clearly shown that excited 

modes are all odd modes, which are consistent with the simulation results and above 

discussion. Compared with simulation results, the measured frequencies are slightly 

lower. This may be due to the non-perfect DRIE process during micro-fabrication. 

Since the side walls cannot be perfectly vertical to the back surface of membrane after 

DRIE process, therefore, a larger released membrane results in lower frequencies. 

Another deviation is that measured displacement amplitude of 1st mode is much 

smaller than that in simulation. Because the device is characterized in air, the 1st mode 

may suffer severe air damping. From the measured response spectrum, peak of 1st 

mode is observed to be broadened, implying its energy dissipation due to air damping 
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is higher than 3rd mode. Hence the displacement amplitude of 1st mode drops to 

almost the same as 3rd mode. The impedance characterization is performed as well 

using Agilent 4294A precision impedance analyzer as shown in Figure 7.4 (c). The 

electromechanical coupling coefficient keff
2 can be derived by resonant frequency fr 

and anti-resonant frequency fa through following relation [151]: 

 

𝑘𝑒𝑒𝑒
2 = 𝑒𝑎2−𝑒𝑟2

𝑒𝑟2
                          (7.6) 

 

Calculated electromechanical coupling coefficients for 1st, 3rd and 5th mode are 1.97%, 

1.04% and 0.99%, respectively.  

Comparison of analytical model, FEM simulation and measurement are 

illustrated in Figure 7.4 (d). In general, both the analytical and FEM match the 

measured data well. Although the analytical model is simplified based on the 

assumption of a uniformly single layer membrane, the predicted frequencies are 

slightly higher and the errors are still within acceptable range (5.4% for 3rd mode and 

7.6% for 5th mode). The analytical model thus provides a quick way to determine the 

length / width aspect ratio k for design of mode-merging pMUT. For the sophisticated 

FEM simulation, the results are very close to the experimental data, better than the 

analytical model. The slight deviation is probably due to some non-ideal factors, as it 

is discussed above. 

7.3.2 Underwater testing 

7.3.2.1 Testing setup 

To characterize the underwater performance of the fabricated pMUT, a 1.0 mm 
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needle hydrophone along with 8 dB pre-amplifier by Precision Acoustics Ltd. is used 

to detect the transmitted acoustic pulse at a distance of 3 mm as shown in inset of 

Figure 7.5 (b). The pMUT is driven by a 20 V electrical pulse signal using an Agilent 

33510B waveform generator. Duration of this pulse signal is 300 ns.  

7.3.2.2 Testing results and discussion 

 

Figure 7.5 (a) Underwater performance testing results using hydrophone and; (b) The 

corresponding Fast Fourier Transform (FFT) spectrum. The testing set-up is shown in 

the inset. 

 

Driven pulse and received pulse are shown in Figure 7.5 (a), while the 

corresponding Fast Fourier Transform (FFT) spectrum is shown in Figure 7.5 (b). The 

-6 dB frequency bandwidth is measured as 95% with central frequency of 1.24 MHz, 

which is significantly higher than reported data of 10% [185], 43% [166], and 57% 

[184]. Benefited from such ultra-wide frequency bandwidth, the mode-merging 

pMUT is able to generate very short ultrasonic pulse (1 µs) at relatively low frequency. 

The pMUT with similar pulse duration (~0.7 µs) operates at much higher frequency of 

7.1 MHz [184]. For the pMUT with similar operating frequency (~1.8MHz), its pulse 

duration is as long as 3 µs [185]. Therefore, the ultra-wide frequency bandwidth 

pMUT is superior to normal pMUTs. 
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7.4 Summary 

In this chapter, a mode-merging pMUT is designed, fabricated and characterized. 

Totally, three modes are excited within a narrow frequency range of 0.3 MHz. When 

this pMUT is working in a highly damped medium, excited modes are merged 

together and form an ultra-wide frequency bandwidth. The -6 dB bandwidth in water 

is measured as 95 %, which is significantly higher than previously reported pMUTs. 

Benefited from such ultra-wide frequency bandwidth, 1 µs ultrasonic pulse is 

achieved at central frequency of 1.24 MHz. Diagnostic imaging with better axial 

resolution and larger imaging depth may be realized with this ultra-wide frequency 

bandwidth pMUT. 
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Chapter 8 Conclusions and Future Works 

8.1 Summary of Current Works 

A variety of piezoelectric ultrasonic MEMS devices are presented in this thesis, 

including novel acoustic wave sensors and pMUTs with different unique features. The 

main focus of this work is to overcome the inherent limitations of currently reported 

piezoelectric ultrasonic MEMS sensors.  

1. SAW based pressure sensor as one of the basic piezoelectric MEMS sensors is 

firstly studied. It is found that the diaphragm shape can largely influence the 

sensitivity, and may even change the sign of PCF. This is due to the change of 

longitudinal / lateral strain ratio. Based on the findings, several approaches are 

proposed to further enhance the sensitivity. 

2. Acoustic wave sensor can also be used for liquid sensing. Currently reported 

sensor responds to the product of liquid viscosity and density. By inducing two unique 

Lamb wave modes, the proposed novel sensor can be solely sensitive to either 

viscosity or density. Decoupled viscosity and density sensing by single device is 

realized for the first time. 

3. Besides the sensor with ultrasonic wave propagating within the device, pMUTs 

with the capability of transmitting and sensing ultrasonic waves in the outer medium 

are developed as well. Due to the residual stress and initial deflection after fabrication 

process, the transmitting sensitivity of currently reported pMUTs becomes quite 

limited. Leveraging on the top electrode configuration and integrated vacuum cavity, 

a novel pMUT with zero initial deflection is developed. The transmitting sensitivity is 
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several times over the conventional design. In order to further increase the ultrasound 

transmitting efficiency, a pMUT with piston-like membrane motion is also developed. 

Unlike the Gaussian-like membrane deflection during vibration, the piston-like 

deflection can push more ultrasound medium back and forth, generating an even 

higher ultrasonic pressure. 

4. The performance of AlN based pMUT may still be not satisfactory for practical 

applications, and therefore a PZT based pMUT is developed in this work. The newly 

developed unipolar pulse poling process enables a PZT thin film with much higher 

piezoelectric constant and lower dielectric constant than conventional film. Together 

with optimized pMUT design, a high performance pMUT is finally achieved, showing 

a significantly high transmitting sensitivity. 

5. Except for the sensitivity, the frequency bandwidth is also important for pMUT. 

Especially for diagnostic ultrasonic imaging application, the bandwidth determines 

the axial image resolution. With a large length / width ratio membrane, a broadband 

pMUT is developed. Several resonant modes are excited simultaneously, and the 

resonant peaks are overlapped with each other, forming an ultra-wide frequency 

bandwidth. The bandwidth is considerably higher than previously reported pMUTs.   

8.2 Future Development of Electrically Switchable pMUT 

8.2.1 Motivation 

The quality of the diagnostic ultrasonic imaging, or the resolution, is mainly 

determined by the working frequency. Higher frequency gives shorter wavelength, 

and therefore better resolution [181]. However, the ultrasound attenuation also 

increases with frequency. Too high frequency means the ultrasound energy dissipates 
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very fast. The transmitted ultrasound pulse cannot penetrate to body deeply, resulting 

in very limited detecting range. Users therefore choose different frequencies between 

resolution and penetration for different situations. For example, higher frequency is 

used for superficial imaging and lower frequency for deep organ imaging [189]. 

Conventionally the pMUT, however, is designed at one dedicated frequency [170, 

171], which usually works at its fundamental resonant mode. Although it shows weak 

resonances at higher modes, the electromechanical coupling is quite limited, i.e. the 

sensitivity is very low. Use of the higher modes thus is not practical. The user 

therefore has to physically change the transducer to meet the frequency requirements. 

In addition, for some applications like intravascular ultrasonic imaging (IVUS), 

changing of the transducer inside the vessel is not even possible. To overcome this 

limit, an electrically frequency switchable pMUT is proposed. With the innovative top 

electrode configuration, the proposed switchable pMUT is able to work at its 1st, 3rd 

and 5th mode efficiently, by activating different sets of top electrodes. As the 

consequence, this pMUT can electrically switch its working frequency (where the 

pMUT shows highest sensitivity) between 2.01 MHz, 3.19 MHz, and 5.84 MHz, 

without sacrificing the performance. This switchable pMUT would provide user with 

extra flexibility. 

8.2.2 Concept and design 

The proposed switchable pMUT (one element) is illustrated in Figure 8.1 (a). The 

element contains a rectangular flexural membrane with dimension of 400µm × 170µm. 

Usually one top electrode is adopted for conventional pMUT, and the induced 

piezoelectric stress couples with the fundamental mode vibration efficiently. However, 

if the pMUT works at its higher mode, the coupling efficiency significantly drops, 
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because the piezoelectric stress no longer matches with the mode shape but works 

against part of the membrane motion. The sensitivity at higher mode becomes poorer, 

and hence the use of higher modes for conventional pMUT is not practical.  

 

 

Figure 8.1 (a) 3-D schematic illustration of the switchable pMUT, which has five 

individual top electrodes and; (b) The electrical connections of the top electrodes. The 

top electrodes are divided into three sets, denoted as Electrode A, B and C. 

 

To realize the electrically switching feature, this pMUT has five individual top 

electrodes. Such electrodes are divided into three sets, shown in Figure 8.1 (b). An 

FEM is built using COMSOL Multiphysics to determine the proper location and 

width of each electrode. Combination of different sets of electrodes enables the 

electrodes match with the mode shapes, i.e. Electrode A+B+C for 1st mode, Electrode 

A+B for 3rd mode, and Electrode B+C for 5th mode. Thus, by activating different sets 

of electrodes, the switchable pMUT can always achieve its best electromechanical 

coupling efficiencies at each resonant mode. As the results, the working frequency can 
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be electrically switched, without physically changing the pMUT.  

The fundamental resonant frequency of a rectangular membrane is determined by the 

geometry as [188]: 

 

𝑓0 = 1
2

× �𝑇
𝜎

× �1
𝐿2

+ 1
𝑊2                 (8.1) 

 

where T is the surface tension, σ is the area density, L is the membrane length, and W 

is the membrane width. Meanwhile, the membrane aspect ratio k=L/W determines the 

positions of higher resonant modes with respect to fundamental mode as [172]: 

 

𝑓𝑑 = 𝑓0 × �(𝑑
2+𝑖2

𝑖2+1
)       n=1, 2, 3…        (8.2) 

 

The frequency distance between each mode thus can be engineered by the factor k, 

and a lower k gives rise to larger frequency switching range. With the given materials 

and geometry, the frequencies of the switchable pMUT are predicted by FEA 

modeling as 2.28MHz, 3.59MHz and 6.40MHz for 1st, 3rd and 5th mode, respectively.  

8.2.3 Preliminary characterization and discussion 

The as-fabricated switchable pMUT array is shown in Figure 8.2 (a). All the 

elements are connected in parallel, and the bonding pad for each electrode set is 

denoted in the figure as well. Figure 8.2 (b) shows a single pMUT element. The 

minimum feature size of the top electrodes is 1µm to reduce the non-ideal effect of 

the synthesized effective electrodes. The multilayer interconnections and the vias are 

shown in Figure 8.2 (c). 
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Figure 8.2 The as-fabricated switchable pMUT: (a) OM image of the pMUT array; (b) 

SEM image of a single pMUT element. The minimum feature size is 1µm; (c) The 

multilayer metal structures and vias and: (d) cross-sectional view of the device. 

 

The switchable pMUT is characterized using the DHM-2100R digital holographic 

microscope from Lyncée Tech, with 1V excitation. The phase images of the device 

during motion are captured, where the lighter color stands for higher surface height 

while darker color for lower height. Figure 8.3 shows the activated electrode sets, 

together with the corresponding phase images at resonance. The activated electrode 

sets are highlighted by orange color. It is worth noting that two dummy electrodes are 

also fabricated besides the electrode sets. The dummy electrodes are employed to 

reduce the initial membrane buckling, leveraging on their tensile residual stresses [64]. 

Largely deflected membrane could hamper the membrane vibration and give rise to 



CHAPTER 8 

134 

performance degradation. With the dummy electrode design, the pMUT performance 

degradation therefore can be minimized.   

 

 

Figure 8.3 The activated electrode sets and the corresponding phase image for each 

resonance mode. By activating different sets of top electrodes, the synthesized 

effective electrode matches the in-phase motion parts of the membrane to achieve 

efficient coupling. 

 

For the Mode-1 (fundamental mode), Electrode A, B and C are simultaneously 

activated, which work as one large effective electrode. The mode shape can be seen 

from the phase images, where the dash lines indicate the effective electrode in the 

phase image. It is clearly shown that the effective electrode matches well with the 

mode shape. The induced piezoelectric stress thus can couple with the vibration with 

maximum efficiency. For Mode-3, only Electrode A and B are activated. As can be 

seen from the figure, the effective electrode only covers the central part of the 

membrane, where the motion phase is 180° different with the rest part of membrane. 

Therefore, the effective electrode induced piezoelectric stress efficiently couples with 
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the in-phase motion part, and does not work against the rest of the membrane. In 

terms of Mode-5, Electrode B and C are activated. Since two parts of the membrane 

have the same motion phase, the effective electrode is divided to two parts to match 

them. Vibration at Mode-5 thus is enhanced. 

A reference pMUT with the same membrane design but fully covered single top 

electrode is fabricated for performance comparison. Both the reference and switchable 

pMUTs are excited with 1V sinusoidal signal. Their frequency responses of 

displacement sensitivity in air are plotted in Figure 8.4. The resonant frequencies of 

the switchable pMUT are measured as 2.01 MHz, 3.19 MHz and 5.84 MHz for the 

three resonance modes. Compared to the FEA modeling results, these frequencies are 

slightly lower. This could be due to the anchor loss at the edges of membrane, which 

is not taken into account for FEA modeling.  

 

 

Figure 8.4 Performance comparison of reference pMUT and switchable pMUT: 

measured frequency response of displacement amplitude with 1V input voltage at 

each mode. The simulated mode shapes by FEA modeling are also shown as insets. 

 

The sensitivity of the reference pMUT at Mode-1 is 34nm/V, which is denoted as 

Sref. If this reference pMUT works at its higher mode, the sensitivity drastically drops 

to 70% Sref and 23% Sref at Mode-3 and Mode-5, respectively. Such low sensitivity, 

e.g. 8nm/V at Mode-5, can nearly be usable for practical applications. Meanwhile, for 
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the switchable pMUT, it shows higher sensitivities: 125% Sref and 132% Sref for 

Mode-1 and Mode-3, respectively. The sensitivity at Mode-3 does not decrease and is 

even higher than the Sref, showing the high coupling efficiency. The performance at 

Mode-5 is 28nm/V, which is slightly lowered to 82% Sref, but is still 3.5 times higher 

than the value of reference pMUT. This sensitivity is considered satisfactory for 

practical use.  

Thus, the switchable pMUT has achieved considerably high sensitivities at three 

different frequencies, ranging from 2.01 MHz to 5.84MHz. In the future research, the 

switchable pMUT will be further characterized and tested under water to validate its 

frequency switchable function. The receiving sensitivity will be characterized as well, 

so as to make sure it functions well as both transmitter and receiver at different 

frequencies. With the switchable pMUT, the user would be able to electrically switch 

the working frequency for different situations, without physically changing the 

transducer or sacrificing the pMUT performance. This switchable pMUT shows its 

promise in the future dual-frequency ultrasonic imaging technology.  
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