1,832 research outputs found

    Low Power Personalized ECG Based System Design Methodology for Remote Cardiac Health Monitoring

    Get PDF
    This paper describes a mixed-signal ECG system for personalized and remote cardiac health monitoring. The novelty of this work is four-fold. Firstly, a low power analog front end with an efficient automatic gain control mechanism, maintaining the input of the ADC to a level rendering optimum SNR and the enhanced recyclic folded cascode opamp used as an integrator for ADC. Secondly, a novel on-the-fly PQRST Boundary Detection (BD) methodology is formulated for finding the boundaries in continuous ECG signal. Thirdly, a novel low-complexity ECG feature extraction architecture is designed by reusing the same module present in the proposed BD methodology. Fourthly, the system is having the capability to reconfigure the proposed Low power ADC for low (8 bits) and high (12 bits) resolution with the use of the feedback signal obtained from the digital block when it is in processing. The proposed system has been tested and validated on patient’s data from PTBDB, CSEDB and in-house IIT Hyderabad DB (IITHDB) and we have achieved an accuracy of 99% upon testing on various normal and abnormal ECG signals. The whole system is implemented in 180 nm technology resulting in 9.47W (@ 1 MHz) power consumption and occupying 1.74mm2 silicon area

    Classification methodology of CVD with localized feature analysis using Phase Space Reconstruction targeting personalized remote health monitoring

    Get PDF
    2016 Computing in Cardiology Conference (CinC), 11-14 September 2016, Vancouver, BC, CanadaThis is the final version of the article. Available from the publisher via the DOI in this recordThis paper introduces the classification methodology of Cardiovascular Disease (CVD) with localized feature analysis using Phase Space Reconstruction (PSR) technique targeting personalized health care. The proposed classification methodology uses a few localized features (QRS interval and PR interval) of individual Electrocardiogram (ECG) beats from the Feature Extraction (FE) block and detects the desynchronization in the given intervals after applying the PSR technique. Considering the QRS interval, if any notch is present in the QRS complex, then the corresponding contour will appear and the variation in the box count indicating a notch in the QRS complex. Likewise, the contour and the disparity of box count due to the variation in the PR interval localized wave have been noticed using the proposed PSR technique. ECG database from the Physionet (MIT-BIH and PTBDB) has been used to verify the proposed analysis on localized features using proposed PSR and has enabled us to classify the various abnormalities like fragmented QRS complexes, myocardial infarction, ventricular arrhythmia and atrial fibrillation. The design have been successfully tested for diagnosing various disorders with 98% accuracy on all the specified abnormal databases.This work is partly supported by the Department of Electronics and Information and Technology (DeitY), India under the “Internet of Things (IoT) for Smarter Healthcare” under Grant No: 13(7)/2012-CC&BT, dated 25 Feb 2013. Naresh V is funded by Ministry of Human Resource Development (MHRD) PhD studentship through IIT Hyderabad

    Precision medicine and artificial intelligence : a pilot study on deep learning for hypoglycemic events detection based on ECG

    Get PDF
    Tracking the fluctuations in blood glucose levels is important for healthy subjects and crucial diabetic patients. Tight glucose monitoring reduces the risk of hypoglycemia, which can result in a series of complications, especially in diabetic patients, such as confusion, irritability, seizure and can even be fatal in specific conditions. Hypoglycemia affects the electrophysiology of the heart. However, due to strong inter-subject heterogeneity, previous studies based on a cohort of subjects failed to deploy electrocardiogram (ECG)-based hypoglycemic detection systems reliably. The current study used personalised medicine approach and Artificial Intelligence (AI) to automatically detect nocturnal hypoglycemia using a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices, in healthy individuals, monitored 24 hours for 14 consecutive days. Additionally, we present a visualisation method enabling clinicians to visualise which part of the ECG signal (e.g., T-wave, ST-interval) is significantly associated with the hypoglycemic event in each subject, overcoming the intelligibility problem of deep-learning methods. These results advance the feasibility of a real-time, non-invasive hypoglycemia alarming system using short excerpts of ECG signal

    Precision medicine and artificial intelligence : a pilot study on deep learning for hypoglycemic events detection based on ECG

    Get PDF
    Tracking the fluctuations in blood glucose levels is important for healthy subjects and crucial diabetic patients. Tight glucose monitoring reduces the risk of hypoglycemia, which can result in a series of complications, especially in diabetic patients, such as confusion, irritability, seizure and can even be fatal in specific conditions. Hypoglycemia affects the electrophysiology of the heart. However, due to strong inter-subject heterogeneity, previous studies based on a cohort of subjects failed to deploy electrocardiogram (ECG)-based hypoglycemic detection systems reliably. The current study used personalised medicine approach and Artificial Intelligence (AI) to automatically detect nocturnal hypoglycemia using a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices, in healthy individuals, monitored 24 hours for 14 consecutive days. Additionally, we present a visualisation method enabling clinicians to visualise which part of the ECG signal (e.g., T-wave, ST-interval) is significantly associated with the hypoglycemic event in each subject, overcoming the intelligibility problem of deep-learning methods. These results advance the feasibility of a real-time, non-invasive hypoglycemia alarming system using short excerpts of ECG signal

    A Low Complexity Architecture for Online On-chip Detection and Identification of f-QRS Feature for Remote Personalized Health Care Applications

    Get PDF
    This paper introduces a novel low complexity highly accurate on-chip architecture for the detection of fragmented QRS (f-QRS) feature including notches and local extrema in the QRS complexes and subsequently identifies its various morphologies (Notched S, rsR', RsR' without elevation etc.) under the real-time environment targeting remote personalized health care. The proposed architecture uses the outcome of recently proposed Hybrid feature extraction algorithm (HFEA) [1] Level 3 detailed coefficients and detects and identifies the fragmentation feature from the QRS complex based on the criteria of the positions, and the magnitudes of the extrema (maxima and minima) and notches from the wavelet coefficients with no extra cost in terms of arithmetic complexity. To verify the proposed architecture 100 patients were randomly selected from the MIT-BIH Physio Net PTB database and their ECG was examined by two experienced cardiologists individually and the results were compared with those obtained from the architecture output wherein we have achieved 95 % diagnostic matching

    Personalized data analytics for internet-of-things-based health monitoring

    Get PDF
    The Internet-of-Things (IoT) has great potential to fundamentally alter the delivery of modern healthcare, enabling healthcare solutions outside the limits of conventional clinical settings. It can offer ubiquitous monitoring to at-risk population groups and allow diagnostic care, preventive care, and early intervention in everyday life. These services can have profound impacts on many aspects of health and well-being. However, this field is still at an infancy stage, and the use of IoT-based systems in real-world healthcare applications introduces new challenges. Healthcare applications necessitate satisfactory quality attributes such as reliability and accuracy due to their mission-critical nature, while at the same time, IoT-based systems mostly operate over constrained shared sensing, communication, and computing resources. There is a need to investigate this synergy between the IoT technologies and healthcare applications from a user-centered perspective. Such a study should examine the role and requirements of IoT-based systems in real-world health monitoring applications. Moreover, conventional computing architecture and data analytic approaches introduced for IoT systems are insufficient when used to target health and well-being purposes, as they are unable to overcome the limitations of IoT systems while fulfilling the needs of healthcare applications. This thesis aims to address these issues by proposing an intelligent use of data and computing resources in IoT-based systems, which can lead to a high-level performance and satisfy the stringent requirements. For this purpose, this thesis first delves into the state-of-the-art IoT-enabled healthcare systems proposed for in-home and in-hospital monitoring. The findings are analyzed and categorized into different domains from a user-centered perspective. The selection of home-based applications is focused on the monitoring of the elderly who require more remote care and support compared to other groups of people. In contrast, the hospital-based applications include the role of existing IoT in patient monitoring and hospital management systems. Then, the objectives and requirements of each domain are investigated and discussed. This thesis proposes personalized data analytic approaches to fulfill the requirements and meet the objectives of IoT-based healthcare systems. In this regard, a new computing architecture is introduced, using computing resources in different layers of IoT to provide a high level of availability and accuracy for healthcare services. This architecture allows the hierarchical partitioning of machine learning algorithms in these systems and enables an adaptive system behavior with respect to the user's condition. In addition, personalized data fusion and modeling techniques are presented, exploiting multivariate and longitudinal data in IoT systems to improve the quality attributes of healthcare applications. First, a real-time missing data resilient decision-making technique is proposed for health monitoring systems. The technique tailors various data resources in IoT systems to accurately estimate health decisions despite missing data in the monitoring. Second, a personalized model is presented, enabling variations and event detection in long-term monitoring systems. The model evaluates the sleep quality of users according to their own historical data. Finally, the performance of the computing architecture and the techniques are evaluated in this thesis using two case studies. The first case study consists of real-time arrhythmia detection in electrocardiography signals collected from patients suffering from cardiovascular diseases. The second case study is continuous maternal health monitoring during pregnancy and postpartum. It includes a real human subject trial carried out with twenty pregnant women for seven months

    Classification techniques for arrhythmia patterns using convolutional neural networks and Internet of Things (IoT) devices

    Get PDF
    The rise of Telemedicine has revolutionized how patients are being treated, leading to several advantages such as enhanced health analysis tools, accessible remote healthcare, basic diagnostic of health parameters, etc. The advent of the Internet of Things (IoT), Artificial Intelligence (AI) and their incorporation into Telemedicine extends the potential of health benefits of Telemedicine even further. Therefore, the synergy between AI, IoT, and Telemedicine creates diverse innovative scenarios for integrating cyber-physical systems into medical health to provide remote monitoring and interactive assistance to patients. Data from World Health Organization reports that 7.4 million people died because of Atrial Fibrillation (AF), recognizing the most common arrhythmia associated with human heart rate. Causes like unhealthy diet, smoking, poor resources to go to the doctor and based on research studies, about 12 and 17.9 million of people will be suffering the AF in the USA and Europe, in 2050 and 2060, respectively. The AF as a cardiovascular disease is becoming an important public health issue to tackle. By using a systematic approach, this paper reviews recent contributions related to the acquisition of heart beats, arrhythmia detection, IoT, and visualization. In particular, by analysing the most closely related papers on Convolutional Neural Network (CNN) and IoT devices in heart disease diagnostics, we present a summary of the main research gaps with suggested directions for future research

    Ubiquitous Computing for Remote Cardiac Patient Monitoring: A Survey

    Get PDF
    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation
    corecore