7,728 research outputs found

    Low-order coupled map lattices for estimation of wake patterns behind vibrating flexible cables

    Get PDF
    Fluid-structure interaction arises in a wide array of technological applications including naval and marine hydrodynamics, civil and wind engineering and flight vehicle aerodynamics. When a fluid flows over a bluff body such as a circular cylinder, the periodic vortex shedding in the wake causes fluctuating lift and drag forces on the body. This phenomenon can lead to fatigue damage of the structure due to large amplitude vibration. It is widely believed that the wake structures behind the structure determine the hydrodynamic forces acting on the structure and control of wake structures can lead to vibration control of the structure. Modeling this complex non-linear interaction requires coupling of the dynamics of the fluid and the structure. In this thesis, however, the vibration of the flexible cylinder is prescribed, and the focus is on modeling the fluid dynamics in its wake. Low-dimensional iterative circle maps have been found to predict the universal dynamics of a two-oscillator system such as the rigid cylinder wake. Coupled map lattice (CML)models that combine a series of low-dimensional circle maps with a diffusion model have previously predicted qualitative features of wake patterns behind freely vibrating cables at low Reynolds number. However, the simple nature of the CML models implies that there will always be unmodelled wake dynamics if a detailed, quantitative comparison is made with laboratory or simulated wake flows. Motivated by a desire to develop an improved CML model, we incorporate self-learning features into a new CML that is trained to precisely estimate wake patterns from target numerical simulations and experimental wake flows. The eventual goal is to have the CML learn from a laboratory flow in real time. A real-time self-learning CML capable of estimating experimental wake patterns could serve as a wake model in a future anticipated feedback control system designed to produce desired wake patterns. A new convective-diffusive map that includes additional wake dynamics is developed. Two different self-learning CML models, each capable of precisely estimating complex wake patterns, have been developed by considering additional dynamics from the convective-diffusive map. The new self-learning CML models use adaptive estimation schemes which seek to precisely estimate target wake patterns from numerical simulations and experiments. In the first self-learning CML, the estimator scheme uses a multi-variable least-squares algorithm to adaptively vary the spanwise velocity distribution in order to minimize the state error (difference between modeled and target wake patterns). The second self-learning model uses radial basis function neural networks as online approximators of the unmodelled dynamics. Additional unmodelled dynamics not present in the first self-learning CML model are considered here. The estimator model uses a combination of a multi-variable normalized least squares scheme and a projection algorithm to adaptively vary the neural network weights. Studies of this approach are conducted using wake patterns from spectral element based NEKTAR simulations of freely vibrating cable wakes at low Reynolds numbers on the order of 100. It is shown that the self-learning models accurately and efficiently estimate the simulated wake patterns within several shedding cycles. Next, experimental wake patterns behind different configurations of rigid cylinders were obtained. The self-learning CML models were then used for off-line estimation of the stored wake patterns. With the eventual goal of incorporating low-order CML models into a wake pattern control system in mind, in a related study control terms were added to the simple CML model in order to drive the wake to the desired target pattern of shedding. Proportional, adaptive proportional and non-linear control techniques were developed and their control efficiencies compared

    An EnKF-Based Flow State Estimator for Aerodynamic Flows

    Get PDF
    Regardless of plant model, robust flow estimation based on limited measurements remains a major obstacle to successful flow control applications. Aiming to combine the robustness of a high-dimensional representation of the dynamics with the cost efficiency of a low-order approximation of the state covariance matrix, a flow state estimator based on the Ensemble Kalman Filter (EnKF) is applied to two-dimensional flow past a cylinder and an airfoil at high angle of attack and low Reynolds number. For the development purposes, we use the numerical algorithm as both the estimator and as a surrogate for the measurements. Estimation is successful using a reduced number of either pressure sensors on the surface of the body or sparsely placed velocity probes in the wake. Because the most relevant features of these flows is restricted to a low-dimensional subspace/manifold of the state space, asymptotic behavior of the estimator is shown to be achieved with a small ensemble size. The relative importance of each sensor location is evaluated by analyzing how they influence the estimated flow field. Covariance inflation is used to enhance the estimator performance in the presence of unmodeled free stream perturbations. A combination of parametric modeling and augmented state methodology is used to successfully estimate the forces on immersed bodies

    Feedback control of unstable steady states of flow past a flat plate using reduced-order estimators

    Full text link
    We present an estimator-based control design procedure for flow control, using reduced-order models of the governing equations, linearized about a possibly unstable steady state. The reduced models are obtained using an approximate balanced truncation method that retains the most controllable and observable modes of the system. The original method is valid only for stable linear systems, and we present an extension to unstable linear systems. The dynamics on the unstable subspace are represented by projecting the original equations onto the global unstable eigenmodes, assumed to be small in number. A snapshot-based algorithm is developed, using approximate balanced truncation, for obtaining a reduced-order model of the dynamics on the stable subspace. The proposed algorithm is used to study feedback control of 2-D flow over a flat plate at a low Reynolds number and at large angles of attack, where the natural flow is vortex shedding, though there also exists an unstable steady state. For control design, we derive reduced-order models valid in the neighborhood of this unstable steady state. The actuation is modeled as a localized body force near the leading edge of the flat plate, and the sensors are two velocity measurements in the near-wake of the plate. A reduced-order Kalman filter is developed based on these models and is shown to accurately reconstruct the flow field from the sensor measurements, and the resulting estimator-based control is shown to stabilize the unstable steady state. For small perturbations of the steady state, the model accurately predicts the response of the full simulation. Furthermore, the resulting controller is even able to suppress the stable periodic vortex shedding, where the nonlinear effects are strong, thus implying a large domain of attraction of the stabilized steady state.Comment: 36 pages, 17 figure

    Sum-of-Squares approach to feedback control of laminar wake flows

    Get PDF
    A novel nonlinear feedback control design methodology for incompressible fluid flows aiming at the optimisation of long-time averages of flow quantities is presented. It applies to reduced-order finite-dimensional models of fluid flows, expressed as a set of first-order nonlinear ordinary differential equations with the right-hand side being a polynomial function in the state variables and in the controls. The key idea, first discussed in Chernyshenko et al. 2014, Philos. T. Roy. Soc. 372(2020), is that the difficulties of treating and optimising long-time averages of a cost are relaxed by using the upper/lower bounds of such averages as the objective function. In this setting, control design reduces to finding a feedback controller that optimises the bound, subject to a polynomial inequality constraint involving the cost function, the nonlinear system, the controller itself and a tunable polynomial function. A numerically tractable approach to the solution of such optimisation problems, based on Sum-of-Squares techniques and semidefinite programming, is proposed. To showcase the methodology, the mitigation of the fluctuation kinetic energy in the unsteady wake behind a circular cylinder in the laminar regime at Re=100, via controlled angular motions of the surface, is numerically investigated. A compact reduced-order model that resolves the long-term behaviour of the fluid flow and the effects of actuation, is derived using Proper Orthogonal Decomposition and Galerkin projection. In a full-information setting, feedback controllers are then designed to reduce the long-time average of the kinetic energy associated with the limit cycle. These controllers are then implemented in direct numerical simulations of the actuated flow. Control performance, energy efficiency, and physical control mechanisms identified are analysed. Key elements, implications and future work are discussed

    Rough clustering for web transactions

    Get PDF
    Grouping web transactions into clusters is important in order to obtain better understanding of user's behavior. Currently, the rough approximation-based clustering technique has been used to group web transactions into clusters. It is based on the similarity of upper approximations of transactions by given threshold. However, the processing time is still an issue due to the high complexity for finding the similarity of upper approximations of a transaction which used to merge between two or more clusters. In this study, an alternative technique for grouping web transactions using rough set theory is proposed. It is based on the two similarity classes which is nonvoid intersection. The technique is implemented in MATLAB ® version 7.6.0.324 (R2008a). The two UCI benchmark datasets taken from: http:/kdd.ics.uci.edu/ databases/msnbc/msnbc.html and http:/kdd.ics.uci.edu/databases/ Microsoft / microsoft.html are opted in the simulation processes. The simulation reveals that the proposed technique significantly requires lower response time up to 62.69 % and 66.82 % as compared to the rough approximation-based clustering, severally. Meanwhile, for cluster purity it performs better until 2.5 % and 14.47%, respectively
    • …
    corecore